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1 Introduction
The equation

ρ
∂u
∂t –

(
P

h
+

E
L

∫ L



∣∣∣∣∂u
∂x

∣∣∣∣


dx
)

∂u
∂x = , (.)

presented by Kirchhoff [] in , is an extension of the classical d’Alembert’s wave equa-
tion by considering the changes in the length of the string during vibrations. In (.), L
is the length of string, h is the area of the cross section, E is the Young modulus of the
material, ρ is the mass density, and P is the initial tension. The stationary form of type
(.) is taken in the form of

–k
(∫

�

|∇u| dx
)

�u = f (x, u), in � (.)

which may be used for modeling several physical and biological systems, where u describes
a process which depends on the average of itself, for example, the population density [].
If k(

∫
�

|∇u| dx) is replaced by k(
∫
�

|u| dx), then the equation

–k
(∫

�

|u| dx
)

�u = f (x, u), in � (.)

arises in numerous physical models such as systems of particles in thermodynamical equi-
librium via gravitational potential, thermal runaway in ohmic heating and shear bands in
metal deformed under high strain rates [].
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Ricceri [] discussed Kirchhoff equations in the form of
{

–k(
∫
�

|∇u| dx)�u = λf (x, u) + μg(x, u), in �,
u = , on ∂�.

(.)

The existence of solutions was established by the critical point theorem due to Ricceri [].
Chen [] investigated p-Kirchhoff equations in the whole space RN :

{
M(

∫
RN |∇u|p + V (x)|u|p dx)(–�pu + V (x)|u|p–u) = f (x, u) + g(x), in RN ,

u → , as |x| → ∞,
(.)

where M(t) = tk , k >  and V (x) is a continuous function satisfying the condition that there
exists b >  such that V (x) ≥ b for x ∈ RN , V (x) → ∞ as |x| → ∞. The solutions were
obtained by the mountain pass theorem, Ekeland’s variational principle and Krasnoselskii’s
genus theory. Also Chen [] considered (.) with M(t) = a + btk (a > , b > , k > ),
f (x, u) = λh(x)|u|q–u + h(x)|u|r–u + h(x) and g(x) = . Two nontrivial solutions were
established by the mountain pass theorem and Ekeland’s variational principle.

There often arise the equations involving nonhomogeneous operators and nonlineari-
ties, for instance, in the fields of electrorheological fluids (sometimes referred to as ‘smart
fluids’), nonlinear elasticity and plasticity. The natural setting for this approach is Orlicz-
Sobolev spaces.

In this article, we investigate Kirchhoff elliptic equations with nonlinearity in RN in the
Orlicz-Sobolev setting:

{
–k(ρ̃M(u))(div(a(|∇u|)∇u) – a(|u|)u) = λf (x, u) + μg(x, u), in RN ,
u → , as |x| → ∞,

(.)

where k : [,∞) → [,∞) is nondecreasing and continuous, a(t)t is strictly increasing and
continuous on [,∞), such that limt→+ a(t)t = , limt→∞ a(t)t = ∞, λ, μ are nonnegative
real numbers, f and g are Carathéodory functions, and ρ̃M is defined in Section .

Using the ideas and techniques developed in the research of Orlicz spaces, we prove
the existence of at least three solutions of (.) but get rid of the restriction that M(

√
t) is

convex on [,∞) in [–].
To our knowledge, this is the first contribution to investigate (.) in the whole space RN

in the Orlicz-Sobolev setting. For multivalued problems, please see []. For problems in
variable exponent, please see [–]. For hyperbolic Kirchhoff systems, please see [, ].

2 Preliminaries
M is called an Orlicz function provided that

M(s) =
∫ |s|


p(t) dt, ∀s ∈ R,

where p is nondecreasing, right-continuous with p() = , p(t) >  (∀t > ) and
limt→∞ p(t) = ∞. Its complementary function M̃ is defined as

M̃(t) =
∫ |t|


p̃(s) ds, ∀t ∈ R,

where p̃(s) = sup{t ≥  : p(t) ≤ s}. Then M̃ is also an Orlicz function (see []).
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Young’s inequality holds true

st ≤ M(s) + M̃(t), ∀s, t ≥ ,

and equation holds if and only if t = p(s) or s = p̃(t).
M is said to satisfy �-condition (in short, M ∈ �) provided that there exists a positive

number C >  such that

M(t) ≤ CM(t), ∀t ≥ .

We use M ∈ ∇ to stand for M̃ ∈ �.
Denote

dM := inf
t>

tp(t)
M(t)

, DM := sup
t>

tp(t)
M(t)

, d∗
M :=

NdM

N – dM
, D∗

M :=
NDM

N – DM
.

