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Abstract
Consider the equation

ut = div(
−−−−−−−−−−→
a(x)|∇u|p(x)–2∇u) =

N∑

i=1

(ai(x)|uxi |pi(x)–2uxi)xi ,

with ai(x),pi(x) ∈ C1(�), pi(x) > 1,ai(x) ≥ 0. Basing on the weighted variable exponent
Sobolev space, a new kind of weak solutions of the equation is introduced. Whether
the usual Dirichlet homogeneous boundary value condition can be imposed
depends on whether ai(x) is degenerate on the boundary or not. If some of {ai(x)} are
degenerate on the boundary, a partial boundary value condition is imposed. If every
ai(x) is degenerate on the boundary, by the new definition of a weak solution, the
stability of weak solutions can be proved without any boundary value condition.
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1 Introduction
In recent years, the parabolic equation with variable nonlinearities

ut = div
(|∇u|p(x)–∇u

)
, (x, t) ∈ QT = � × (, T), (.)

coming from the so-called electrorheological fluids theory (see [, ]), has been researched
widely [–]. Here, � ⊂R

N is a bounded domain with smooth boundary ∂�, p(x) >  is a
measurable function. Recently, we have studied the equation

ut = div
(
a(x)|∇u|p(x)–∇u

)
, (x, t) ∈ QT , (.)

with

u(x, ) = u(x), x ∈ �, (.)

u(x, t) = , (x, t) ∈ ∂� × (, T), (.)

in our previous works [, ]. Here a(x) ∈ C(�), and when x ∈ �, a(x) > . The main dedi-
cations of [, ] are that, if a(x)|x∈∂� = , then the stability of weak solutions can be proved
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without the boundary value condition, provided that the diffusion coefficient a(x) satisfies
some other restrictions.

In this paper, we consider an anisotropic parabolic equation of the type

ut = div
(−−−−−−−−−−−→
a(x)|∇u|p(x)–∇u

)
=

N∑

i=

(
ai(x)|uxi |pi(x)–uxi

)
xi

, (x, t) ∈ QT , (.)

we denote that

p = min
x∈�

{
p(x), p(x), . . . , pN–(x), pN (x)

}
, p > ,

p = max
x∈�

{
p(x), p(x), . . . , pN–(x), pN (x)

}
.

We assume that ai(x) ∈ C(�), and when x ∈ �, ai(x) > . If for every i = , , . . . , N ,

ai(x) = , x ∈ ∂�, (.)

then we can expect that similar conclusions as those in [, ] are true. While only some of
ai(x) satisfy (.), the situations may be different. To see that, let us give a simple example
to show the difference. Let N = , p(x) = p(x) ≡ p, the domain � be a square,

� =
{

(x, x) :  < x < ,  < x < 
}

.

Suppose that a(x) ≡  and

a(x) = , x ∈ ∂�, (.)

consider the equation

ut =
∂

∂x

(
a(x)|ux |p–ux

)
+

∂

∂x

(|ux |p–ux

)
. (.)

To obtain the stability of weak solutions of (.), initial value condition (.) is indispens-
able. However, instead of the usual Dirichlet boundary value condition (.), we may con-
jecture that only a partial boundary value condition

u(x, t) = , (x, t) ∈ � × (, T), (.)

is required. Here

� =
{

(x, x) :  < x < , x = 
} ∪ {

(x, x) :  < x < , x = 
}

. (.)

By the way, we would like to suggest some of important works related to the equations

N∑

i=

(
ai(x)|uxi |pi(x)–uxi

)
= f (λ, u), (.)
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with

u = , x ∈ ∂�, (.)

where f (λ, u) appears in different forms in different papers. Di Nardo and Feo [] gave the
condition of the existence and uniqueness for problems (.)-(.); Mihailescu et al. []
studied the usual eigenvalue problems. Later, Radulescu [] studied the eigenvalue prob-
lems with sign-changing potential; Di Castro [, ] studied the regularity; El Hamidi and
Vétois [] studied the sharp Sobolev asymptotics; Vétois [] studied the blow-up phe-
nomena, Konaté and Ouaro [] studied nonlinear anisotropic problems with bounded
Radon diffuse measure and variable exponent and proved the existence and uniqueness
of entropy solution. Also one can refer to some other related papers [–]. In a word,
the elliptic anisotropic equations with the variable exponent have been given great at-
tention recently, a lot of interesting results have been obtained. More or less beyond my
imagination, there are few references related to the anisotropic parabolic equations with
the variable exponent. We only have found one paper by Antontsev and Shmarev [], in
which the existence of weak solutions was studied when a(x) =  in equation (.).

