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Abstract
In this paper, we consider a free boundary problem describing the invasion of a
generalist predator into a prey population. We analytically derive the conditions
guaranteeing the existence and uniqueness of the classical solution by means of the
Schauder fixed point theorem, and further study the long-time behaviours of these
two species. Finally, we numerically investigate the dynamical behaviour during the
early invasion stage. Numerical results show that generalist predators are more likely
to succeed in alien invasion by reducing the threshold size of the spatial domain of
initial invasion, below which invasion fails.
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1 Introduction
Alien invasion has frequently been reported to cause detrimental impacts on native
ecosystems functions by altering population fitness, triggering extinction and secondary
extinction of native species []. It has been reported that about % of all species in the
United States are at risk because of competition with or predation by an alien species [–
]; in other parts of the world, this figure can be even higher [, ].

The invaders can be a specialist feeding on a particular prey population, but it can also
be a generalist feeding on multiple food sources, and thus their impacts are generally un-
expected. A convenient approach to understand the impact of alien invasion is to develop
an appropriate mathematical modelling. In this regards, two approaches have been widely
applied. One is to develop ordinary differential equations based on the mean field theory to
describe the temporal population dynamics, and the other is to develop reaction-diffusion
equations to describe the spatio-temporal population dynamics. While the former ap-
proach ignores the spatial aspects of alien invasion, the later suffers from the drawback
that alien species can instantaneously spread over the entire spatial domain even if they
start to invade in a small area.

To best describe the invasion process, free boundary problems were introduced to biol-
ogy [–]. In fact, free boundary problems have received considerable attention in many
fields, such as tumor cure [] and wound healing [] in medicine, vapor infiltration of
pyrolytic carbon in chemistry [], and expansion of the area infected by the virus in epi-
demiology []. To the best of our knowledge, it was first introduced to biology by Lin to
describe the process of a predator invading a prey population []. Since then many mathe-
matical models with free boundary have been developed to research biological population
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[–]. For example, Du and Lin in [] investigated a diffusive logistic model with a free
boundary and proved a spreading-vanishing dichotomy. Wang in [] studied a diffusive
logistic equation with a free boundary and sign-changing coefficient and also derived a
spreading-vanishing dichotomy. Additionally, Monobe and Wu in [] introduced the free
boundary into a reaction-diffusion-advection logistic model in heterogeneous environ-
ment, and obtained the long-time behaviour of the solution and the asymptotic spreading
speed.

While predator-prey models with free boundary have attracted great attention, almost
all of the studied models assume that the predator is a specialist, which means that the
predator will certainly go to extinction in the absence of the focal prey. In reality, it
might be not true since most predators are very likely to have alternative food sources
[, ]. Predators with multiple food sources are called generalist. A question arises how
the invasion of generalist predator into a local system affects the population dynamics in
a predator-prey model with free boundary, which remains unexplored.

The aim of this paper is to obtain insight into the question raised above through the
following generalist predator-prey model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – uxx = u( – u) – uv
+au := f (u, v), t > , x > ,

vt – dvxx = uv
+au + bv

+cv – ev := g(u, v), t > ,  < x < h(t),

v(t, x) = , t ≥ , x ≥ h(t),

ux(t, ) = vx(t, ) = , t ≥ ,

h′(t) = –μvx(t, h(t)), t ≥ ,

u(, x) = u(x),  ≤ x < ∞,

h() = h, v(, x) = v(x),  ≤ x ≤ h,

()

where the initial values u(x) and v(x) are non-negative and satisfy

⎧
⎨

⎩

u(x) ∈ C([,∞)), u′
() =  and u(x) >  in [,∞);

v(x) ∈ C([, h)), v′
() = v(h) and v(x) >  in [, h).

()

In this model, u(x, t) and v(x, t) indicate the population biomass density of the prey and
predator at time t and space x. In the absence of predator, the prey follows the logistic
growth and is initially distributed in the whole domain. In the presence of predator, the
prey suffers from a predation, following the Holling type II functional response where a
represents the handling time of prey individuals by the predator. The predator feeds on
both the focal prey and other food sources, and it suffers at the same time from a back-
ground mortality rate e. The parameters b and c indicate the predator’s attack rate and
handling time of other preys. To mimic the invading process, we assume the predator is
initially distributed only in the range x ∈ [, h]. The spreading front of the predator is
described by the so-called free boundary x = h(t). For both populations, we assume a ho-
mogeneous Neumann boundary condition at x = , which indicates that the left boundary
acts as a barrier and that the predator can only invade into the environment from the right.
Since we aim for general insights, all parameters are non-dimensional, positive, and con-
stant.



Ling et al. Boundary Value Problems  (2017) 2017:139 Page 3 of 20

In this model we assume that the alternative food has no dynamics evolution of its own,
which means that the alternative food is fixed in constant amounts, availability is signifi-
cantly high, and hence unaffected due to consumption (see the references [, ]). This is
apparently a simplification to reduce the dimension of the system from three to two, and
thus allows the use of the theory of Schauder fixed point to study the consequences of the
availability of alternative food. However, this simplification is justified for many arthropod
predators because they can rely on plant-provided alternative food sources such as pollen
or nectar, the availability of which is unlikely to be influenced by the predator’s consump-
tion [–]. The paper is structured as follows. In Section  we derive the conditions
guaranteeing the existence and uniqueness of the classic solution to the model (). In Sec-
tion , we analyse theoretically the long term behaviour of prey and predator. In Section ,
we perform numerical analysis of the population behaviour. The paper ends with a brief
conclusion.