For a measurable function u : RN → R, denoted as u ∈ L̃, we define

ρM(u) =
∫

RN
M

(
u(x)

)
dx, ρ̃M(u) = ρM(u) + ρM

(|∇u|).

The Orlicz space LM(RN ) (in short LM) is defined by

LM
(
RN)

=
{

u ∈ L̃ : ∃λ > ,ρM(λu) < ∞}

endowed with the Luxemburg norm

‖u‖(M),RN = ‖u‖(M) = inf

{
λ >  : ρM

(
u
λ

)
≤ 

}
,

or with the Orlicz norm

‖u‖M,RN = ‖u‖M = sup

{∫
RN

u(x)v(x) dx :
∫

RN
M̃

(
v(x)

)
dx ≤ 

}
.

Then (LM,‖ · ‖(M)) and (LM,‖ · ‖M) form Banach spaces (see [, ]).
For u ∈ LM , v ∈ LM̃ , the Hölder inequality holds (see [])

∫
RN

u(x)v(x) dx ≤ ‖u‖M‖v‖(M̃).

The Sobolev conjugate M∗ of M is defined by

M–
∗ (t) =

∫ t



M–(s)

s
N+

N
ds, t ≥ ,

provided
∫ 


M–(t)

t
N+

N
dt < ∞,

∫ ∞


M–(t)

t
N+

N
dt = ∞ (see []).

An Orlicz-Sobolev space W ,M(RN ) (in short W ,M) is defined by

W ,M(
RN)

=
{

u ∈ LM
(
RN)

: Dαu ∈ LM
(
RN)

, |α| ≤ 
}
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endowed with

‖u‖ = ‖u‖W ,M = inf

{
λ >  : ρ̃M

(
u
λ

)
≤ 

}
.

Then (W LM,‖ · ‖W LM ) forms a Banach space (refer to []).
If M ∈ � ∩ ∇, then LM and W LM are separable and reflexive Banach spaces (refer to

[]).
Let W ,M

 (RN ) (in short W ,M
 ) be the closure of C∞

c (RN ), that is, the set of all functions
which are differentiable for any order and with compact support in W ,M(RN ), W ,M

 (RN ) =
W ,M(RN ) (refer to []).

3 Main results
In this section, we firstly give the main result of this paper. Secondly, we prove some lem-
mas for the main result. Finally, we establish the existence of at least three solutions in
Orlicz-Sobolev spaces applying the variation principle.

For convenience, we set several conditions.

k(): k(t) ≥ Ctγ , ∀t ∈ (, δ), for some C > , δ > , γ ∈ (, d∗
M

DM
– ).

k(∞): k(t) ≥ Ctγ , ∀t ≥ δ, for some C > , δ > , γ > .
H: |f (x, t)| ≤ α(x)p(|t|) + β(x), ∀(x, t) ∈ RN × R, for some nonnegative functions α(x) ∈

L∞(RN ) ∩ L
D∗

M
D∗

M–dM (RN ), β(x) ∈ LM̃(RN ) ∩ L∞(RN ).
H: lim supt→

F(x,t)
M∗(t) < ∞, uniformly x ∈ RN .

H:
∫

RN (
∫ u(x)

 f (x, s) ds) dx >  for some u ∈ W ,M
 .

In the following, we always assume that k : [,∞) → [,∞) is nondecreasing and k(t) > 
(∀t > ).

For u ∈ W ,M
 , we define

K(u) =
∫ ρ̃M(u)


k(s) ds,

F (u) =
∫

RN

(∫ u(x)


f (x, s) ds

)
dx =

∫
RN

F
(
x, u(x)

)
dx,

G(u) =
∫

RN

(∫ u(x)


g(x, s) ds

)
dx.

Definition . u ∈ W ,M
 is called a weak solution of problem (.) if, for all v ∈ W ,M

 ,

k
(
ρ̃M(u)

)∫
�

[
a
(|∇u|)∇u · ∇v + a

(|u|)uv
]

dx = λ

∫
�

f (x, u)v dx + μ

∫
�

g(x, u)v dx.

The main result of this paper is as follows.

Theorem . Let  < dM ≤ DM < N and DM < d∗
M . Assume that k satisfies k() and k(∞),

f satisfies H, H, H and g satisfies H. Then, for all [a, b] ⊂ (,∞), there exists σ >  such
that for each λ ∈ [a, b] there exists δ >  such that for each μ ∈ [, δ], the problem

{
–k(ρ̃M(u))(div(a(|∇u|)∇u) – a(|u|)u) = λf (x, u) + μg(x, u), in RN ,
u → , as |x| → ∞ (.)
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has at least three solutions whose norms are less than σ in an Orlicz-Sobolev space W ,M


for a strictly convex and smooth Orlicz function M(t) =
∫ |t|

 a(τ )τ dτ .