The most important characteristic of equation (.) lies in that the diffusions coefficients
ai are different from one to another. After giving an existence result, the main aim of this
paper is to give a complete classification of boundary value conditions and to study the
corresponding stability of weak solutions.

2 The definition of weak solutions
Set

C+(�) =
{

h ∈ C(�) : min
x∈�

h(x) > 
}

.

For any h ∈ C+(�), we define

h+ = sup
x∈�

h(x), h– = inf
x∈�

h(x).

Let a be a measurable positive and a.e. finite function in R
N satisfying

(C) a ∈ L
loc(�) and a– 

p(x)– ∈ L
loc(�);

(C) a–s(x) ∈ L(�) with s(x) ∈ ( N
p(x) ,∞) ∩ [ 

p(x)– ,∞).
For any p ∈ C+(�), the definitions of the weighted variable exponent Lebesgue spaces
Lp(x)(a,�) and the weighted variable exponent Sobolev spaces W ,p(x)(a,�), and the fol-
lowing lemmas, can be found in [].

Lemma . Denote

ρ(u) =
∫

�

a(x)|u|p(x) dx for all u ∈ Lp(x)(a,�).

Then
() ρ(u) > (= ; < ) if and only if ‖u‖Lp(x)(a,�) > (= ; < ), respectively;
() If ‖u‖Lp(x)(a,�) > , then‖u‖p–

Lp(x)(a,�) ≤ ρ(u) ≤ ‖u‖p+

Lp(x)(a,�);
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() If ‖u‖Lp(x)(a,�) < , then‖u‖p+

Lp(x)(a,�) ≤ ρ(u) ≤ ‖u‖p–

Lp(x)(a,�).

Lemma . If  < p ≤ p(x) ≤ p < ∞, then

[
Lp(x)(a,�)

]∗ = Lp′(x)([a(x)
] 

–p(x) ,�
)
,


p(x)

+


p′(x)
= ,

∣∣∣∣
∫

�

u(x)v(x) dx
∣∣∣∣ ≤ k‖u‖

Lp′(x)([a(x)]


–p(x) ,�)
‖v‖Lp(x)(a,�),

where [Lp(x)(a,�)]∗ is the conjugate space, p′(x) = p(x)–
p(x) .

Lemma . Let p, s ∈ C+(�), and let (C) and (C) be satisfied. Then there exists the fol-
lowing compact embedding:

W ,p(x)(a,�) ↪→↪→ Lr(x)(�)

provided that r ∈ C+(�) and  ≤ r(x) < p∗
s (x) for all x ∈ �. Here,

ps(x) =
p(x)s(x)
 + s(x)

and

p∗
s (x) =

⎧
⎨

⎩

p(x)s(x)N
(s(x)+)N–p(x)s(x) if ps(x) < N ,

+∞ if ps(x) ≥ N .

The basic definition is as follows.

Definition . A function u(x, t) is said to be a weak solution of equation (.) with initial
value condition (.) if

u ∈ L∞(QT ),
∂u
∂t

∈ L(QT ), uxi ∈ L∞(
, T ; Lpi(x)(ai,�)

)
, (.)

and for any function ϕ ∈ L(, T ; Lp (�)), ϕ|x∈∂� = , ϕxi ∈ L(, T ; Lpi(x)(ai,�)) such that

∫∫

QT

[
∂u
∂t

ϕ +
N∑

i=

ai(x)|uxi |pi(x)–uxiϕxi

]
dx dt = . (.)

Initial value condition (.) is satisfied in the sense of

lim
t→

∫

�

∣∣u(x, t) – u(x)
∣∣dx = . (.)

In this paper, we first study the existence of a weak solution.

Theorem . If pi(x) > , ai(x) satisfies conditions (C), (C),

u ∈ L∞(�), uxi ∈ Lpi(x)(ai,�), (.)

then there is a solution of equation (.) with initial value (.).
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Theorem . If for every  ≤ i ≤ N ,
∫
�

a
– 

pi(x)–
i (x) dx < ∞, then initial-boundary value

problem (.)-(.)-(.) has a solution. Here, boundary value condition (.) is satisfied in
the sense of trace.

Then we will study the stability of weak solutions according to the classification of
boundary value conditions.

The first case is that we can impose the usual Dirichlet boundary value condition.

