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Abstract
In this paper, we study the multiplicity results of positive solutions for a fractional
elliptic system involving both concave-convex and critical growth terms. With the
help of Morse theory and the Ljusternik-Schnirelmann category, we investigate how
the coefficient h(x) of the critical nonlinearity affects the number of positive solutions
of that problem and we get some results as regards the relationship between the
number of positive solutions and the topology of the global maximum set of h.
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1 Introduction and the main result
This paper is concerned with the number of positive solutions for the following fractional
elliptic system:

(Ef ,g)

⎧
⎪⎪⎨

⎪⎪⎩

(–�) s
 u = f (x)|u|q–u + α

α+β
h(x)|u|α–u|v|β , in �,

(–�) s
 v = g(x)|v|q–v + β

α+β
h(x)|u|α|v|β–v, in �,

u = v = , on ∂�,

where � ⊂ R
N is a smooth bounded domain, N > s with s ∈ (, ) fixed, α,β >  satisfy

 < q < α + β = ∗
s = N

N–s , ∗
s is the fractional Sobolev critical exponent, and (–�) s

 is the
fractional Laplacian. Moreover, f , g , h are continuous functions satisfying:

(H) There exist a non-empty closed set M = {z ∈ �; h(z) = maxx∈� h(x) = } and a positive
number ρ ≥ N such that h(z) – h(x) = O(|x – z|ρ) as x → z and uniformly in z ∈ M.

(H) f (z), g(z) >  for z ∈ M, and h(x) ≥  for x ∈ �.

Remark . Let Mr = {z ∈ R
N ; dist(z, M) < r} for r > . Then by (H)-(H), there exist

C, r >  such that

f (z), g(z), h(z) >  for all z ∈ Mr ⊂ �
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and

h(z) – h(x) ≤ C|x – z|ρ for all x ∈ Br (z) ⊂ �

uniformly in z ∈ M, where Br (z) = {x ∈R
N ; |x – z| < r}.

In recent years, problems involving fractional operators have received special attention
since they have important applications in many sciences. We limit here ourself to giving a
non-exhaustive list of fields and papers in which these operators are used: obstacle prob-
lem [, ], optimization and finance [, ], phase transition [, ], material science [],
anomalous diffusion [, ], conformal geometry and minimal surfaces [–]. The list
may continue with applications in crystal dislocation, soft thin films, multiple scattering,
quasi-geostrophic flows, water waves, and so on. The interested reader may consult also
the references in the cited papers. Setting α + β = p ≤ ∗

s , f (x) ≡ g(x), h(x) ≡  and u = v,
(Ef ,g) reduces to the following fractional elliptic equation:

(Eλ)

⎧
⎨

⎩

(–�) s
 u = λ|u|q–u + |u|p–u, in �,

u = , on ∂�.

Goyal and Sreenadh [] studied the existence and multiplicity of positive solutions to
(Eλ). Moreover, by Nehari manifold and Fibering maps, Chen and Deng [] obtained the
existence of multiple solutions to (Eλ) for subcritical case and critical case. For the frac-
tional Laplacian system with  < q < , He, Squassina, and Zou [] proved that (Eλ,μ) ((Ef ,g)
with f (x) ≡ λ and g(x) ≡ μ) permits at least two positive solutions when λ and μ are small
enough. Recently, Fan [] established a relationship between the number of positive solu-
tions of (Ef ,g) and the topology of the global maximum set of h for  < q < . Similar results
were taken by Chen and Deng []. The tool they used is the decomposition of the Nehari
manifold.

There are several existence results for the following problem:

εs(–�)
s
 u + V (x)u = f (u), x ∈R

N , (.)

where ε is a positive parameter, f has a subcritical growth, V possesses a local minimum.
For ε = , we would like to cite [, ] for the existence of one positive solution imposing
a global condition on V . For ε is a small positive constant, several scholars established the
existence and concentration of positive solutions for (.), by imposing different conditions
on V and f (see [–]). In particular, with the help of the Nehari manifold and the
Ljusternik-Schnirelmann category, Figueiredo and Siciliano [] obtained a relationship
between the number of positive solutions and the topology of the minimum set of V .

An interesting question now is how the weight potential h(x) of a critical term affects the
number of positive solutions of (Ef ,g) involving a critical nonlinearity and sign-changing
weight potentials. Furthermore, we wonder if there is a similar relationship between the
number of positive solutions of (Ef ,g) and the topology of the global maximum set of h
as that in []. In this paper, with the help of the Ljusternik-Schnirelmann category and
Morse theory, we shall give an answer to these questions in the following. The main results
of our work are stated as follows: On the one hand, we arrive at the following result by
means of the Ljusternik-Schnirelmann category.
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Theorem . Assume (H)-(H) and q > s
N–s hold. Then, for each δ < r, there exists �δ > 

such that if ‖f+‖Lq∗ (�) +‖g+‖Lq∗ (�) < �δ (q∗ = ∗
s

∗
s –q ), (Ef ,g) has at least catMδ

(M) distinct posi-
tive solutions, where f+ = max{f , }, g+ = max{g, }, and cat means Ljusternik-Schnirelmann
category (see []).

On the other hand, with the use of the Morse theory we are able to deduce the next
result.

Theorem . Assume (H)-(H) and α,β >  hold. Then (Ef ,g) has at least P(M) – 
positive solutions, if non-degenerate, possibly counted with their multiplicity.

Remark . We denote by Pt(Mδ) the Poincaré polynomial of M. It is clear that in general,
we get a better result using Morse theory; indeed, if for example M is obtained by a con-
tractible domain cutting off k disjoint contractible sets, it is catMδ

(M) =  and P(M) = +k.
However, by using the Ljusternik-Schnirelmann category no non-degeneracy condition is
required.

Remark . Concerning regularity, one can get a priori estimate for the solutions to (Ef ,g)
and hence obtain, as in [], Proposition ., u, v ∈ C∞(�) for s = , u, v ∈ C,s(�) if  < s < 
and u, v ∈ C,s– if  < s < .

Discussion In recent years, there are many papers considering the relationship between
the number of positive solutions of the elliptic equation and the topology of the global
maximum set of its weight potentials. Our result Theorem . generalizes this result to
fractional elliptic systems with more general weight potentials. Furthermore, by using
Morse theory, we give a better result about the number of positive solutions in Theo-
rem . than Theorem .. However, the non-degeneracy condition is used in Theorem ..