4 Proof of the main results
In the proof of Lemmas . and ., we get rid of the restriction that M(

√
t) is convex on

[,∞) as in [, Theorem .], [, Lemma .], [, Lemma ], [, Lemma .], in which
by this condition a Clarkson-type inequality was established in order to show that a se-
quence strongly converges. Here, we get the convergent sequence by using the ideas and
techniques developed in Orlicz spaces research without the help of Clarkson-type inequal-
ity.

Lemma . Given that M is strictly convex and M ∈ �. For {un}, a sequence weakly con-
verging to u in W 

LM , and limn→∞ K(un) = K(u), we have that {un} strongly converges to u
in W 

LM .

Proof Since un ⇀ u weakly and M ∈ �, by [, Lemma .], we assume limn→∞ ρ̃M(un) =
d ≥ , if necessary passing to a subsequence. By limn→∞ K(un) = K(u) and

∫ t
 k(s) ds is

strictly increasing with respect to t > , we obtain

lim
n→∞ ρ̃M(un) = ρ̃M(u), (.)

and ρ̃M( un+u
 ) ≤ ρ̃M(un)+ρ̃M(u)

 → ρ̃M(u). Therefore, lim supn→∞ ρ̃M( un+u
 ) ≤ ρ̃M(u).

By the convexity of M and [, Theorem .], K is sequentially weakly lower semicon-
tinuous. Since un ⇀ u weakly, it follows that un+u

 ⇀ u weakly and lim infn→∞ K( un+u
 ) ≥

K(u). Consequently, lim infn→∞ ρ̃M( un+u
 ) ≥ ρ̃M(u), and thus

lim
n→∞ ρ̃M

(
un + u



)
= ρ̃M(u). (.)

If u = θ (that is, θ (x) = , μ-a.e. x ∈ RN ), thanks to M ∈ �, (.) implies limn→∞ ρ̃M(un) =
 = limn→∞ ‖un‖.

If u �= θ , then ρ̃M(u) >  and ‖un‖ > .

Claim {un} converges to u in measure.

Otherwise, we suppose that for some ε > , σ > , there exists a subsequence {unj}
such that μ{x ∈ RN : |unj (x) – u(x)| ≥ σ} ≥ ε > . Set c = M–( ρ̃M(u)

ε
) > , we get that

ρ̃M(u) =
∫

RN

[
M

(
u(x)

)
+ M

(∣∣∇u(x)
∣∣)]dx ≥

∫
RN

M
(
u(x)

)
dx

≥
∫

|u(x)|>c
M

(
u(x)

)
dx ≥ M(c)μ

{
x ∈ RN :

∣∣u(x)
∣∣ > c

}

=
ρ̃M(u)

ε
μ

{
x ∈ RN :

∣∣u(x)
∣∣ > c

}
.

The above inequality yields μ{x ∈ RN : |u(x)| > c} ≤ ε
 < ε

 .
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From (.), there exists j, for all j ≥ j,

ρ̃M(u) ≥ ρ̃M(unj ) ≥
∫

RN
M

(
unj (x)

)
dx ≥

∫
|unj (x)|>c

M
(
unj (x)

)
dx

≥ M(c)μ
{

x ∈ RN :
∣∣unj (x)

∣∣ > c
}

=
ρ̃M(u)

ε
μ

{
x ∈ RN :

∣∣unj (x)
∣∣ > c

}
.

Consequently, for all j ≥ j, we obtain that μ{x ∈ RN : |unj (x)| > c} ≤ ε
 .

Since

{
x ∈ RN :

∣∣unj (x) – u(x)
∣∣ ≥ σ

}
⊂ {

x ∈ RN :
∣∣u(x)

∣∣ > c
}

∪ {
x ∈ RN :

∣∣unj (x)
∣∣ > c

}
∪ {

x ∈ RN :
∣∣unj (x) – u(x)

∣∣ ≥ σ,
∣∣u(x)

∣∣ ≤ c,
∣∣unj (x)

∣∣ ≤ c
}

,

one has

μE := μ
{

x ∈ RN :
∣∣unj (x) – u(x)

∣∣ ≥ σ,
∣∣u(x)

∣∣ ≤ c,
∣∣unj (x)

∣∣ ≤ c
}

≥ ε –
ε


–

ε


=

ε


. (.)