2 Global existence, uniqueness and estimate of the solution
In this section, we prove the local existence and uniqueness results to problem () by ap-
plying contraction mapping theorem, and then we show the global existence using some
suitable estimates.

Theorem . For any given (u, v) satisfying () and any α ∈ (, ), there is a T >  such
that the problem () admits a unique solution

(u, v, h) ∈ C(+α)/,+α
(
D∞

T
) × C(+α)/,+α(DT ) × C+α/([, T]

)
,

moreover,

‖u‖C(+α)/,+α (D∞
T ) + ‖v‖C(+α)/,+α (DT ) + ‖h‖C+α/[,T] ≤ C,

where DT = {(t, x) ∈ R : t ∈ [, T], x ∈ [, h(t))}, D∞
T = {(t, x) ∈ R : t ∈ [, T], x ∈ [,∞)}, C

and T only depend on h, α, minx∈[,h] u(x), ‖u‖C([,∞)), ‖v‖C([,h]).

Proof The idea of this proof comes from []. First, we want to keep off the difficulty
caused by the free boundary. Taking ζ (y) to be a function in C[,∞) and to satisfy

ζ (y) =  if |y – h| < h/,

ζ (y) =  if |y – h| >
h


,

∣
∣ζ ′(y)

∣
∣ < /h ∀y,

and considering the following simple Chang case:

(t, x) → (t, y), where x = y + ζ (y)
(
h(t) – h

)
,  ≤ y < ∞,

we find the following. As long as

∣
∣h(t) – h

∣
∣ ≤ h/,
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the above transformation x → y is a diffeomorphism from [,∞) onto [,∞). Moreover,
it helps us straighten the free boundary. We obtain from standard calculations that

∂y
∂x

=


 + ζ ′(y)(h(t) – h)
≡

√

k
(
h(t), y

)
,

∂y
∂x = –

ζ ′′(y)(h(t) – h)
[ + ζ ′(y)(h(t) – h)] ≡ k

(
h(t), y

)
,

–


h′(t)
∂y
∂t

=
ζ (y)

 + ζ ′(y)(h(t) – h)
≡ k

(
h(t), y

)
.

Set

u(t, x) = u
(
t, y + ζ (y)

(
h(t) – h

))
= w(t, y),

v(t, x) = v
(
t, y + ζ (y)

(
h(t) – h

))
= z(t, y),

and the free boundary problem () can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt – kwyy – (k + h′k)wy = f (w, z),  ≤ y < ∞, t > ,

zt – kdzyy – (kd + h′k)zy = g(w, z),  ≤ y < h, t > ,

z(y, t) = , y ≥ h, t ≥ ,

h′(t) = –μ∂z
∂y , y = h, t > ,

∂w
∂y (, t) = ∂z

∂y (, t) = , t > ,

h() = h,

w(y, ) = u(y) := w(y),  ≤ y ≤ h,

z(y, ) = v(y) := z(y),  ≤ y ≤ l,

()

where k = k(h(t), y), k = k(h(t), y), k = k(h(t), y). It is easy to see

f (w, z) =

⎧
⎨

⎩

w( – w) – wz
+aw ,  < y < h,

w( – w), y ≥ h.

Let h∗ = –μv′
(h), z(y) =  for y > h, and δ = min≤y≤h u(y) and for  < T ≤ h

(+h∗) ,
and define

WT =
{

w ∈ C
(
�∞

T
)

: w(y, ) = w(y),‖w – w‖C(�∞
T ) ≤ δ/

}
,

ZT =

{
z ∈ C(�∞

T ), z(y, ) ≡  for y ≥ h,  ≤ t ≤ T ,
z(y) = z(y) for  ≤ y ≤ h,‖z – z‖C(�∞

T ) ≤ δ/

}

,

HT =
{

h ∈ C[, T], h() = h, h′() = h∗,
∥
∥h′ – h∗

∥
∥

C[,T] ≤ 
}

,

where �T = [, T] × [, h], �∞
T = [, T] × [,∞). Clearly, DT = WT × ZT × HT is a com-

plete metric space with metric

D
(
(w, z, h), (w, z, h)

)
= ‖w – w‖C(�∞

T ) + ‖z – z‖C(�T ) + ‖h – h‖C(�T ).
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Observing that, for h and h ∈ HT , h() = h() = h leads to

‖h – h‖C([,T]) ≤ T
∥
∥h′

 – h′

∥
∥

C([,T]). ()

By standard Lp theory and the Sobolev imbedding theorem, for any (w, z, h) ∈DT the fol-
lowing diffraction problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃t – kw̃yy – (k + h′k)w̃y = f (w, z), t > ,  ≤ y < ∞,

z̃t – kdz̃yy – (kd + h′k)z̃y = g(w, z), t > ,  ≤ y < h,

w̃y(, t) = z̃y(, t) = , z(y, t) ≡ , t > , h ≤ y < ∞,

w̃(y, ) = w(y) := u(y),  ≤ y < ∞,

z̃(y, ) = z(y) := v(y),  ≤ y ≤ h,

()

admits a unique bounded solution (ũ, ṽ) ∈ C(+α)/,+α(�∞
T ) × C(+α)/,+α(�T ) and

‖w̃‖C(+α)/,+α (�∞
T ) ≤ C, ()