This paper is organized as follows: In Section , we introduce some notations and pre-
liminaries. In Section , we give some technical results which are crucial to the proof of
Theorems . and .. In Section , we give the proof of Theorem .. In Section , we
prove Theorem ..

2 Notations and preliminaries
In this section, we collect preliminary facts for future reference. First of all, let us write
the standard notations which we will use in this paper. We denote the upper half-space in
R

N+
+ by

R
N+
+ :=

{
(x, y); (x, x, . . . xN , y) ∈R

N+, y > 
}

.

Denote the half cylinder with base � by C� = � × (,∞) ⊂R
N+
+ and its lateral boundary

by ∂LC� = ∂� × [,∞). We shall use C (Ci, i = , , . . .) to denote any positive constant.
Let ϕj, λj be the eigenfunctions and eigenvalues of –� in � with zero Dirichlet boundary

data. The fractional Laplacian (–�) s
 is defined in the space of functions

H
s


 (�) :=

{

u =
∞∑

j=

ajϕj ∈ L(�);‖u‖
H

s


 (�)
=

( ∞∑

j=

a
j λ

s

j

) 


< ∞
}
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and ‖u‖
H

s


 (�)
= ‖(–�) s

 u‖L(�). The dual space H– s
 (�) is defined in the standard way as

well as the inverse operator (–�)– s
 .

Definition . We say that (u, v) ∈ H
s


 (�) × H
s


 (�) is a solution of (Ef ,g) if the identity

∫

�

(–�)
s
 u(–�)

s
 ϕ + (–�)

s
 v(–�)

s
 ϕ dx

=
∫

�

(
f (x)|u|q–uϕ + g(x)|v|q–vϕ

)
dx

+
α

α + β

∫

�

h(x)|u|α–u|v|βϕ dx +
β

α + β

∫

�

h(x)|u|α|v|β–vϕ dx

holds for all (ϕ,ϕ) ∈ H
s


 (�) × H
s


 (�).

Associated with (Ef ,g) we consider the energy functional

Jf ,g(u, v) :=



∫

�

(∣
∣(–�)

s
 u

∣
∣ +

∣
∣(–�)

s
 v

∣
∣)dx

–

q

∫

�

(
f (u+)q + g(v+)q)dx –


∗

s

∫

�

h(u+)α(v+)β dx,

where u+ = max{u, } and v+ = max{v, }. Jf ,g is well defined in H
s


 (�)×H
s


 (�), and more-
over, the critical points of Jf ,g correspond to weak solutions of (Ef ,g).

To treat the nonlocal problem (Ef ,g), we will use an extension argument introduced by
Caffarelli and Silvestre [], which allows us to investigate (Ef ,g) by studying a local prob-
lem via classical variational methods. We define the extension operator and fractional
Laplacian for functions in H

s


 (�).

Definition . Given a function u ∈ H
s


 (�), we define its s-harmonic extension ω = Es(u)
to the cylinder C� as a solution to the problem

⎧
⎪⎪⎨

⎪⎪⎩

div(y–s∇ω) = , in C�,

ω = , on ∂LC�,

ω = u, on � × {},

and

(–�)
s
 u(x) = –Ks lim

y→+
y–s ∂ω

∂y
(x, y),

where Ks is a normalization constant.

The extension function ω(x, y) belongs to the space Xs
(C�) = C∞

 (C�) under the norm

‖ω‖Xs
(C�) =

(

Ks

∫

C�

y–s|∇ω| dx dy
) 


.
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The extension operator is an isometry between H
s


 (�) and Xs
(C�), namely

‖ω‖Xs
(C�) = ‖u‖

H
s


 (�)
, ∀u ∈ H

s


 (�). (.)

With this extension, we can transform (Eλ,μ) into the following local problem:

(̂Ef ,g)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

– div(y–s∇ω) = , – div(y–s∇ω) = , in C�,

ω = ω = , on ∂LC�,
∂ω
∂νs = f (x)|ω|q–ω + α

α+β
h(x)|ω|α–ω|ω|β , on C� × {},

∂ω
∂νs = g(x)|ω|q–ω + β

α+β
h(x)|ω|α|ω|β–ω, on C� × {},

ω = u, ω = v, on C� × {},

where

∂ωi

∂νs := –Ks lim
y→+

y–s ∂ωi

∂y
, i = , .

In the following, we will study (̂Ef ,g) in the framework of the Sobolev space X = Xs
(C�)×

Xs
(C�) using the standard norm

∥
∥(ω,ω)

∥
∥

X =
(

Ks

∫

�

y–s(|∇ω| + |∇ω|
)

dx dy
) 


.

An energy solution to (̂Ef ,g) is a function (ω,ω) ∈ X satisfying

Ks

∫

C�

y–s∇ω∇ϕ dx dy + Ks

∫

C�

y–s∇ω∇ϕ dx dy

=
∫

�×{}

(
f (x)|ω|q–ωϕ + g(x)|ω|q–ωϕ

)
dx

+
α

α + β

∫

�×{}
h(x)|ω|α–ω|ω|βϕ dx +

β

α + β

∫

�×{}
h(x)|ω|α|ω|β–ωϕ dx,

for all (ϕ,ϕ) ∈ X. If (ω,ω) satisfies (̂Ef ,g), then the trace (u, v) = (ω(·, ),ω(·, )) is a
solution of (Ef ,g). The converse is also true. Therefore, both formulations are equivalent.
We define the associated energy functional to (̂Ef ,g) by

If ,g(ω,ω) =


∥
∥(ω,ω)

∥
∥

X –

q

∫

�×{}

(
f (x)(ω)q

+ + g(x)(ω)q
+
)

dx

–


∗
s

∫

�×{}
h(x)(ω)α+(ω)β+ dx,

where (ω)+ = max{ω(x, ), } and (ω)+ = max{ω(x, ), }. Clearly, critical points of If ,g

in X correspond to critical points of Jf ,g in H
s


 (�) × H
s


 (�).
In the following lemmas, we will list some relevant inequalities from [, ].
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Lemma . For every  ≤ r ≤ ∗
s , and every ω ∈ Xs

(C�), we have

(∫

�×{}
|ω|r dx

) 
r
≤ C

∫

C�

y–s|∇ω| dx dy,

for some positive constant C. Furthermore, the space Xs
(C�) is compactly embedded into

Lr(�), for every r < ∗
s .