Since M(t) is strictly convex, from [, Proposition .], there exists δ >  such that

M
(

t′ + t′′



)
≤ ( – δ)

M(t′) + M(t′′)


(.)

for all |t′| ≤ c, |t′′| ≤ c and |t′ – t′′| ≥ σ. By (.) and (.),

ρ̃M

(unj + u


)
≤

∫
E
( – δ)

M(unj (x)) + M(u(x))


dx +
∫

RN \E

M(unj (x)) + M(u(x))


dx

+
∫

RN

M(|∇unj (x)|) + M(|∇u(x)|)


dx

≤ ρ̃M(unj ) + ρ̃M(u)


– δM
(

σ



)
ε


.

Letting j → ∞, by (.) and (.) we obtain ρ̃M(u) ≤ ρ̃M(u)+ρ̃M(u)
 – δM( σ

 ) ε
 < ρ̃M(u),

which is a contradiction.
Replacing un, u by ∇un, ∇u, respectively, we deduce that {∇un} converges to ∇u in

measure.
By the Riesz theorem, there exists a subsequence, still denoted by {unj}, such that

unj (x) → u(x), ∇unj (x) → ∇u(x) a.e. in RN , so |∇unj (x)| → |∇u(x)| a.e. in RN . Applying
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the Fatou lemma and (.), we get that

ρ̃M(u) =
∫

RN

[
M

(
u(x)

)
+ M

(∣∣∇u(x)
∣∣)]dx

=
∫

RN
lim

j→∞

[M(unj (x)) + M(u(x))


– M
(unj (x) – u(x)



)

+
M(|∇unj (x)|) + M(|∇u(x)|)


– M

( |∇unj (x) – ∇u(x)|


)]
dx

≤ lim inf
j→∞

∫
RN

[M(unj (x)) + M(u(x))


– M
(unj (x) – u(x)



)

+
M(|∇unj (x)|) + M(|∇u(x)|)


– M

( |∇unj (x) – ∇u(x)|


)]
dx

= ρ̃M(u) – lim sup
j→∞

∫
RN

[
M

(unj (x) – u(x)


)
+ M

( |∇unj (x) – ∇u(x)|


)]
dx

=ρ̃M(u) – lim sup
j→∞

ρ̃M

(unj – u


)
.

Hence, lim supj→∞ ρ̃M(
unj –u

 ) ≤ . Combining lim infj→∞ ρ̃M(
unj –u

 ) ≥ , we see that
limj→∞ ρ̃M(

unj –u
 ) = . From M ∈ �, we obtain limj→∞ ‖unj – u‖ = . Arguing by con-

tradiction, we deduce that limn→∞ ‖un – u‖ = . �

Lemma . Given that k is continuous, M is a strictly convex smooth Orlicz function and
M ∈ � ∩ ∇. Then (K ′)– : (W ,M

 )∗ → W ,M
 is continuous.

Proof For u, v ∈ W ,M
 , by [, Lemma .], we obtain

〈
K ′(u), v

〉
= k

(
ρ̃M(u)

)∫
RN

[
p
(|∇u|)∇u · ∇v

|∇u| + p
(|u|) uv

|u|
]

dx, (.)

K ′ : W ,M
 → (W ,M

 )∗ and K ∈ C(W ,M
 , R).

Next, we show that K ′ is strictly monotone.
For u, u ∈ W ,M

 with u �= u, it follows that μA := μ{x ∈ RN : u(x) �= u(x)} > .
Since M is strictly convex, we get that

∫
A

M
(

u(x) + u(x)


)
dx <

∫
A

M(u(x)) + M(u(x))


dx,

∫
RN \A

[
M(u(x)) + M(u(x))


– M

(
u(x) + u(x)



)]
dx ≥ ,

and

∫
RN

[
M(|∇u(x)|) + M(|∇u(x)|)


– M

( |∇u(x) + ∇u(x)|


)]
dx ≥ .

The above inequalities yield ρ̃M( u+u
 ) < ρ̃M(u)+ρ̃M(u)

 . By [, Theorem . ], we get that
K ′ is strictly monotone.
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By (.), we deduce that K ′ is coercive and hemi-continuous. In view of [, Theo-
rem .A], (K ′)– : (W ,M

 )∗ → W ,M
 is strictly monotone, bounded and demi-continuous.

Finally, we show that (K ′)– is continuous on (W ,M
 )∗.