Theorem . If u and v are two solutions of equation (.) with the usual homogeneous
value condition

u(x, t) = v(x, t) = , (x, t) ∈ ∂� × (, T), (.)

and with the initial values u(x), v(x), respectively, then

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

�

∣∣u(x) – v(x)
∣∣dx. (.)

The second case is that we only can impose a partial boundary value condition. This
case corresponds to that some of {ai(x)} are degenerate on the boundary, while others are
not degenerate on the boundary. For simplicity, in this case, we assume that the domain
� is just an n-dimensional cube

� =
{

(x, x, . . . , xN ) :  < x < ,  < x < , . . . ,  < xN < 
}

. (.)

Assume that k + l = N , I = {i, i, . . . , ik} ⊂ {, , . . . , N}, J = {j, j, . . . , jl} ⊂ {, , . . . , N}, I ∩ J =
∅, and

ai (x) > , ai (x) > , . . . , aik (x) > , x ∈ �, (.)

aj (x) > , aj (x) > , . . . , ajl (x) > , x ∈ �. (.)

Instead of the usual Dirichlet boundary value condition (.), in this case, only a partial
boundary value condition is imposed.

u(x, t) = , (x, t) ∈ � × (, T), (.)

where

� =
k⋃

s=

{x ∈ ∂� : xis =  or }.

Similar to the proof of Theorem ., if

∫

�

a
– 

ps(x)–
s (x) dx < ∞, s = j, j, . . . , jl, (.)

we can prove that there exists a solution of initial-boundary value problem (.)-(.)-
(.).
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Theorem . Besides (C)-(C), (.), (.) and (.), we assume that � satisfies (.),

ajr (x) = ajr (xjr ), r = , , . . . , l, (.)

ajr (xjr ) = , xjr = , or , (.)

and for large enough n,

n
– 

p+
jr

((∫ 
n


+

∫ 

– 
n

)∣∣ajr (x)
∣∣pjr (x) dxjr

) 
p+

jr ≤ c. (.)

If u and v are two solutions of equation (.) with the same partial boundary value condition
(.), and with the initial values u(x), v(x), respectively, then

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

�

∣∣u(x) – v(x)
∣∣dx.

Certainly, we believe that, instead of conditions (.)-(.), only if

ajr (x) = , xjr = , or ,

the same conclusion of Theorem . is also true. But we cannot obtain this result for the
time being.

The last case is that all ai(x) are degenerate on the boundary. Then we can prove the
stability of weak solutions without any boundary value condition.

Theorem . If ai satisfies (C)-(C), and for large enough n,

n
– 

p+
i

(∫

�\�n

∣∣ai(x)
∣∣pi(x) dx

) 
p+

i ≤ c, (.)

let u, v be two solutions of equation (.) with the initial values u, v, respectively. Then

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

�

∣∣u(x, ) – v(x, )
∣∣dx, (.)

where �n = {x ∈ � :
∏N

i= ai(x) > 
n }.

3 The proof of Theorems 2.5-2.7
Let a(x) satisfy (C), (C). Consider the regularized equation

ut = div
(−−−−−−−−−−−→
a(x)|∇u|p(x)–∇u

)
+ ε
u, (x, t) ∈ QT , (.)

with the initial boundary conditions

u(x, ) = u(x), x ∈ �, (.)

u(x, t) = , (x, t) ∈ ∂� × (, T). (.)
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Proof of Theorem . Similar to [], we can easily prove that there is a solution uε of initial-
boundary value problem (.)-(.), and there is a constant c only dependent on ‖u‖L∞(�)

but independent of ε such that

‖uε‖L∞(QT ) ≤ c, ‖uεt‖L(QT ) ≤ c. (.)

Multiplying (.) by uε and integrating it over QT , we have




∫

�

u
ε dx +

n∑

i=

∫∫

QT

ai(x)|uεxi |pi(x) dx dt + ε

∫∫

QT

|∇uε| dx dt

=



∫

�

u
(x) dx, (.)

then

ε

∫∫

QT

|∇uε| dx ≤ c (.)

and

N∑

i=

∫∫

QT

ai(x)|uεxi |pi(x) dx dt ≤ c. (.)

Hence, by (.), (.), (.), using Lemma ., there exists a function u and an n-

dimensional vector
−→
ζ = (ζ, . . . , ζn) satisfying

u ∈ L∞(QT ),
∂u
∂t

∈ L(QT ), ζi ∈ L(, T ; L
pi(x)

pi(x)–
(
a


–pi(x)
i ,�

))
,

and uε → u a.e. ∈ QT ,

uε ⇀ u, weakly star in L∞(QT ),

uε → u, in L(, T ; Lr
loc(�)

)
,

∂uε

∂t
⇀

∂u
∂t

, in L(QT ),

ε∇uε ⇀ , in L(QT ),

ai(x)|uεxi |pi(x)–uεxi ⇀ ζi, in L(, T ; L
pi(x)

pi(x)–
(
a


–pi(x)
i ,�

))
.