Remark . When r = ∗
s , the best constant is denoted by S(s, N), that is,

S(s, N) := inf
ω∈Xs

(C�)\{}

∫

C�
y–s|∇ω| dx dy

(
∫

�×{} |ω|∗
s dx)


∗s

. (.)

It is not achieved in any bounded domain and, for all ω ∈ Xs(RN+
+ ),

S(s, N)
(∫

RN ×{}
|ω|∗

s dx
) 

∗s ≤
∫

R
N+
+

y–s|∇ω| dx dy (.)

S(s, N) is achieved for � = R
N by functions ωε , which are the s-harmonic extensions of

uε(x) :=
ε

(N–s)


(ε + |x|)
(N–s)


, ε > , x ∈R

N . (.)

The constant S(s, N) given in (.) takes the exact value

S(s, N) =
π

s
 �( –s

 )�( N+s
 )(�( N

 ))
s
N

�( s
 )�( N–s

 )(�(N))
s
N

,

and it is achieved for � = R
N by the functions ωε = Es(uε).

We consider the following minimization problem:

Ss,α,β := inf
(ω,ω)∈X\{(,)}

∫

C�
y–s(|∇ω| + |∇ω|) dx dy

(
∫

�×{} |ω|α|ω|β dx)


∗s
. (.)

From [], we have a relationship between S(s, N) and Ss,α,β .

Lemma . For the constants S(s, N) and Ss,α,β introduced in (.) and (.), we have

Ss,α,β =
((

α

β

) β
α+β

+
(

β

α

) α
α+β

)

S(s, N).

In particular,the constant Ss,α,β is achieved for � = R
N .

As If ,g is not bounded on X, we consider the behaviors of If ,g on the Nehari manifold
setting

Nf ,g =
{

(ω,ω) ∈ X\{(, )
}

; I ′
f ,g(ω,ω)(ω,ω) = 

}
.
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Clearly, (ω,ω) ∈ Nf ,g if and only if

∥
∥(ω,ω)

∥
∥

X =
∫

�×{}

(
f (x)(ω)q

+ + g(x)(ω)q
+
)

dx +
∫

�×{}
h(x)(ω)α+(ω)β+ dx.

For any (ω,ω) ∈ Nf ,g , we have

If ,g(ω,ω) =
(




–

q

)
∥
∥(ω,ω)

∥
∥

X +
(


q

–


∗
s

)∫

�×{}
h(x)(ω)α+(ω)β+ dx > . (.)

Thus If ,g is bounded from below on Nf ,g . Let

ψf ,g(ω,ω)

:= I ′
f ,g(ω,ω)(ω,ω)

=
∥
∥(ω,ω)

∥
∥

X –
∫

�×{}

(
f (x)(ω)q

+ + g(x)(ω)q
+
)

dx –
∫

�×{}
h(x)(ω)α+(ω)β+ dx. (.)

Then, for (ω,ω) ∈ Nf ,g ,

ψ ′
f ,g(ω,ω)(ω,ω)

=
(
 – ∗

s
)∥
∥(ω,ω)

∥
∥

X +
(
∗

s – q
)
∫

�×{}

(
f (x)(ω)q

+ + g(x)(ω)q
+
)

dx (.)

= ( – q)
∥
∥(ω,ω)

∥
∥

X –
(
∗

s – q
)
∫

�×{}
h(x)(ω)α+(ω)β+ dx < . (.)

Define

αf ,g = inf
(ω,ω)∈Nf ,g

If ,g(ω,ω).

Then, analogous to [, ], we have the following results.

Lemma . Suppose that (ω
 ,ω

) is a local minimizer for If ,g on Nf ,g . Then (ω,ω) is a
critical point of If ,g .

Proof If (ω
 ,ω

) ∈ Nf ,g is a local minimizer of If ,g , then (ω
 ,ω

) is a nontrivial solution of
the optimization problem

minimize If ,g(ω,ω) subject to
{

(ω,ω);ψf ,g(ω,ω) = 
}

.

Hence by the theory of multipliers, there exists a θ ∈R such that

I ′
f ,g

(
ω

 ,ω

)

= θψ ′
f ,g

(
ω

 ,ω

)
.

This implies that  = I ′
f ,g(ω

 ,ω
)(ω

 ,ω
) = θψ ′

f ,g(ω
 ,ω

)(ω
 ,ω

). Moreover, noting (.),
we get θ = , and so I ′

f ,g(ω
 ,ω

) = . This completes the proof. �
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Lemma . For each (ω,ω) ∈ X with
∫

�×{} h(x)(ω)α+(ω)β+ dx > , there is a t(ω,ω) such
that (t(ω,ω)ω, t(ω,ω)ω) ∈ Nf ,g and

If ,g(t(ω,ω)ω, t(ω,ω)ω) = sup
t≥

If ,g(tω, tω).

Proof For fixed (ω,ω) ∈ X with
∫

�×{} h(x)(ω)α+(ω)β+ dx > , consider

ϕ(t) = If ,g(tω, tω)

=
t


∥
∥(ω,ω)

∥
∥

X –
tq

q

∫

�×{}

(
f (x)(ω)q

+ + g(x)(ω)q
+
)

dx

–
t∗

s

∗
s

∫

�×{}
h(x)(ω)α+(ω)β+ dx.

Because  < q < ∗
s , supt≥ ϕ(t) is achieved at some t(ω,ω) > . This means ϕ′(t(ω,ω)) = ,

i.e. (t(ω,ω)ω, t(ω,ω)ω) ∈ Nf ,g . �

Lemma . We have

αf ,g ≥ d for some d > .

Proof Set (ω,ω) ∈ Nf ,g , then we from Lemma . obtain

∥
∥(ω,ω)

∥
∥

X ≤ C
(∥
∥(ω,ω)

∥
∥q

X +
∥
∥(ω,ω)

∥
∥∗

s
X

)
,

i.e.

 ≤ C
(∥
∥(ω,ω)

∥
∥q–

X +
∥
∥(ω,ω)

∥
∥∗

s –
X

)
.

We deduce that

∥
∥(ω,ω)

∥
∥

X ≥ C

for some C >  independent of (ω,ω) ∈ Nf ,g . Thus we have

If ,g(ω,ω) ≥ d > 

for some d >  independent of (ω,ω) ∈ Nf ,g . Consequently, we obtain the desired re-
sult. �

Next we establish that If ,g satisfies the (PS)c-condition under some restriction on the
level of (PS)c-sequences in the following.