For {τn} ⊂ (W ,M
 )∗, τ ∈ (W ,M

 )∗, if ‖τn – τ‖ → , we will prove that ‖un – u‖ → , where
un = (K ′)–(τn), u = (K ′)–(τ ).

Since (K ′)– is demi-continuous, it follows that 〈K ′(un) – K ′(u), un – u〉 = 〈τn – τ ,
un – u〉 → . By K ′(u) ∈ (W 

LM)∗, it follows that

〈
K ′(u), un – u

〉 → , (.)
〈
K ′(un), un – u

〉
=

〈
K ′(un) – K ′(u), un – u

〉
+

〈
K ′(u), un – u

〉 → . (.)

Claim ρ̃M(un) → ρ̃M(u), as n → ∞.

Since M is an Orlicz function, by (.) we obtain

〈
K ′(u), un – u

〉

= k
(
ρ̃M(u)

)∫
RN

[
p
(|∇u|)∇u · ∇(un – u)

|∇u| + p
(|u|)u(un – u)

|u|
]

dx

≤ k
(
ρ̃M(u)

)∫
RN

[
p
(|∇u|)(|∇un| – |∇u|) + p

(|u|)(|un| – |u|)]dx

≤ k
(
ρ̃M(u)

)(
ρ̃M(un) – ρ̃M(u)

)
, (.)

〈
K

′
(un), un – u

〉

= k
(
ρ̃M(un)

)∫
RN

[
p
(|∇un|

)∇un · ∇(un – u)
|∇un| + p

(|un|
)un(un – u)

|un|
]

dx

≥ k
(
ρ̃M(un)

)∫
RN

[
p
(|∇un|

)(|∇un| – |∇u|) + p
(|un|

)(|un| – |u|)]dx

≥ k
(
ρ̃M(un)

)(
ρ̃M(un) – ρ̃M(u)

)
. (.)

If u = θ , then ρ̃M(u) = . (.) and (.) yield  ≤ k(ρ̃M(un))ρ̃M(un) ≤ 〈K ′(un), un〉 → .
Because of the positivity of k(t), we obtain ρ̃M(un) →  = ρ̃M(u).

If u �= θ , then ρ̃M(u) > . From (.) and (.), we deduce that ρ̃M(un) – ρ̃M(u) ≥
〈K ′(u),un–u〉

k(ρ̃M(u)) . Letting n → ∞, one has lim infn→∞(ρ̃M(un) – ρ̃M(u)) ≥ . Combining (.) and
(.), we deduce that there exists n, for all n ≥ n,

ρ̃M(un) – ρ̃M(u) ≤ 〈K ′(un), un – u〉
k(ρ̃M(un))

≤ |〈K ′(un), un – u〉|
k( ρ̃M(u)

 )
→ .

Thus, we have lim supn→∞(ρ̃M(un) – ρ̃M(u)) ≤ . Consequently, limn→∞ ρ̃M(un) = ρ̃M(u).
Moreover, limn→∞ K(un) = K(u). By Lemma ., we obtain ‖un – u‖ → . �

Lemma . Given that M ∈ � ∩ ∇ with DM < N , f satisfies H and α(x) ∈ L
D∗

M
D∗

M–dM (RN ).
Then DM < d∗

M implies that F ′ is compact.



Wu Boundary Value Problems  (2017) 2017:131 Page 9 of 13

Proof Using the same arguments as those in [, Lemma .], we get that

〈
F ′(u), v

〉
=

∫
RN

f
(
x, u(x)

)
v(x) dx.

F ′ : W ,M
 → (W ,M

 )∗, F ∈ C(W ,M
 , R).

For {un} a bounded sequence in W 
LM , by the Alaoglu-Banach theorem, there exists a

subsequence {unj} such that unj ⇀ u weakly. We will show that {F ′(un)} admits a subse-
quence strongly converging to F ′(u).

By M ∈ � and the Hölder inequality, for any measurable subset � ⊂ RN , it holds uni-
formly for all v ∈ W ,M

 with ‖v‖ ≤ ,

∫
�

[
α(x)p

(∣∣u(x)
∣∣) + β(x)

]
v(x) dx

≤ ∥∥αp
(|u|) + β

∥∥
M̃,�‖v‖(M),� ≤ ∥∥αp

(|u|) + β
∥∥

M̃,�, (.)∫
�

α(x)p
(∣∣unj (x)

∣∣)v(x) dx ≤ ∥∥αp
(|unj |

)∥∥
M̃,�. (.)

By (.), for ε > , there exists r∗ > , �∗ := {x ∈ RN : |x| > r∗} such that

∫
�∗

[
α(x)p

(∣∣u(x)
∣∣) + β(x)

]
v(x) dx < ε. (.)