‖z̃‖C(+α)/,+α (�T ) ≤ C, ()

where C is a constant depending on α, h, δ, ‖u‖C[,∞) and ‖v‖C[,h].
Defining

h̃(t) = h – μ

∫ t


z̃y(τ , h) dτ , ()

it follows that

h̃′(t) = –μz̃y(t, h),

and subsequently, we have h̃′(t) ∈ Cα/([, T]) and

∥
∥h̃′(t)

∥
∥

C(+α)/[,T] ≤ C := μC. ()

Introducing a mapping F : DT → C(�∞
T ) × C(�T ) × C([, T]) by F (w, z, h) = (w̃, z̃, h̃), we

can show that F has a fixed point, which is just a solution to the system ().
Taking into account h̃′(t) – h∗ = μ(ṽy(h, ) – ṽy(h, t)) and using the estimates (), ()

and (), we have

∥
∥h̃′ – h∗∥∥

C([,T]) ≤ μ
∥
∥h̃′∥∥

Cα/([,T])T
α/ ≤ μCTα/,

‖w̃ – w‖(�∞
T ) ≤ ‖w̃ – w‖C(+α)/,(�∞

T )T
(+α)/ ≤ CT (+α)/,

‖z̃ – z‖(�T ) ≤ ‖z̃ – z‖C(+α)/,(�T )T
(+α)/ ≤ CT (+α)/.

If we take T ≤ min{(μC)–/α , C–/(+α)
 }, the mapping F maps DT into itself.

Next we prove that, for T >  sufficiently small, F is a contraction mapping on DT . Let
(wi, zi, hi) ∈DT , (i = , ) be two solutions of the problem (), then, for i = ,  and denoting
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(w̃i, z̃i, h̃i) = F (wi, zi, hi), it follows from (), () and () that

‖w̃i‖C(+α)/,+α (�∞
T ) ≤ C, ‖z̃i‖C(+α)/,+α (�∞

T ) ≤ C,
∥
∥h̃′

i(t)
∥
∥

Cα/[,T] ≤ C.

Setting W = w – w, we find that W (y, t) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wt – k(y, h)Wyy – (k(y, h) + h′
k(y, h))Wy

= [k(y, h) – k(y, h)]w̃,yy + [k(y, h) – k(y, h)]w̃,y

+ [h′
k(y, h) – h′

k(yh)]w̃,y + f (w, z) – f (w, z), t > ,  < y < ∞,

Wy = (t, ) = , W (t, h) = , t > ,

W (, y) = ,  ≤ y ≤ h.

Due to |wi –w| ≤ δ/ and |zi –z| ≤ δ/, i = , , we have +awi > aδ/ and +czi > cδ/,
which results in

∣
∣
∣
∣

wz

 + aw
–

wz

 + aw

∣
∣
∣
∣

≤ a|ww| + |w|
( + aw)( + aw)

|z – z| +
|z|

( + aw)( + aw)
|w – w|

≤ L
aδ

(|z – z| + |w – w|
)

and

∣
∣
∣
∣

bz

 + cz
–

bz

 + cz

∣
∣
∣
∣ ≤ b

( + cz)( + cz)
|z – z| ≤ b

cδ |z – z|,

where the constant L depends on ‖u‖C([,∞)) and ‖v‖C([,h]). This implies that f (w, z)
and g(w, z) are local Lipschitz continuous functions of (w, z). Using the Lp estimates for
parabolic equations and Sobolev’s imbedding theorem, we obtain

‖w̃ – w̃‖C(+α)/,+α (�∞
T )

≤ C
[‖w – w‖C(�∞

T ) + ‖z – z‖C(�T ) + ‖h – h‖C([,T])
]
. ()

Similarly, we have the following estimate:

‖z̃ – z̃‖C(+α)/,+α (�T )

≤ C
[‖w – w‖C(�∞

T ) + ‖z – z‖C(�T ) + ‖h – h‖C([,T])
]
, ()

where C and C depend on C and C, the local Lipschitz coefficients of f and g , as well
as the functions A, B and C in the definition of transformation (t, y) → (t, x). Taking the
difference of the equations for h̃, h̃ results in

∥
∥h̃′

 – h̃′

∥
∥

Cα/([,T]) ≤ μ‖z̃,y – z̃,y‖Cα/,(�T ). ()
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Combining inequalities (), (), () and (), and assuming that T ≤ , we obtain

‖w̃ – w̃‖C(+α)/,+α (�∞
T ) + ‖z̃ – z̃‖C(+α)/,+α (�T ) +

∥
∥h̃′

 – h̃′

∥
∥

Cα/([,T])

≤ C
[‖w – w‖C(�∞

T ) + ‖z – z‖C(�T ) +
∥
∥h′

 – h′

∥
∥

C[,T]