Lemma . If ,g satisfies the (PS)c-condition for c ∈ (–∞, s
N (KsSs,α,β)N/s).

Proof Let {(ω,n,ω,n)} ⊂ X be a (PS)c-sequence for If ,g and c ∈ (–∞, s
N (KsSs,α,β)N/s). Not-

ing (.), it is easy to obtain {(ω,n,ω,n)} is bounded in X. Thus, there exists a subsequence
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still denoted by {(ω,n,ω,n)} and (ω,ω) ∈ X such that (ω,n,ω,n) ⇀ (ω,ω) weakly in X.
Furthermore, we get I ′

f ,g(ω,ω) =  and
•

∫

�×{}(f (x)(ω,n)q
+ + g(x)(ω,n)q

+) dx =
∫

�×{}(f (x)(ω)q
+ + g(x)(ω)q

+) dx + o();
• ‖(ω,n – ω,ω,n – ω)‖

X = ‖(ω,n,ω,n)‖
X – ‖(ω,ω)‖

X + o();
Moreover, by the Brezis-Lieb lemma, we can obtain

∫

�×{}
h(x)(ω,n – ω)α+(ω,n – ω)β+ dx =

∫

�×{}
h(x)(ω,n)α+(ω,n)β+ dx

–
∫

�×{}
h(x)(ω)α+(ω)β+ dx + o().

Since If ,g(ω,n,ω,n) = c + o() and I ′
f ,g(ω,n,ω,n) = o(), we deduce that



∥
∥(ω,n – ω,ω,n – ω)

∥
∥

X –


∗
s

∫

�×{}
h(x)(ω,n – ω)α+(ω,n – ω)β+ dx

= c – If ,g(ω,ω) + o() (.)

and

o() = I ′
f ,g(ω,n,ω,n)(ω,n – ω,ω,n – ω)

=
(
I ′

f ,g(ω,n,ω,n) – I ′
f ,g(ω,ω)

)
(ω,n – ω,ω,n – ω)

=
∥
∥(ω,n – ω,ω,n – ω)

∥
∥

X –
∫

�×{}
h(x)(ω,n – ω)α+(ω,n – ω)β+ dx + o(). (.)

Now we may assume that

∥
∥(ω,n – ω,ω,n – ω)

∥
∥

X → l and
∫

�×{}
h(x)(ω,n – ω)α+(ω,n – ω)β+ dx → l as n → ∞,

for some l ∈ [, +∞).
Suppose l �=  and notice that h ≤ , using (.), (.) and passing to the limit as n → ∞,

we have

l ≥ KsSs,α,β l


∗s ,

that is,

l ≥ (KsSs,α,β)N/s. (.)

Then by (.)-(.) and (ω,ω) ∈ Nf ,g ∪ {(, )}, we have

c = If ,g(ω,ω) +
(




–


∗
s

)

l ≥ s
N

(KsSs,α,β)N/s,

which contradicts the definition of c. Hence l = , and the proof is completed. �
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3 Some technical results
In this section, we shall introduce some useful results which are crucial for the proof of
Theorem ..

Lemma . Let {(ω,n,ω,n)} ⊂ X be a non-negative function sequence with

∫

�×{}
(ω,n)α+(ω,n)β+ dx =  and

∥
∥(ω,n,ω,n)

∥
∥

X → KsSs,α,β .

Then there exists a sequence {(yn, εn)} ⊂R
N ×R

+ such that

(
W,n(x, y), W,n(x, y)

)
:= (Es

(
ε

N–s


n ω,n(εnx + yn, )
)
, Es

(
ε

N–s


n ω,n(εnx + yn, )
)

contains a convergent subsequence denoted again by {(W,n(x, y), W,n(x, y))} such that

(
W,n(x, y), W,n(x, y)

) → (W, W) in X.

Moreover, we have εn →  and yn → y ∈ � as n → ∞.

Proof Let Zn,(x) = ω,n(x, ), Zn,(x) = ω,n(x, ), we have

∫

�

(Zn,)α+(Zn,)β+ dx =  and ‖Zn,‖
Hs

(�) + ‖Zn,‖
Hs

(�) → KsSα,β as n → ∞.

By the proof of Lemma ., we know that {Zn,} and {Zn,} are minimizing sequences
for the critical Sobolev inequality in the form (.). Thus from [], Theorem , and
[], Theorem , we deduce that there exist a sequence of points {yn} ⊆ R

N and a se-
quence of numbers {εn} ⊂ (,∞) such that Ẑn,(x) = ε

N–s


n Zn,(εnx + yn) → Ẑ(x) and
Ẑn,(x) = ε

N–s


n Zn,(εnx + yn) → Ẑ(x) in Hs(RN ) as n → ∞. Moreover, we have εn → 
and yn → y ∈ � as n → ∞. Denote W,n = Es(Ẑn,), W,n = Es(Ẑn,) and W = Es(Ẑ),
W = Es(Ẑ). Then we obtain the result. �

Next, we will use ωε = Es(uε), the family of minimizers to the inequality (.), where uε

is given in (.). Let η ∈ C∞(C�),  ≤ η(x, y) ≤  and for small fixed ρ,

η(x, y) =

⎧
⎨

⎩

, (x, y) ∈ B+
ρ


:= {(x, y); |(x, y)| < ρ
 , y > },

, (x, y) /∈ B+
ρ := {(x, y); |(x, y)| > ρ, y > }.

We take ρ < r small enough such that

B+
ρ (x – z, y) ⊂ C�

for all z ∈ M, where

B+
ρ (x – z, y) :=

{
(x, y);

∣
∣(x – z, y)

∣
∣ ≤ ρ, y ≥ 

}
.
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For any z ∈ M, we define

vε,z = η(x – z, y)ωε(x – z, y) = η(x – z, y)Es
(
uε(x – z)

)
.

From the same argument as in [, ] we obtain

‖vε,z‖
Xs

(C�) = Ks

∫

R
N+
+

y–s|∇ωε| dx dy + O
(
εN–s), (.)

∫

�×{}
|vε,z|∗

s dx =
∫

RN ×{}
|ωε|∗

s dx + O
(
εN)

=
∫

RN

(
ε

ε + |x|
)N

dx + O
(
εN)

. (.)

A straight calculation shows that

∫

�×{}
|vε,z|q dx ≥ Cε

N–(N–s)q
 , (.)

for ε small and some C > . Then we have the following result.