Due to M, M̃ ∈ �, by [, Theorem .], it follows that p, p̃ ∈ �. We deduce that

M̃
(
α(x)p

(∣∣unj (x)
∣∣))

≤ α(x)p
(∣∣unj (x)

∣∣)̃p
(
α(x)p

(∣∣unj (x)
∣∣)) ≤ α(x)p

(∣∣unj (x)
∣∣)̃p

(‖α‖∞p
(∣∣unj (x)

∣∣))
≤ α(x)p

(∣∣unj (x)
∣∣)̃p

(
‖α‖∞

(
p
(∣∣unj (x)

∣∣) – ε(x)
))

≤ c′
α(x)p

(∣∣unj (x)
∣∣)̃p

(
p
(∣∣unj (x)

∣∣) – ε(x)
)

≤ c′
α(x)p

(∣∣unj (x)
∣∣)∣∣unj (x)

∣∣ ≤ c′
α(x)M

(

∣∣unj (x)

∣∣) ≤ cα(x)M
(∣∣unj (x)

∣∣), (.)

where ε(x) >  is taken small enough for unj (x) �= , ε(x) =  for unj (x) = .
By (.), DM < d∗

M and [, Lemma ., Lemma .],

∫
|unj (x)|≤

M̃
(
α(x)p

(∣∣unj (x)
∣∣))dx

≤ c

∫
|unj (x)|≤

α(x)M
(∣∣unj (x)

∣∣)dx ≤ c

∫
|unj (x)|≤

α(x)M()
∣∣unj (x)

∣∣dM dx

≤ cM()
(∫

|unj (x)|≤
α(x)

D∗
M

D∗
M–dM dx

) D∗
M–dM
D∗

M
(∫

|unj (x)|≤

∣∣unj (x)
∣∣dM · D∗

M
dM dx

) dM
D∗

M

≤ cM()‖α‖
L

D∗
M

D∗
M–dM

(∫
|unj (x)|≤


M∗()

M∗
(∣∣unj (x)

∣∣)dx
) dM

D∗
M ≤ c′

‖α‖
L

D∗
M

D∗
M–dM

.
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Using the same arguments, we obtain
∫

|unj (x)|>
M̃

(
α(x)p

(∣∣unj (x)
∣∣))dx ≤ c′′

‖α‖
L

d∗
M

d∗
M–DM

.

Combining the above inequalities, taking r ≥ r∗, �r = {x ∈ RN : |x| > r}, we deduce that∫
�r

M̃(α(x)p(|unj (x)|)) dx < ε, j = , , . . . .
By [, Lemma .] and (.),

∫
�r

α(x)p
(∣∣unj (x)

∣∣)v(x) dx ≤ ∥∥αp
(|unj |

)∥∥
M̃,�r

≤ ε
dM–

dM , j = , , . . . . (.)

By H, (.) and (.), we deduce that it holds uniformly for all v ∈ W ,M
 with ‖v‖ ≤ 

∫
�r

[
f
(
x, unj (x)

)
– f

(
x, u(x)

)]
v(x) dx

≤
∫

�r

[
α(x)p

(∣∣unj (x)
∣∣) + α(x)p

(∣∣u(x)
∣∣) + β(x)

]∣∣v(x)
∣∣dx

< ε
dM–

dM + ε, j = , , . . . . (.)

For Br = RN \ �r = {x ∈ RN : |x| ≤ r}, combining unj ⇀ u weakly, we get
‖unj –u‖(M),Br → . By applying the Lebesgue dominated convergence theorem, we deduce∫

Br
M̃(f (x, unj (x)) – f (x, u(x))) dx → . By M̃ ∈ �, there exists j, for all j ≥ j,

∥∥f (x, unj ) – f (x, u)
∥∥

M̃,Br
< ε. (.)

In view of (.) and (.), we complete the proof. �

Lemma . Given that dM < N and DM < d∗
M , k satisfies k() and k(∞), f satisfies H, H.

Then lim sup‖u‖→∞
F (u)
K (u) ≤ , lim sup‖u‖→

F (u)
K (u) ≤ .

Proof Given δ in Condition k(∞). For ‖u‖ >  + δ, so ρ̃M(u) >  + δ.
By H, the Hölder inequality and k(∞),

F (u)
K(u)

≤
∫

RN [α(x)M(|u(x)|) + β(x)|u(x)|] dx∫ ρ̃M(u)
δ

k(s) ds

≤ ‖α‖∞ρ̃M(u) + ‖β‖M̃‖u‖
C

γ + ((ρ̃M(u))γ + – (δ)γ +)
≤ (‖α‖∞ + ‖β‖M̃)ρ̃M(u)

C
γ + ((ρ̃M(u))γ + – (δ)γ +)

,

which implies lim sup‖u‖→∞
F (u)
K (u) ≤ .