]
,

with C depending on C, C, and μ. Hence, denoting

T := min

{

,
(


C

)/α

, (μC)–/α , C–/(+α)
 ,

h

( + h∗)

}

,

we have

‖w̃ – w̃‖C(�∞
T ) + ‖z̃ – z̃‖C(�T ) +

∥
∥h̃′

 – h̃′

∥
∥

C([,T])

≤ T (+α)/[‖w̃ – w̃‖C(+α)/,+α (�∞
T ) + ‖z̃ – z̃‖C(+α)/,+α (�T )

]

+ Tα/∥∥h̃′
 – h̃′


∥
∥

Cα/([,T])

≤ CTα/[‖w – w‖C(�∞
T ) + ‖z – z‖C(�T ) +

∥
∥h′

 – h′

∥
∥

C([,T])

]

≤ 

[‖w – w‖C(�∞

T ) + ‖z – z‖C(�T ) +
∥
∥h′

 – h′

∥
∥

C([,T])

]
.

This shows that F is a contraction mapping in DT if T is small enough. It follows from
the contraction mapping theorem that F has a unique fixed point (w, z, h) in DT . That is,
(w, z, h) is the unique solution of the problem () and accordingly (u, v, h) is the unique so-
lution of the problem (). Moreover, utilising the Lp estimate, we have additional regularity
of the solution u(t, x) ∈ C(+α)/,+α(D∞

T ), v(t, x) ∈ C(+α)/,+α(DT ) and h(t) ∈ C+α/([, T]).
The proof of Theorem . is completed. �

It is observed that there exists a time T such that the solution exists in time interval
[, T]. Since the global existence theorem depends on a prior estimate with respect to
h′(t), in what follows, we aim to derive a prior estimate for any solution of the problem ().

Theorem . If a– < e < b, the solution (u, v; h) of the free boundary problem () satisfies

 < u(t, x) ≤ M for  ≤ t ≤ T ,  ≤ x < ∞,

 < v(x, t) ≤ M for  ≤ t ≤ T ,  ≤ x < h(t),

and

 < h′(t) ≤ M for  < t ≤ T ,

where the constant Mi are independent of T for i = , , .

Proof Using the strong maximum principle, we can easily see that u >  in [, T] × [,∞)
and v >  in [, T] × [, h(t)) when the solution exists.
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Since u satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ut – uxx = u( – u) – uv
+au ,  < t ≤ T , x > ,

ux(t, ) = , u(t, h(t)) = , t ≥ ,

u(, x) = u(x),  ≤ x < ∞,

we get u ≤ max{‖u‖∞, } := M by the maximum principle. Similarly, as v satisfies

⎧
⎪⎪⎨

⎪⎪⎩

vt – dvxx = uv
+au + bv

+cv – ev,  < t ≤ T ,  < x < h(t),

vx(t, ) = , t ≥ ,

v(, x) = v(x),  ≤ x < ∞,

we also have v ≤ max{‖v‖∞, 
c ( b

e– M
+aM

– )} := M, where b
e– M

+aM

–  >  thanks to a– <

b < e.
Considering the transformation

y = x/h(t), w(t, y) = u(t, x), z(t, y) = v(t, x),

similar to the proof of Lemma . in [], we obtain zy(t, ) <  for  < t ≤ T . Thus, h′(t) =
–μvx(t, h(t)) >  in (, T].

Now we demonstrate that h′(t) ≤ M with some M independent of T . To see this, let
M be a positive constant,

�M =
{

(t, x) :  < t < T , h(t) – M– < x < h(t)
}

,

and construct an auxiliary function

ω(x, t) = M
[
M

(
h(t) – x

)
– M(h(t) – x

)].

In the following, we will choose M to guarantee ω(x, t) ≥ v(t, x) in �M .
Straightforward calculation shows that

ωt = MMh′(t)
(
 – M

(
h(t) – x

)) ≥ , –ωxx = MM,
(

u
 + au

+
b

 + cv
– e

)

v ≤ (/a + b – e)M.

It follows that

ωt – ωxx ≥ MM ≥ (/a + b – e)M ≥
(

u
 + au

–
b

 + cv
– e

)

v,

if M ≥ 
a +b–e

 . On the other hand,

ω

(

t, h(t) –


M

)

= M ≥ v
(

t, h(t) –


M

)

, ω
(
h(t), t

)
=  = v

(
h(t), t

)
.
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Next, we will further choose some M such that ω(, x) ≥ v(x) for x ∈ [h – M–, h]. We
divide [h – M–, h] into two subsets: [h – M–, h – (M)–] and [h – (M)–, h]. For
x ∈ [h – (M)–, h],

ωx(, x) = –MM
[
 – M(h – x)

] ≤ –MM ≤ v′
(x).

with M ≥ ‖v‖C([,h])
M

. This implies

ω(, x) ≥ v(x), for x ∈ [
h – (M)–, h

]
,

due to ω(, h) = v(h) = . For x ∈ [h – (M)–, h – (M)–], we also have

ω(, x) ≥ 


M ≥ ‖v‖C([,h])M– ≥ v(x).