Lemma . There exist ε, σ (ε) >  such that, for ε ∈ (, ε) and σ ∈ (,σ (ε)), we have

sup
t≥

If ,g(t
√

αvε,z, t
√

βvε,z) <
s

N
(KsSs,α,β)N/s – σ uniformly in z ∈ M.

Furthermore, there exists tz >  such that

(tz
√

αvε,z, tz
√

βvε,z) ∈ Nf ,g for all z ∈ M.

Proof At first we shall show that

sup
t≥

If ,g(t
√

αvε,z, t
√

βvε,z) <
s

N
(KsSs,α,β)N/s for ε >  small enough.

It follows from  < q < ∗
s that

lim
t→

If ,g(t
√

αvε,z, t
√

βvε,z) =  and lim
t→+∞ If ,g(t

√
αvε,z, t

√
βvε,z) = –∞.

Thus, for all ε sufficiently small, there exist t >  and t >  such that

If ,g(t
√

αvε,z, t
√

βvε,z) <
s

N
(KsSs,α,β)N/s for all t ∈ (, t] (.)

and

If ,g(t
√

αvε,z, t
√

βvε,z) <
s

N
(KsSs,α,β)N/s for all t ∈ [t, +∞). (.)
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By the definition of vε,z, we get

∫

�×{}
h(x)(vε,z)∗

s dx =
∫

Br (z)
h(x)

(
η(x – z, )uε(x – z)

)∗
s dx

=
∫

RN
h(x + z)

(
η(x, )uε(x)

)∗
s dx

=
∫

RN
h(x + z)η∗

s (x, )
(
uε(x)

)∗
s dx

=
∫

RN
h(x + z)η∗

s (x, )
εN

(ε + |x|)N dx.

Thus, noting the condition (H), we obtain

 ≤
∫

�×{}
(vε,z)∗

s dx –
∫

�×{}
h(x)(vε,z)∗

s dx

=
∫

RN
(vε,z)∗

s dx –
∫

RN
h(x)(vε,z)∗

s dx

= εN
(∫

RN \B ρ


( – h(x + z))η∗
s (x, )

(ε + |x|)N dx +
∫

B ρ


( – h(x + z))
(ε + |x|)N dx

)

≤ εN
(∫

RN \B ρ



|x|N dx +

∫

B ρ


|x|ρ
(ε + |x|)N dx

)

≤ εN
(

C + Cερ–N
∫ ρ

ε



rρ+N–

( + r)N dr
)

≤
⎧
⎨

⎩

CεN , ρ > N ,

CεN ln 
ε
, ρ = N ,

(.)

for all z ∈ M. It follows from Remark . and the definition of vε,z that

h(x) >  for all x ∈ Br (z) and vε,z =  for all x /∈ Br (z). (.)

From (.)-(.) and q > s
N–s we deduce that

If ,g(t
√

αvε,z, t
√

βvε,z)

≤ ∗
s


t‖vε,z‖

Xs
(C�) –

α
α
 β

β


∗
s

t∗
s

∫

�×{}
h(x)(vε,z)∗

s dx – Cε
N–(N–s)q



≤ s
N

( (α + β)‖vε,z‖
Xs

(C�)

(
∫

�×{} α
α
 β

β
 h(x)(vε,z)∗

s dx)


∗s

) N
s

– Cε
N–(N–s)q



=
s

N

(((
α

β

) β
α+β

+
(

β

α

) α
α+β

)Ks
∫

R
N+
+

y–s|∇ωε| dx dy + O(εN–s)

(
∫

RN ( ε

ε+|x| )N dx + O(εN ln 
ε
))


∗s

) N
s

– Cε
N–(N–s)q
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=
s

N
(KsSs,α,β)

N
s + O

(
εN–s) – Cε

N–(N–s)q


<
s

N
(KsSs,α,β)

N
s (.)

for ε sufficiently small and t ∈ [t, t]. Note the compactness of M; it follows from (.)-
(.) and (.) that there exist ε, σ (ε) >  such that, for ε ∈ (, ε) and σ ∈ (,σ (ε)), we
have

sup
t≥

If ,g(t
√

αvε,z, t
√

βvε,z) <
s

N
(KsSs,α,β)N/s – σ uniformly in z ∈ M.

By Lemma ., we conclude that there exists tz >  such that

(tz
√

αvε,z, tz
√

βvε,z) ∈ Nf ,g for all z ∈ M. �

Related to If ,g and Nf ,g , we define

Jh(ω,ω) =


∥
∥(ω,ω)

∥
∥

X –


∗
s

∫

�×{}
h(ω)α+(ω)β+ dx

and

Nh =
{

(ω,ω) ∈ X\{(, )
}

; (Jh)′(ω,ω)(ω,ω) = 
}

.

Then we have the following.

Lemma . We have

inf
(ω,ω)∈Nh

Jh(ω,ω) =
s

N
(KsSs,α,β)N/s.

Proof Let (ω,ω) ∈ Nh, then

∥
∥(ω,ω)

∥
∥

X =
∫

�×{}
h(x)(ω)α+((ω)β+ dx. (.)

By (.), we see

KsSs,α,β

(∫

�×{}
h(x)(ω)α+(ω)β+ dx

) 
∗s ≤ KsSs,α,β

(∫

�×{}
(ω)α+(ω)β+ dx

) 
∗s

≤ ∥
∥(ω,ω)

∥
∥

X ,

i.e.

∫

�×{}
h(x)(ω)α+(ω)β+ dx ≤

(


KsSs,α,β

) ∗s
 ∥
∥(ω,ω)

∥
∥∗

s
X . (.)

From (.) and (.) we deduce that

∥
∥(ω,ω)

∥
∥

X ≥ (KsSs,α,β)N/s.
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Then

Jh(ω,ω) =
s

N
∥
∥(ω,ω)

∥
∥

X ≥ s
N

(KsSs,α,β)N/s,

and thus

inf
(ω,ω)∈Nh

Jh(ω,ω) ≥ s
N

(KsSs,α,β)N/s. (.)

Since

max
t≥

(
a


t –
b
∗

s
t∗

s

)

=
s

N

(
a

b/∗
s

)N/

for any a >  and b > ,

by (.)-(.) and (.), we deduce that

sup
t≥

Jh(t
√

αvε,z, t
√

βvε,z) =
s

N

( (α + β)
∫

C�
|∇vε,z| dx dy

(α α
 β

β

∫

�×{} h(vε,z)∗
s dx)/∗

s

)N/s

=
s

N
(KsSs,α,β)N/s + O

(
εN–s).