By H, for some positive constants δ ∈ (, ), c > , one has F(x, t) ≤ cM∗(t) for all
|t| < δ. Due to W 

LM(RN ) ↪→ LM∗ (RN ), there exists C∗ >  such that ‖u‖(M∗) ≤ C∗‖u‖ for
all u ∈ W 

LM(RN ). For ‖u‖ < min{, 
C∗ , δ′} (where δ′ is of in k()), by [, Lemma .], we

obtain ρM∗ (u) ≤ ‖u‖d∗
M

(M∗) ≤ Cd∗
M∗ ‖u‖d∗

M .
By DM < d∗

M and Condition k(), we get that

∫
|u(x)|<δ

F(x, u(x)) dx
K(u)

≤ cρM∗ (u)
C

γ + (ρ̃M(u))γ +
≤ cCd∗

M∗ (γ + )
C

‖u‖d∗
M–DM(γ +) → . (.)
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Since M is an Orlicz function, combining [, Lemma .], there exists c >  such that

∫
|u(x)|≥δ

F
(
x, u(x)

)
dx ≤ c

∫
|u(x)|≥δ

∣∣u(x)
∣∣d∗

M dx. (.)

By  >
∫

RN M(u(x)) dx ≥ M(δ)μ{x ∈ RN : |u(x)| ≥ δ}, we obtain μ{x ∈ RN : |u(x)| ≥ δ} ≤


M(δ) < ∞. From [, Theorem .] and td∗
M ≤ 

M∗() M∗(t), ∀t ≥ , there exists c >  such
that, for all v ∈ Ld∗

M ({|u(x)| ≥ δ}),

‖v‖
Ld∗

M ({|u(x)|≥δ}) ≤ c‖v‖(M∗),{|u(x)|≥δ} ≤ cC∗‖v‖. (.)

Combining k() and (.)-(.), we have

∫
|u(x)|≥δ

F(x, u(x)) dx
K(u)

≤ c
∫
|u(x)|≥δ

|u(x)|d∗
M dx

C
γ + (ρ̃M(u))γ +

≤ c(cC∗)d∗
M (γ + )

C
‖u‖d∗

M–DM(γ +) → . (.)

By (.) and (.), it follows that lim sup‖u‖→
F (u)
K (u) ≤ . �

Lemma . ([]) Let X be a separable and reflexive real Banach space; let � : X → R be
a coercive, sequentially weakly lower semi-continuous C functional, belonging to WX (if
{un} is a sequence in X converging weakly to u and lim infn→∞ �(un) ≤ �(u), then {un} has
a subsequence converging strongly to u), bounded on each bounded subset of X and whose
derivative admits a continuous inverse on X∗; let J : X → R be a C functional with compact
derivative. Assume that � has a local minimum x with �(x) = J(x) = . Finally, setting

α = max

{
, lim sup

‖x‖→+∞
J(x)
�(x)

, lim sup
x→x

J(x)
�(x)

}
,

β = sup
x∈�–((,+∞))

J(x)
�(x)

,

assume that α < β .
Then, for each compact interval [a, b] ⊂ ( 

β
, 

α
) (with the conventions 

 = +∞, 
+∞ = ),

there exists r >  with the following property: for each λ ∈ [a, b] and every C functional �

with compact derivative, there exists δ >  such that, for each μ ∈ [, δ], the equation

�
′ (x) = λJ

′ (x) + μ�
′ (x)

has at least three solutions whose norms are less than r.

Now, we give the proof of the main result.

Proof Let p(t) = a(t)t, ∀t > , and M(s) =
∫ |s|

 p(t) dt, ∀s ∈ R. Then M is a strictly convex
smooth Orlicz function.

Applying Lemmas . and ., we deduce that K is sequentially weakly lower semi-
continuous belonging to the class WW ,M


and (K ′)– is continuous. In view of Lemma .,
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we deduce that F ,G ∈ C(W ,M
 , R) with compact derivatives. From the definitions of K

and F , we see that K(θ ) = F (θ ) =  and K(u) >  for all u �= θ . By Lemma . and H, it
follows that β > α.