Therefore, by choosing

M = max

{


h
,

√

a + b – e


,

‖v‖C([,h])

M

}

,

we can apply the comparison principle to ω and v, and conclude that ω ≥ v in �M . Recall-
ing the free boundary condition in () yields

h′(t) = –μvx
(
t, h(t)

) ≤ –μωx
(
t, h(t)

) ≤ M := μMM,

where M is independent of T . The proof is completed. �

Theorem . shows that the free boundary is strictly monotonically increasing with
time t, which indicates that the domain invaded by the predator v is gradually expand-
ing with time.

Moreover, the other inequalities in Theorem ., in which Mi is independent of T , imply
that we can extend the solution of problem () to the global range. The proof of the fol-
lowing theorem is omitted here and the interested reader can refer to that of Theorem .
in [] or Theorem . in [].

Theorem . Problem () admits a unique solution (u, v; h), which exists globally in [,∞)
with respect to t.

3 Long-time behaviour of (u, v)
To begin with, we present the definitions of spreading or vanishing of the predator popu-
lation and the related comparison principle.

Definition . If h∞ = ∞ and lim inft→+∞ ‖v(t, ·)‖C([,h(t)]) > , we call the predator spread-
ing, which means that the predator can survive and spread to the whole domain [,∞).
While if h∞ < ∞ and lim inft→+∞ ‖v(t, ·)‖C([,h(t)]) = , we call the predator vanishing, which
means that it will be maintained in a finite region and finally goes to extinction.
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Lemma . (Comparison principle) Assume that T ∈ (,∞), h ∈ C[, T], u ∈ C,(DT )
and v ∈ C(GT ) ∩ C,(GT ), where

DT =
{

(t, x) ∈ R,  < t ≤ T ,  < x < ∞}
,

GT =
{

(t, x) ∈ R,  < t ≤ T ,  < x < h(t)
}

.

If (u, v; h) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – uxx ≥ u( – u),  < t ≤ T ,  < x < ∞,

vt – dvxx ≥ v( 
a + b – e),  < t ≤ T ,  < x < h(t),

v(t, h(t)) = ,  < t ≤ T ,

ux(t, ) ≤ , vx(t, ) ≤ ,  < t ≤ T ,

h′(t) ≥ –μvx(t, h(t)), h() ≥ h,  < t ≤ T ,

u(, x) ≥ u(x),  < x < ∞,

v(, x) ≥ v(x),  ≤ x ≤ h,

then the solution (u, v, h) of problem () satisfies

h(t) ≤ h(t),  < t ≤ T ,

u(t, x) ≤ u(t, x),  < t ≤ T ,  < x < ∞,

v(t, x) ≤ v(t, x),  < t ≤ T ,  ≤ x ≤ h(t).

In fact, (u, v, h) is called an upper solution of problem (). We continue to exhibit the
following two lemmas, whose proof can be referred to Lemma . in [] and Theorem .
in [], respectively. We omit the details here.

Lemma . If h∞ < ∞, then there exists a constant K >  such that the solution (u, v, h) of
() satisfies

∥
∥v(t, ·)∥∥C[,h(t)] ≤ K , ∀t > ; lim

t→∞ h′(t) = .

Lemma . Suppose that a– < e < b. If h∞ < ∞, then h∞ ≤ 
, where 
 = π

√

d/(b – e).

The following theorem presents the sufficient condition for the vanishing of predator
species.

Theorem . Suppose a– < e < b and h < 
, then there exists μ >  such that h∞ < ∞
when μ ≤ μ, and moreover, the solution (u, v, h) of problem () satisfies

lim
t→∞

∥
∥v(t, ·)∥∥C([,h(t)]) = , ()

lim
t→∞ u(t, ·) =  uniformly on any compact subset of [,∞). ()



Ling et al. Boundary Value Problems  (2017) 2017:139 Page 11 of 20

Proof To apply Lemma ., we will construct the suitable upper solution (u, v; h). Define

h(t) = h

(

 + δ –
δ


e–σ t

)

, t ≥ ,

u(t, x) = et
(

et –  +


‖u‖∞

)–

, t ≥ ,

v(t, x) = Me–δtV
(

x
h(t)

)

,  ≤ x ≤ h(t),

where V (y) = cos( π
 y), δ is sufficiently small and meets with h( + δ) < 
, both σ and M

are positive and to be determined later. Obviously, it follows that

u′
t = u( – u), t > , u() = ‖u‖∞ ≤ u(x).

Meanwhile, we carry out some direct calculations

vt – dvxx – v
(


a

+ b – e
)

≥ MVe–σ t
[(

π



) d
( + δ)h


–

(

a

+ b – e
)

– σ

]

. ()

Once we choose

σ :=



[(
π



) d
( + δ)h


–

(

a

+ b – e
)]

,

we will get () non-negative.
By choosing M large enough, one has v(, x) ≥ v(x) for all x ∈ [, h]. Additionally, there

exists μ such that

h′(t) ≥ –μvx
(
t, h(t)

)
, ∀μ ≤ μ.

According to Lemma ., it follows that h(t) ≤ h(t), u(t, x) ≤ u(t, x) and v(t, x) ≤ v(t, x).
Thus h∞ ≤ h(∞) = h( + δ) < ∞. Naturally, conclusion () can be deducted from Propo-
sition . in [] and Lemma .. It remains to prove ().