Then we obtain

inf
(ω,ω)∈Nh

Jh(ω,ω) ≤ s
N

(KsSs,α,β)N/s, as ε → +. (.)

The desired result follows from (.) and (.). �

4 Proof of Theorem 1.1
In this section, we use the idea of category to get positive solutions of (Ef ,g) and give the
proof of Theorem ..

Initially, we give the following two propositions related to the category.

Proposition . Let R be a C, complete Riemannian manifold (modeled on a Hilbert
space) and assume F ∈ C(R,R) bounded from below. Let –∞ < infR F < a < b < +∞. Sup-
pose that F satisfies (PS)-condition on the sublevel {u ∈ R; F(u) ≤ b} and that a is not a
critical level for F . Then

�
{

u ∈ Fa;∇F(u) = 
} ≥ catFa

(
Fa),

where Fa ≡ {u ∈ R; F(u) ≤ a}.

Proof See [], Theorem .. �

Proposition . Let Q, �+ and �– be closed sets with �– ⊂ �+; Let φ : Q → �+, ϕ : �– →
Q be two continuous maps such that φ ◦ ϕ is homotopically equivalent to the embedding
j : �– → �+. Then catQ(Q) ≥ cat�+ (�–).
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Proof See [], Lemma .. �

The proof of Theorem . is based on Propositions . and .. Next, we define the con-
tinuous map � : X\G →R

N by

�(ω,ω) :=

∫

�×{} x(ω)α+(ω)β+ dx
∫

�×{}(ω)α+(ω)β+ dx
,

where G = {(ω,ω) ∈ X;
∫

�×{}(ω)α+(ω)β+ dx = }.

Lemma . For each  < δ < r, there exists δ >  such that if (ω,ω) ∈ Nh, Jh(ω,ω) <
s

N (KsSs,α,β)N/s + δ, then

�(ω,ω) ∈ Mδ .

Proof Suppose the contrary. Then there exists a function sequence {(ω,n,ω,n)} ⊂ Nh such
that Jh(ω,n,ω,n) = s

N (KsSs,α,β)N/s + o(), and

�(ω,n,ω,n) /∈ Mδ for all n.

It is easy to see that {(ω,n,ω,n)} is bounded in X. Furthermore, by Lemma . we have

s
N

(KsSs,α,β)N/s ≤ lim
n→∞ Jh(ω,n,ω,n) = lim

n→∞
s

N
∥
∥(ω,n,ω,n)

∥
∥

X

= lim
n→∞

s
N

∫

�×{}
h(x)(ω,n)α+(ω,n)β+ dx ≤ s

N
(KsSs,α,β)N/s. (.)

Define

(W,n, W,n) =
(

(ω,n)+

(
∫

�×{}(ω,n)α+(ω,n)β+ dx)/(α+β)
,

(ω,n)+

(
∫

�×{}(ω,n)α+(ω,n)β+ dx)/(α+β)

)

,

we see that
∫

�×{}(W,n)α+(W,n)β+ dx = . It follows from (.) and the definition of Ss,α,β that

KsSs,α,β ≤ ∥
∥(W,n, W,n)

∥
∥

X =
‖(ω,n,ω,n)‖

X

(
∫

�×{}(ω,n)α+(ω,n)β+ dx)


∗s

≤ ‖(ω,n,ω,n)‖
X

(
∫

�×{} h(x)(ω,n)α+(ω,n)β+ dx)


∗s

=
∥
∥(ω,n,ω,n)

∥
∥

s
N
X ≤ KsSs,α,β .

Hence we obtain

lim
n→∞

∥
∥(W,n, W,n)

∥
∥

X = KsSs,α,β (.)

and

lim
n→∞

∫

�×{}
h(x)(ω,n)α+(ω,n)β+ dx = lim

n→∞

∫

�×{}
(ω,n)α+(ω,n)β+ dx. (.)
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By Lemma ., there is a sequence {(yn, εn)} ∈R
N ×R

+ such that εn → , yn → y ∈ � and
(U,n(x, y), U,n(x, y)) = (Es(ε

N–s


n W,n(εnx + yn)), Es(ε
N–s


n W,n(εnx + yn))) → (U, U) in X as

n → ∞. Then by (.)-(.), we have

 = o() +
∫

�×{}
h(x)(W,n)α+(W,n)β+ dx

= ε–N
n

∫

�×{}
h(x)

(

U,n

(
x – yn

εn
, 

))α

+

(

U,n

(
x – yn

εn
, 

))β

+
dx + o()

= h(y),

as n → ∞, which implies y ∈ M. Considering ϕ ∈ C∞
 (RN ) such that ϕ(x) = x in �, we

infer

�(ω,n,ω,n)

=

∫

�×{} x(ω,n)α+(ω,n)β+ dx
∫

�×{}(ω,n)α+(ω,n)β+ dx

=

∫

RN ×{} ϕ(x)(ω,n)α+(ω,n)β+ dx
∫

RN ×{}(ω,n)α+(ω,n)β+ dx

=

∫

RN ×{} ϕ(εnx + yn)|Es(ε
N–s


n W,n(εnx + yn))|α|Es(ε

N–s


n W,n(εnx + yn))|β dx
∫

RN ×{} |Es(ε
N–s


n W,n(εnx + yn))|α|Es(ε

N–s


n W,n(εnx + yn))|β dx

→ y ∈ M, as n → ∞,

as n → ∞, which is a contradiction. �

Lemma . There exists �δ >  small enough such that if ‖f+‖Lq∗ + ‖g+‖Lq∗ < �δ and
(ω,ω) ∈ Nf ,g with If ,g(ω,ω) < s

N (KsSs,α,β)N/s + δ
 (δ is given in Lemma .), then

�(ω,ω) ∈ Mδ .

Proof For A, B > , consider

h(t) = At – Bt∗
s , t ≥ .

Then

max
t≥

h(t) =
∗

s – 
∗

s
A

(
A
∗

s B

) 
∗s – → ∞, as B → +.