Here r < Np
N–p .

Now, similar to the general evolutionary p-Laplacian equation, we are able to prove that
(the details are omitted here)

lim
t→

∫

�

∣∣u(x, t) – u(x)
∣∣dx = ,

and

N∑

i=

∫∫

QT

ai(x)|uxi |pi(x)–uxiϕxi dx dt =
N∑

i=

∫∫

QT

ζi(x)ϕxi dx dt, (.)
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for any function ϕ ∈ L(, T ; Lp (�)), ϕ|x∈∂� = , ϕxi ∈ L(, T ; Lpi(x)(ai,�)).
Then we have

∫∫

QT

[
∂u
∂t

ϕ +
N∑

i=

ai(x)|uxi |pi(x)–uxiϕxi

]
dx dt = . (.)

Thus u satisfies equation (.) with initial value (.) in the sense of Definition .. �

Remark . In general, we only can obtain (.). It seems impossible to prove that, for
every given i,

∫∫

QT

ai(x)|uxi |pi(x)–uxiϕxi dx dt =
∫∫

QT

ζi(x)ϕxi dx dt.

Lemma . If for any given i ∈ {, , . . . , N},
∫
�

a
– 

pi(x)–
i (x) dx < ∞, then

∫

�

|uxi |dx ≤ c. (.)

Proof

∫∫

QT

|uxi |dx dt

=
∫∫

{(x,t)∈QT ;a


pi(x)–
i |uxi |≤}

|uxi |dx dt +
∫∫

{(x,t)∈QT ;a


pi(x)–
i |uxi |>}

|uxi |dx dt

≤
∫∫

QT

a– 
pi(x)– dx dt +

∫∫

Q�

ai(x)|uxi |pi(x) dx dt

≤ c.

By this lemma, if for every  ≤ i ≤ N ,
∫
�

a
– 

pi(x)–
i (x) dx < ∞, then

∫

�

|∇u|dx ≤ c. (.)

Thus, we can define the trace of u on the boundary ∂�. Accordingly, Theorem . is ob-
viously true.

Now, we will prove Theorem .. For any given positive integer n, let gn(s) be an odd
function, and

gn(s) =

⎧
⎨

⎩
, s > 

n ,

nse–ns ,  ≤ s ≤ 
n .

Clearly,

lim
n→

gn(s) = sgn(s), s ∈ (–∞, +∞). (.)
�



Zhan Boundary Value Problems  (2017) 2017:134 Page 9 of 14

Proof of Theorem . Let u and v be two weak solutions of equation (.) with the same
boundary value condition (.) and with the initial values u(x, ), v(x, ), respectively. By a
process of limit, since (.) u = v on the boundary, we can choose ϕ = gn(u – v) as the test
function, then

∫

�

gn(u – v)
∂(u – v)

∂t
dx

+
N∑

i=

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
(uxi – vxi )g

′
n(u – v) dx

= . (.)

Thus

lim
n→∞

∫

�

gn(u – v)
∂(u – v)

∂t
dx =

d
dt

‖u – v‖L(�), (.)
∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
(uxi – vxi )g

′
n(u – v) dx ≥ . (.)

Now, let n → ∞ in (.). Then

d
dt

‖u – v‖L(�) ≤ .

It implies that

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

�

∣∣u(x) – v(x)
∣∣dx, ∀t ∈ [, T). �

4 The stability of the partially boundary value conditions

Proof of Theorem . Let u and v be two weak solutions of equation (.) with the initial
values u(x, ), v(x, ), respectively.

For  ≤ r ≤ l, let

φn,jr (xjr ) =

⎧
⎨

⎩
 if xjr > 

n , or  – xjr > 
n ,

najr (xjr ) if xjr ≤ 
n , or  – xjr ≤ 

n .