Since limt→∞ ū(t) = , by the comparison principle u(t, x) ≤ ū(t) for all t ∈ [,∞) and
x ∈ [,∞), we have lim supt→∞ u(t, x) ≤  uniformly in [,∞).

On the other hand, with the help of conclusion () and the condition that v(t, x) ≡ 
for t >  and x /∈ [, h(t)), we see that, for any given  < ε � , there exists Tσ such that
v(t, x) < ε and

v
 + au

<
ε

 + au
< ε,

for t > Tσ , x ∈ [,∞). For any given ε and H > , let lε and Tε be determined by Lemma A.
in [], where Tε > Tσ . Then the function u(t, x) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ut – uxx ≥ u( – u – ε), t > Tε ,  < x < lε ,

ux(t, ) = , u(t, lε) > , t > Tε ,

u(Tε , x) > .
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Owing to Lemma A. in [], lim inft→∞ u(t, x) ≥ ( – ε) – ε uniformly on [, H]. Then
from the arbitrariness of the ε and H one derives that lim inft→∞ u(t, x) ≥
 – ε uniformly in the compact subset of [, ∞). Since ε >  is arbitrary, we deduce
that lim inft→∞ u(t, x) ≥  uniformly on any bounded subset of [,∞). The proof is
complete. �

The following theorem exhibits the sufficient condition for the spreading of predator
species.

Theorem . Suppose that a– < e < b and h < 
. Then there exists μ >  such that
h∞ = ∞ when μ > μ, and, moreover, if b < min{ce( – a), ( + c)(e – 

+a )}, then the solution
(u, v, h) of problem () satisfies

lim
t→∞ u(t, x) = u∗, lim

t→∞ v(t, x) = v∗,

uniformly on any compact subset of [,∞), where (u∗, v∗) is the positive solution of the
following system:

⎧
⎨

⎩

 – u – v
+au = ,

u
+au + b

+cv – e = .

Proof The second equation in problem () implies

vt – dvxx ≥ –ev,  < x < h(t).

Considering the following auxiliary problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt – dwxx = –ew, t > ,  < x < g(t),

w(t, g(t)) = , t > ,

w(t, x) = , g ′(t) = –μwx(t, x), t > , x = g(t),

w(, x) = v(x),  < x < h,

g() = h.

The comparison principle yields g(t) ≤ h(t) and w(t, x) ≤ v(t, x) on [,∞) × [, h(t)]. Sim-
ilar to the proof of Lemma . in [], there exists a constant μ >  such that g() ≥ 


for all μ ≥ μ. Therefore,

h∞ = lim
t→∞ h(t) ≥ lim

t→∞ g(t) ≥ g() ≥ 
, ∀μ ≥ μ,

from which together with Lemma . one deduces that h∞ = ∞.
This idea of the remainder proof comes from []. We will construct the following iter-

ation sequences.
Step . The constructions of u and v.
Set M = max{M, M}, where Mi is determined by Theorem ., i = , . For any given

L >  and  < ε � , there exist lε > L and T > , according to Lemma A. in [], such
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that
⎧
⎨

⎩

ut – uxx ≤ u( – u), t > T,  < x < lε ,

ux(t, ) = , u(t, lε) ≤ M, t > T.

Noting that u(T, x) >  in [, lε], we deduce from Lemma A. in [] that limt→∞ u(t, x) ≤
 + ε uniformly on [, L]. Then the arbitrariness of ε and L shows

lim sup
t→∞

u(t, x) ≤  := u uniformly on the compact subset of [, ∞). ()

Consequently, for any given L > ,  < δ, ε � , we combine Lemma A. in [] with (),
h∞ = ∞, to find that there exist lε > L and T > T such that

u(t, x) ≤ u + δ, h(t) > lε , for ∀t > T,  < x < lε .

Hence, v obeys
⎧
⎨

⎩

vt – dvxx ≤ v( b
+cv – (e – u+ε

+a(u+ε) )), t ≥ T,  < x < lε ,

vx(t, ) = , v(t, lε) ≤ M, t > T.

Since v(T, x) >  in [, lε], we can apply Lemma A. in [] to deduce limt→∞ v(t, x) ≤

c ( b

e– u+δ

+a(u+δ)
– ) + ε uniformly on [, L]. Because of the arbitrariness of ε, δ and L, we have

lim sup
t→∞

v(t, x) ≤ 
c

(
b

e – u
+au

– 
)

:= v uniformly on the compact subset of [, ∞). ()

Meanwhile, the condition that a– < e < b means that  < v<.
Step . The constructions of u and v.
Let lε be determined by Lemma A. in []. By (), there is T > T such that

v(t, x) ≤ v + δ, ∀t > T,  < x < lε .

Thus, u satisfies
⎧
⎨

⎩

ut – uxx ≥ u( – v – δ – u), t ≥ T,  < x < lε ,

ux(t, ) = , u(t, lε) ≥ , t ≥ T.