Summarily, the critical points theorem in Lemma . guarantees that

K ′(u) = λF ′(u) + μG ′(u)

has at least three solutions, which implies that Problem (.) has at least three solutions. �

5 Corollaries and examples
By Theorem ., we get the following.

Corollary . Let  < dM ≤ DM < N and DM < d∗
M . Assume that k satisfies k() and k(∞),

f satisfies H, H ′
, H

H ′
 : lim sup

t→

f (x, t)
t|t|D∗

M– < ∞, uniformly x ∈ RN ,

and g satisfies H. Then, for all [a, b] ⊂ (,∞), there exists σ >  such that for each λ ∈ [a, b]
there exists δ >  such that for each μ ∈ [, δ], the problem

{
–k(ρ̃M(u))(div(a(|∇u|)∇u) – a(|u|)u) = λf (x, u) + μg(x, u), in RN ,
u → , as |x| → ∞ (.)

has at least three solutions whose norms are less than σ in an Orlicz-Sobolev space W ,M


for a strictly convex and smooth Orlicz function M(t) =
∫ |t|

 a(τ )τ dτ .

The following example shows that Theorem . is a substantial improvement, where the
function M listed below satisfies the conditions of Theorem . but it does not satisfy those
of [, Theorem .], [, Lemma .], [, Lemma ], [, Lemma .].

Example . For p ∈ (, ),

M(t) := |t|p.

Then M satisfies all the assumptions in Theorem .. However, the function M(
√

t) = t
p


is not convex w.r.t. t ∈ [,∞) due to 
 < p

 < .

6 Conclusion
We prove the existence of three solutions for the Kirchhoff elliptic problem (.) using the
ideas developed in Orlicz spaces and the technique of variation principle. We point out
that the convexity of the Orlicz function M(

√
t), which is required in [–, ], is unneces-

sary during the proof of strong convergence. We also notice that the result in Theorem .
extends the result for bounded domains.
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10. Mihăilescu, M, Repovš, D: Multiple solutions for a nonlinear and nonhomogeneous problem in Orlicz-Sobolev spaces.

Appl. Math. Comput. 217, 6624-6632 (2011)
11. Chung, NT: Multiple solutions for a nonlocal problem in Orlicz-Sobolev spaces. Ric. Mat. 63, 169-182 (2014)
12. Chung, NT: Three solutions for a class of nonlocal problems in Orlicz-Sobolev spaces. J. Korean Math. Soc. 50(6),

1257-1269 (2013)
13. Aouaoui, S: On some eigenvalue problem involving a non-homogeneous differential operator. Complex Var. Elliptic

Equ. 58(10), 1421-1429 (2013)
14. Figueiredo, GJM, Santos, JA: On a �-Kirchhoff multivalued problem with critical growth in an Orlicz-Sobolev space.

Asymptot. Anal. 89(1-2), 151-172 (2014)
15. Radulescu, V, Repovs, D: Partial Differential Equation with Variable Exponents: Variable Method and Qualitative

Analysis. CRC Press, Boca Raton (2015)
16. Radulescu, V: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336-369 (2015)
17. Repovs, D: Stationary waves of Schrodinger-type equations with variable exponent. Anal. Appl. 13(6), 645-661 (2015)
18. Autuori, G, Pucci, P: Kirchhoff systems with nonlinear source and boundary damping terms. Commun. Pure Appl.

Anal. 9(5), 1161-1188 (2010)
19. Pucci, P, Xiang, M, Zhang, B: Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv.

Nonlinear Anal. 5(1), 27-55 (2016)
20. Krasnoselski, M, Rutickii, Y: Convex Functions and Orlicz Space. Noordhoff, Groningen (1961)
21. Dominguez, T, Hudzik, H, López, G, Mastyło, M, Sims, B: Complete characterizations of Kadec-Klee properties in Orlicz

spaces. Houst. J. Math. 29(4), 1027-1044 (2003)
22. Adams, RA, Fournier, JJF: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)
23. Zeidler, E: Nonlinear Functional Analysis and Its Applications. Springer, New York (1990)
24. Chen, ST: Geometry of Orlicz Spaces. Polish Sci., Warszawa (1996)
25. García-Huidobro, M, Le, VK, Manásevich, R, Schmitt, K: On principal eigenvalues for quasilinear elliptic differential

operators: an Orlicz-Sobolev space setting. Nonlinear Differ. Equ. Appl. 6, 207-225 (1999)
26. Fukagai, N, Ito, M, Narukawa, K: Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev

nonlinearity on RN . Funkc. Ekvacioj 49, 235-267 (2006)


	Multiple solutions for Kirchhoff elliptic equations in Orlicz-Sobolev spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Proof of the main results
	Corollaries and examples
	Conclusion
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Publisher's Note
	References