By (.), (.), (.),
∏l

r= φn,jr (xjr )gn(u – v)(x) =  when x ∈ ∂�, we can choose
∏l

r= φn,jr (xjr )gn(u – v) as the test function, then

∫

�

l∏

r=

φn,jr gn(u – v)
∂(u – v)

∂t
dx

+
N∑

i=

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

) · (uxi – vxi )g
′
n(u – v)

l∏

r=

φn,jr dx

+
N∑

i=

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
gn(u – v)

( l∏

r=

φn,jr

)

xi

dx = . (.)
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Thus

lim
n→∞

∫

�

l∏

r=

φn,jr gn(u – v)
∂(u – v)

∂t
dx =

d
dt

‖u – v‖L(�) (.)

and

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

) · (uxi – vxi )g
′
n(u – v)

l∏

r=

φn,jr dx ≥ . (.)

Moreover, since φn,jr (xjr ) is only dependent on the variable xjr , we have

N∑

i=

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
gn(u – v)

( l∏

r=

φn,jr

)

xi

dx

=
k∑

s=

∫

�

ais (x)
(|uxis |pis (x)–uxis – |vxis |pis (x)–vxis

)
gn(u – v)

( l∏

r=

φn,jr

)

xis

dx

+
l∑

r=

∫

�

ajr (x)
(|uxjr |pjr (x)–uxjr – |vxjr |pjr (x)–vxjr

)
gn(u – v)

( l∏

r=

φn,jr

)

xjr

dx

=
l∑

r=

∫

�

ajr (x)
(|uxjr |pjr (x)–uxjr – |vxjr |pjr (x)–vxjr

)
gn(u – v)

( l∏

r=

φn,jr

)

xjr

dx. (.)

Clearly,

( l∏

r=

φn,jr

)

xjr

=
l∏

r=,r �=r

φn,jr φ
′
n,jr

(xjr
),

and |φ′
n,jr (xjr )| = na′

jr (xjr ) when xjr < 
n or  – xjr < 

n , in other places, it is identical to zero.
Accordingly, for any jr ∈ {j, j, . . . , jl}, if we notice that

� = (, ) × (, ) × · · · × (, ),

by conditions (.)-(.), we have

∣∣∣∣
∫ 


ajr

(x)
(|uxjr

|pjr (x)–uxjr
– |vxjr

|pjr (x)–vxjr

)
gn(u – v)

( l∏

r=

φn,jr

)

xjr

dxjr

∣∣∣∣

=

∣∣∣∣∣

(∫ 
n


+

∫ 


n

)
ajr

(xjr
)
(|uxjr

|pjr (x)–uxjr
– |vxjr |pjr (x)–vxjr

)
gn(u – v)

×
l∏

r=,r �=r

φn,jr
φ′

n,jr
(xjr

) dxjr

∣∣∣∣∣

≤ cn
(∫ 

n


+

∫ 


n

)
ajr

(xjr
)
∣∣|uxjr

|pjr (x)–uxjr
– |vxjr |pjr (x)–vxjr

∣∣∣∣a′
jr

(xjr
)
∣∣dxjr
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≤ cn
∥∥(|uxjr

|pjr (x)– + |∇vxjr
|pjr (x)–)∥∥

L
qjr

(x)
([ajr (xjr )]


–pjr

(x)
,(, 

n )∪(– 
n ,))

× ∥∥a′
jr

(xjr
)
∥∥

L
pjr

(x)
(ajr (xjr ),(, 

n )∪(– 
n ,))

. (.)

By Lemma ., we have

n
∥∥a′

jr
(xjr

)
∥∥

L
pjr

(x)
(ajr (xjr ),(, 

n )∪(– 
n ,))

≤ n
((∫ 

n


+

∫ 


n

)
ajr

(xjr
)
∣∣a′

jr
(xjr

)
∣∣pjr (x) dx

) 
p+

jr

≤ cn
– 

p+
jr

((∫ 
n


+

∫ 


n

)∣∣a′
jr

(xjr
)
∣∣pjr (x) dx

) 
p+

jr ≤ c. (.)

Then, by (.)-(.), we have

∣∣∣∣∣

∫ 


ajr

(x)
(|uxjr

|pjr (x)–uxjr
– |vxjr

|pjr (x)–vxjr

)

× (u – v)gn(u – v)

( l∏

r=

φn,jr

)

xjr

dxjr

∣∣∣∣∣

≤ c
((∫ 

n


+

∫ 


n

)
ajr

(xjr
)|uxjr

|pjr (x) dxjr

) 
q+

jr

+ c
((∫ 

n


+

∫ 


n

)
ajr

(xjr
)|vxjr

|pjr (x) dxjr

) 
q+

jr , (.)

which goes to  as n → ∞.
Now, let n → ∞ in (.). Then

d
dt

‖u – v‖L(�) ≤ .