Due to u(T, x) >  in [, lε], it follows from Lemma A. in [] that lim inft→∞ u(t, x) ≤
 – v – δ – ε uniformly on [, L]. Similarly,

lim inf
t→∞ u(t, x) ≥  – v := u uniformly on the compact subset of [, ∞). ()

Additionally, for any given L > ,  < δ, ε � , owing to Lemma A. in [], () and
h∞ = ∞, we know that there exist lε > L and T > T such that

u(t, x) ≥ u – δ, h(t) > lε , ∀t > T,  < x < lε .
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Therefore, v satisfies
⎧
⎨

⎩

vt – dvxx ≥ v( b
+cv – (e – u–δ

+a(u–δ) )), t > T,  < x < lε ,

vx(t, ) = , v(t, lε) ≥ , t > T.

As v(T, x) >  in [, lε], based on Lemma A. in [], one can obtain

lim inf
t→∞ v(t, x) ≥ 

c

(
b

e – u–δ

+a(u–δ)

– 
)

– ε,

uniformly on [, L]. Similarly, we have

lim inf
t→∞ v(t, x) ≥ 

c

(
b

e – u
+au

– 
)

:= v,

uniformly on the compact subset of [, ∞).
Step . The constructions of u and v.
For any given L > ,  < δ, ε � , let lε be selected by Lemma A. in []. With the help

of () and (), one acquire that there is T > T such that

v(t, x) ≤ v + δ, u(t, x) ≥ u – δ, ∀t > T,  < x < lε ,

which makes u satisfy

⎧
⎨

⎩

ut – uxx ≥ u( – v+δ

+a(u–δ) – u), t > T,  < x < lε ,

ux(t, ) = , u(t, lε) ≥ , t > T.

Similar to Step , we have

lim inf
t→∞ u(t, x) ≥  –

v

 + au
:= u uniformly on the compact subset of [, ∞). ()

Next, for any given L > ,  < δ, ε � , by Lemma A. in [], () and h∞ = ∞, there
exists T > T such that

u(t, x) ≥ u – δ, h(t) > lε , ∀t > T,  < x < lε .

Thereupon v obeys

⎧
⎨

⎩

vt – dvxx ≥ v( b
+cv – (e – u–δ

+a(u–δ) )), t > T,  < x < lε ,

vx(t, ) = , v(t, lε) ≥ , t > T.

Similar to Step , we get

lim inf
t→∞ v(t, x) ≥ 

c

(
b

e – u
+au

– 
)

:= v uniformly on the compact subset of [, ∞). ()
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Step . The constructions of u and v.
For any given L > ,  < δ, ε � , let lε be selected by Lemma A. in []. In view of ()

and (), there is T > T such that

u(t, x) ≤ u + δ, v(t, x) ≥ v – δ, ∀t > T,  < x < lε ,

which implies that

⎧
⎨

⎩

ut – uxx ≥ u( – v–δ

+a(u+δ) – u), t > T,  < x < lε ,

ux(t, ) = , u(t, lε) ≤ M, t > T.

Similar to Step , we deduce

lim sup
t→∞

u(t, x) ≥  –
v

 + au
:= u uniformly on the compact subset of [, ∞). ()

Accordingly, for any L > ,  < δ, ε � , let lε is given by Lemma A. in []. Recalling ()
and h∞ = ∞, there is T > T such that

u(t, x) ≤ u + δ, h(t) > lε , ∀t ≥ T,  < x < lε .

So it follows that

⎧
⎨

⎩

vt – dvxx ≤ v( b
+cv – (e – u+δ

+a(u+δ) )), t > T,  < x < lε ,

vx(t, ) = , v(t, lε) ≤ M, t > T.

Similar to Step  again, it follows that

lim sup
t→∞

v(t, x) ≤ 
c

(
b

e – u
+au

– 
)

:= v

uniformly on the compact subset of [, ∞).
Step . Repeating the above procedure, we can find the four sequences {ui}, {ui}, {vi} and

{vi} satisfying

ui ≤ lim inf
t→∞ u(t, x) ≤ lim sup

t→∞
u(t, x) ≤ ui,

vi ≤ lim inf
t→∞ v(t, x) ≤ lim sup

t→∞
v(t, x) ≤ vi,

uniformly on the compact subset of [, ∞), where

ui =  –
vi

 + aui–
, ui =  –

vi

 + aui–
,

vi =

c

(
b

e – ui
+aui

– 
)

, vi =

c

(
b

e – ui
+aui

– 
)

.
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It is easy to see that {ui} and vi are monotone non-increasing and bounded, {ui} and {vi}
are monotone non-decreasing and bounded, so all of those limits exist, which are denoted
by u, u, v and v, respectively. Let i → ∞, we deduce that

u =  –
v

 + au
, u =  –

v
 + au

,

v =

c

(
b

e – u
+au

– 
)

, v =

c

(
b

e – u
+au

– 
)

.
()

We now claim that u = u. In fact, we infer by () that

b
c

· u – u
[e( + au) – u][e( + au) – u]

= (u – u)
[
 + a(u + u) – a

]
. ()

If u �= u, () gives that

b
c

· 
[e( + au) – u][e( + au) – u]

=  + a(u + u) – a.