Hence for (ω,ω) ∈ Nf ,g with If ,g(ω,ω) < s
N (KsSs,α,β)N/s + δ

 , we have

∫

�×{}
h(x)(ω)α+(ω)β+ dx > ,
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when ‖f+‖Lq∗ + ‖g+‖Lq∗ is sufficiently small. Thus we see that there exists the unique posi-
tive number

th =
( ‖(ω,ω)‖

X
∫

�×{} h(x)(ω)α+(ω)β+ dx

) 
∗s –

> 

such that (thω, thω) ∈ Nh.
We claim that th < C for some C independent of (ω,ω) ∈ Nf ,g if ‖f+‖Lq∗ + ‖g+‖Lq∗ is

small enough. Indeed,

s
N

(KsSs,α,β)N/s +
δ


≥ If ,g(ω,ω)

=
(




–

q

)
∥
∥(ω,ω)

∥
∥

X +
(


q

–


∗
s

)∫

�×{}
h(x)(ω)α+(ω)β+ dx

≥ q – 
q

∥
∥(ω,ω)

∥
∥

X .

Thus

∥
∥(ω,ω)

∥
∥

X ≤ q
q – 

(
s

N
(KsSs,α,β)N/s +

δ



)

. (.)

Moreover,

If ,g(ω,ω) =


∥
∥(ω,ω)

∥
∥

X –

q

∫

�×{}

(
f (ω)q

+ + g(ω)q
+
)

dx

–


α + β

∫

�×{}
h(x)(ω)α+(ω)β+ dx,

=
(




–

q

)∫

�×{}

(
f (ω)q

+ + g(ω)q
+
)

dx

+
(




–


∗
s

)∫

�×{}
h(x)(ω)α+(ω)β+ dx.

Therefore,

∫

�×{}
h(x)(ω)α+(ω)β+ dx

=
N

s

(

If ,g(ω,ω) –
(




–

q

)∫

�×{}

(
f (ω)q

+ + g(ω)q
+
)

dx
)

≥ N
s

(

d –
(




–

q

)

C
(‖f+‖Lq∗ + ‖g+‖Lq∗

)∥
∥(ω,ω)

∥
∥q

X

)

, (.)

where the last inequality follows from Lemmas . and .. By (.) and (.), we get, for
‖f+‖Lq∗ + ‖g+‖Lq∗ small enough,

∫

�×{}
h(x)(ω)α+(ω)β+ dx > C > ,
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where C is independent of (ω,ω) ∈ Nf ,g . Then we obtain the claim. Now,

s
N

(KsSs,α,β)N/s +
δ


≥ If ,g(ω,ω) = sup

t≥
If ,g(tω, tω)

≥ If ,g(thω, thω)

≥ Jh(thω, thω) –
C
q

∫

�×{}

(
f+(ω)q

+ + g+(ω)q
+
)

dx,

which leads to

Jh(thω, thω) ≤ s
N

(KsSs,α,β)N/s +
δ


+

C
q

∫

�×{}

(
f+(ω)q

+ + g+(ω)q
+
)

dx

≤ s
N

(KsSs,α,β)N/s +
δ


+ C

(‖f+‖Lq∗ + ‖g+‖Lq∗
)∥
∥(ω,ω)

∥
∥q

X .

Therefore, by (.) there exists �δ >  such that, for ‖f+‖Lq∗ + ‖g+‖Lq∗ < �δ ,

Jh(thω, thω) ≤ s
N

(KsSs,α,β)N/s + δ.

Since Lemma ., we obtain �(thω, thω) ∈ Mδ or �(ω,ω) ∈ Mδ . �

Below we denote by INf ,g the restriction of If ,g on Nf ,g .

Lemma . Any sequence {(ω,n,ω,n)} ⊂ Nf ,g such that INf ,g (ω,n,ω,n) → c ∈ (–∞,
s

N (KsSs,α,β)N/s) and I ′
Nf ,g

(ω,n,ω,n) →  contains a convergent subsequence.

Proof By hypothesis there exists a sequence {θn} ⊂R such that

I ′
f ,g(ω,n,ω,n) = θnψ

′
f ,g(ω,n,ω,n) + o(),

where ψf ,g is defined in (.). Recall that (ω,n,ω,n) ∈ Nf ,g and so

ψ ′
f ,g(ω,n,ω,n)(ω,n,ω,n) < .

If ψ ′
f ,g(ω,n,ω,n)(ω,n,ω,n) → , we from (.) obtain

∥
∥(ω,n,ω,n)

∥
∥

X → , as n → ∞.

On the other hand, it follows from (ω,n,ω,n) ∈ Nf ,g that

 ≤ C
(∥
∥(ω,n,ω,n)

∥
∥q–

X +
∥
∥(ω,n,ω,n)

∥
∥∗

s –
X

) → , as n → ∞.

That is,

∥
∥(ω,n,ω,n)

∥
∥

X ≥ C
– 

∗s –
 + o()
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Hence, we arrive at a contradiction. Thus we may assume that ψ ′
f ,g(ω,n,ω,n)(ω,n,ω,n) →

l <  as n → ∞. Because I ′
f ,g(ω,n,ω,n)(ω,n,ω,n) = , we conclude that θn →  and, con-

sequently, I ′
f ,g(ω,n,ω,n) → . Using this information we have

If ,g(ω,n,ω,n) → c ∈
(

–∞,
s

N
(KsSs,α,β)N/s

)

and I ′
f ,g(ω,n,ω,n) → ,

so by Lemma . the proof is over. �

Denote

c :=
s

N
(KsSs,α,β)N/s – σ (.)

and

Nf ,g(c) :=
{

(ω,ω) ∈ Nf ,g ; If ,g(ω,ω) < c
}

.

Lemma . Suppose (H)-(H) hold, and ‖f+‖Lq∗ (�) + ‖g+‖Lq∗ (�) ∈ (,�δ), INf ,g has at least
catMδ

(M) critical points in Nf ,g(c).

Proof For z ∈ M, by Lemma ., we can define

F(z) = (tz
√

αvε,z, tz
√

αvε,z) ∈ Nf ,g(c).

By Lemma ., INf ,g satisfies (PS)-condition on Nf ,g(c). Moreover, it follows from
Lemma . that �(Nf ,g(c)) ⊂ Mδ for ‖f+‖Lq∗ + ‖g+‖Lq∗ < �δ . Define ξ : [, ] × M → Mδ

by

ξ (θ , z) = �(tz
√

αv(–θ )ε,z, tz
√

βv(–θ )ε,z) ∈ Nf ,g(c).

Then straightforward calculations show that ξ (, z) = � ◦ F(z) and limθ→– ξ (θ , z) = z.
Hence � ◦ F is homotopic to the inclusion j : M → Mδ . By Propositions . and ., If ,g

has at least catMδ
(M) critical points in Nf ,g(c). �

Lemma . If (ω,ω) is a critical point of INf ,g , then it is a critical point of If ,g in X.