It implies that

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

�

|u – v|dx, ∀t ∈ [, T). �

5 The stability without the boundary value condition

Proof of Theorem . Let u and v be two weak solutions of equation (.) with the initial
values u(x, ) and v(x, ), respectively, but without any boundary value condition.

Let �n = {x ∈ � :
∏N

i= ai(x) > 
n }, and

φn(x) =

⎧
⎨

⎩
 if x ∈ �n,

n
∏N

i= ai(x) if x ∈ � \ �n.
(.)
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We can choose χ[τ ,s]φngn(u – v) as the test function, where χ[τ ,s] is the characteristic func-
tion of [τ , s) ⊆ [, T), then

∫ s

τ

∫

�

φngn(u – v)
∂(u – v)

∂t
dx dt

+
N∑

i=

∫ s

τ

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
(uxi – vxi )g

′
n(u – v)φn(x) dx dt

+
N∑

i=

∫ s

τ

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
(uxi – vxi )gn(u – v)φnxi dx dt

= . (.)

As usual, we have
∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
(uxi – vxi )g

′
n(u – v)φn(x) dx ≥ . (.)

At the same time, since ut ∈ L(QT ), using the Lebesgue dominated theorem, we have

lim
n→∞

∫ s

τ

∫

�

φn(x)gn(u – v)
∂(u – v)

∂t
dx dt

=
∫

�

|u – v|(x, s) dx –
∫

�

|u – v|(x, τ ) dx. (.)

Thus, we only need to deal with the last term on the left-hand side of (.). Obviously,
φnxi = n(

∏N
j= aj(x))xi when x ∈ � \ �n, in other places, it is identical to zero. By condition

(.), we have
∣∣∣∣
∫

�

ai(x)
(|uxi |pi–uxi – |vxi |pi–vxi

)
φηxi gn(u – v) dx

∣∣∣∣

=
∣∣∣∣
∫

�\�n

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
φnxi gn(u – v) dx

∣∣∣∣

≤ n
∫

�\�n

ai(x)
(|uxi |pi(x)– + |vxi |pi(x)–)

∣∣∣∣∣

( N∏

j=

aj(x)

)

xi

gn(u – v)

∣∣∣∣∣dx

≤ cn
(∫

�\�n

ai(x)
(|uxi |pi(x) + |vxi |pi(x))dx

) 
q+

i

(∫

�\�n

ai(x)

∣∣∣∣∣

( N∏

j=

aj(x)

)

xi

∣∣∣∣∣

pi(x)

dx

) 
p+

i

≤ c
[(∫

�\�n

ai(x)|uxi |pi(x) dx
) 

q+
i +

(∫

�\�n

ai(x)|vxi |pi(x) dx
) 

q+
i
]

×
[


η

(∫

�\�n

ai(x)

∣∣∣∣∣

( N∏

j=

aj(x)

)

xi

∣∣∣∣∣

pi(x)

dx

) 
p+

i
]

≤ c
(∫

�\�n

ai(x)|uxi |pi(x) dx
) 

q+
i + c

(∫

�\�n

ai(x)|vxi |pi(x) dx
) 

q+
i . (.)

Here qi(x) = pi(x)
pi(x)– , q+

i = maxx∈� qi(x).



Zhan Boundary Value Problems  (2017) 2017:134 Page 13 of 14

Then

lim
η→

∣∣∣∣
∫ s

τ

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
φnxi gn(u – v) dx dt

∣∣∣∣

≤ c lim
η→

[(∫

�\�n

ai(x)|uxi |pi(x) dx
) 

q+
i +

(∫

�\�n

ai(x)|vxi |pi(x) dx
) 

q+
i
]

= . (.)

Now, let η →  in (.). Then

∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

�

∣∣u(x, τ ) – v(x, τ )
∣∣dx, (.)

by the arbitrariness of τ , we have

∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

�

∣∣u(x) – v(x)
∣∣dx. �

6 Conclusion
Different from the usual evolutionary p(x)-Laplacian equation, the anisotropic parabolic
equation is considered in this paper. Due to the anisotropic character, it admits that there
are different diffusion coefficients corresponding to different directions. If in some direc-
tions the diffusion coefficients are degenerate on the boundary, while in other directions
they are not degenerate, how to give a suitable partial boundary value condition to match
the equation is a very interesting problem. The paper first researches this problem. By
introducing a new kind of weak solutions, which are based on the weighted variable ex-
ponent Sobolev spaces, the existence and stability of the weak solutions are proved in this
paper.
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