Proof Assume (ω,ω) ∈ Nf ,g , then I ′
f ,g(ω,ω)(ω,ω) = . On the other hand,

I ′
f ,g(ω,ω) = θψ ′

f ,g(ω,ω) (.)

for some θ ∈R, where ψf ,g is defined in (.).
Remark that (ω,ω) ∈ Nf ,g , and so ψ ′

f ,g(ω,ω)(ω,ω) < . Thus by (.),

 = θψ ′
f ,g(ω,ω)(ω,ω),

which implies that θ = , consequently I ′
f ,g(ω,ω) = . �

Finally, we can give the proof of Theorem ..
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Proof of Theorem . It follows from Lemmas . and . that If ,g admits at least catMδ
(M)

non-negative critical points. Thus we see that Jf ,g has at least catMδ
(M) non-negative crit-

ical points. By the maximum principle [], we obtain the conclusion of Theorem .. �

5 Proof of Theorem 1.2
In this section, we use the Morse theory to get positive solutions of (Ef ,g) and give the
proof of Theorem ..

Let α >  and β > , then If ,g is of class C and for (ω,ω), (ϕ,ϕ), (ψ,ψ) ∈ X,

I ′′
f ,g(ω,ω)

[
(ϕ,ϕ), (ψ,ψ)

]

= Ks

∫

C�

y–s(∇ϕ∇ψ + ∇ϕ∇ψ) dx dy

– (q – )
∫

�×{}

(
f (x)(ω)q–

+ ϕψ + g(x)(ω)q–
+ ϕψ

)
dx

–
α(α – )
α + β

∫

�×{}
h(x)(ω)α–

+ (ω)β+ϕψ dx

–
αβ

α + β

∫

�×{}
h(x)(ω)α–

+ (ω)β–
+ ϕψ dx

–
β(β – )
α + β

∫

�×{}
h(x)(ω)α+(ω)β–

+ ϕψ dx

–
αβ

α + β

∫

�×{}
h(x)(ω)α–

+ (ω)β–
+ ϕψ dx.

Hence I ′′
f ,g(ω,ω) is represented by the operator

L(ω,ω) := R(ω,ω) – K(ω,ω) : X → X–,

where R(ω,ω) is the Riesz isomorphism and K(ω,ω) is compact. For a ∈ (, +∞], set

Ia
f ,g :=

{
(ω,ω) ∈ X; If ,g(ω,ω) ≤ a

}
, Nf ,g(a) := Nf ,g ∩ Ia

f ,g ,

K :=
{

(ω,ω) ∈ X; I ′
f ,g(ω,ω) = 

}
, Ka := K ∩ Ia

f ,g ,

Ka :=
{

(ω,ω) ∈K; If ,g(ω,ω) > a
}

.

Then If ,g satisfies the Palais-Smale condition on Nf ,g(c), where c is defined in (.). For
a pair of topological spaces (X, Y ), Y ⊂ X, let H∗(X; Y ) be its singular homology and

P(t)(X, Y ) =
∑

k

dim Hk(X, Y )tk

the Poincaré polynomial of the pair. If Y = ∅, it will be always omitted in the objects which
involve the pair. In the remaining part of this section we will follow [, ]. We are going
to prove that If ,g restricted to Nf ,g has at least P(M) –  critical points. Then Theorem .
will follow from Lemma ..
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For any z ∈ M, by Lemma ., we can define

� : z ∈ M �→ (tz
√

αvε,z, tz
√

βvε,z) ∈ Nf ,g(c),

for some ε >  small enough. Since � is injective, it induces injective homomorphisms in
the homology groups, then dim Hk(M) ≤ dim Hk(Nf ,g(c)) and consequently

Pt
(
Nf ,g(c)

)
= Pt(M) + Q(t), Q ∈ P, (.)

where P denotes the set of polynomials with non-negative integer coefficients.
The following result is analogous to [], Lemma ., and we omit the proof.

Lemma . Let r ∈ (,αf ,g) and a ∈ (r, +∞] a regular level for If ,g . Then

Pt
(
Ia

f ,g , Ir
f ,g

)
= tPt

(
Na

f ,g
)
. (.)

In particular we have the following.

Lemma . Let r ∈ (,αf ,g). Then

Pt
(
Ic

f ,g , Ir
f ,g

)
= t

(
Pt(M) + Q(t)

)
, Q ∈ P,

Pt
(
X, Ir

f ,g
)

= t.

Proof The first identity follows by (.) and (.) by choosing a = c. The second one fol-
lows by (.) with a = +∞ and noticing that Nf ,g is contractible. �

To deal with critical points above the level c, we need also the following.

Lemma . We have

Pt
(
X, Ic

f ,g
)

= t(Pt(M) + Q(t) – 
)
, Q ∈ P.

Proof The proof is purely algebraic and goes exactly as in [], Lemma .; see also [],
Lemma .. �

As a consequence of these facts we have the following.

Lemma . Suppose that K is discrete. Then

∑

(ω,ω)∈Kc

It(ω,ω) = t
(
Pt(M) + Q(t)

)
+ ( + t)Q(t),

∑

(ω,ω)∈Kc

It(ω,ω) = t(Pt(M) + Q(t) – 
)

+ ( + t)Q(t),

where It(ω,ω) denotes the polynomial Morse index of (ω,ω) and Q, Q, Q ∈ P.
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Proof Indeed Morse theory gives

∑

(ω,ω)∈Kc

It(ω,ω) = Pt
(
Ic

f ,g , Ir
f ,g

)
+ ( + t)Q(t),

∑

(ω,ω)∈Kc

It(ω,ω) = Pt
(
X, Ic

f ,g
)

+ ( + t)Q(t).

By using Lemmas . and ., we obtain the result. �

Finally, it follows from Lemma . that

∑

(ω,ω)∈Kc

It(ω,ω) = tPt(M) + t(Pt(M) – 
)

+ t( + t)Q(t),

for some Q ∈ P. We easily deduce that, if the critical points of If ,g are non-degenerate, then
they are at least P(M) – , if counted with their multiplicity. Thus we see that (Jf ,g) has
at least P(M) –  non-negative solutions, which, if non-degenerate, are possibly counted
with their multiplicity. By the maximum principle [], we complete the proof of Theo-
rem ..
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