Under the condition that ea > , the left side is less than or equal to b
ce , but the right side is

greater than –a, which leads to a contradiction to condition that b < ce(–a). Therefore,
u = u, and v = v by (). The proof is complete. �

4 Numerical analysis
In this section, we conduct numerical analysis to understand the role of generality of the
predator in the invasion process. The above analytical analysis shows the existence of
global solutions to the system () and further the conditions under which the invader can
either spread or vanish as time advances. While these conditions qualitatively show the
long-time behaviour of the prey and predator species, they are unfortunately not suffi-
ciently clear because it is unknown when h∞ is finite or infinite. Understanding the long-
time behaviour is numerically challenging, since the spatial domain is infinitely long. To
circumvent this difficulty, we consider a spatial domain of finite range and focus on the in-
vasion process of the early stage, which is thought to play a significant role in determining
the ultimate fate of the predator species.

To this aim, we restrict the prey species to living in a spatial domain x ∈ [, L] and
L = , and impose an homogeneous Neumann boundary condition at x = L. To min-
imise the impact of the right boundary on the potential results, we consider the inva-
sion stage from t =  to t = , at the end of which the invasive species (predator) is
far from reaching the right boundary. We employ the numerical scheme in [] to per-
form numerical simulation. Moreover, we assume a relatively slow diffusion process by
setting d = . to ensure that the predator will not reach the right boundary at t = .
For the initial condition of the two species, we assume that, prior to the invasion, the
prey species is homogeneously distributed in the spatial domain with an equilibrium den-
sity u(x, ) = . The predator species starts to invade in a small area with a low density
u(x) = ., x ∈ (, h).

A graphical illustration of the invasion process is presented in Figure . The predator re-
mains low in density for a certain period, and during this time period the spatial domain of
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Figure 1 The bigger predator’s attack rate. Graphical illustration of the invasion process of the generalist
predator into the native prey species. The left two panels describe the spatio-temporal distribution of
population density while the right-most panel shows population biomass. The bold red curve in the middle
panel indicates the free boundary. Parameter values are a = 3, b = 4, c = 1, e = 1, h0 = 1, μ = 0.8.

Figure 2 The smaller predator’s attack rate. Graphical illustration of the invasion process of the generalist
predator into the native prey species. The left two panels describe the spatio-temporal distribution of
population density while the right-most panel shows population biomass. The bold red curve in the middle
panel indicates the free boundary. Parameter values are a = 3, b = 3, c = 1, e = 1, h0 = 1, μ = 0.8.

the predator does not grow. After this transient period, population biomass of the preda-
tor starts to increase and the domain starts to grow linearly. Decreasing the generality of
the predator by changing b =  to b = , we found that invasion is unsuccessful (Figure ).
This contrasting result shows that generalist predator is more likely to invade successfully.
We tried longer simulation time but the conclusion remains unaltered. Numerical simu-
lations also show that the size of the initial spatial domain of the predator has a significant
impact on invasion. Figure  shows that increasing the size of the initial invading domain
(i.e., h = .) facilitates invasion and Figure  shows: the larger the better.

5 Conclusion
In summary, we consider an invasion scenario of a generalist predator into prey, which is
formulated by a predator-prey model with free boundary. In our model (), the so-called
free boundary x = h(t) characterises the change of the expanding front for the predator
v, as well as the long-time behaviours of the predator v and prey u are focussed on. We
conclude that the predator will gradually vanish if the limit of front function h(t) is finite,
while the predator will spread if the limit is infinite under some assumptions, and it fur-
ther will stabilise to an equilibrium. These analytical findings indicate that the change of
invasion region to predator can determine whether it successfully invade or not.

On the other hand, the numerical simulations of model () are also carried out. Our
numerical results show that a generalist predator is more likely to succeed in invasion than
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Figure 3 The smaller size of the initial invading domain. Graphical illustration of the invasion process of
the generalist predator into the native prey species. The left two panels describe the spatio-temporal
distribution of population density while the right-most panel shows population biomass. The bold red curve
in the middle panel indicates the free boundary. Parameter values are a = 3, b = 3, c = 1, e = 1, h0 = 1.2,
μ = 0.8.

Figure 4 The larger size of the initial invading domain. Graphical illustration of the invasion process of the
generalist predator into the native prey species. The left two panels describe the spatio-temporal distribution
of population density while the right-most panel shows population biomass. The bold red curve in the
middle panel indicates the free boundary. Parameter values are a = 3, b = 3, c = 1, e = 1, h0 = 2, μ = 0.8.

a specialist predator. There is a threshold size of the initial spatial domain for a successful
invasion below which invasion can fail. Moreover, we also noticed that there is a time
period during which invasive specie increases in density slowly. The existence of such a
time period implies that invasion can possibly be unsuccessful if we take into account
stochastic effects. We conclude that the more general the invasive species, the more likely
to be successful the invasion is.

The free boundary in model () describes the one-dimensional environment. With re-
gard to realities of situation, however, we realize the two or three-dimensional case to
more match the reality. Naturally, there will be more challenges in mathematical analy-
sis and numerical simulation for multi-dimensional free boundary, and we will pay more
attention to these questions in future work.

An interesting extension is to explicitly consider the dynamics of the alternative food
and investigate how the competition between two preys affect alien invasion. A promising
extension is to make an application of the above results to test how such a kind of model
with a free boundary problem can be used to solve real problems. Consideration of inva-
sion from a distant place through the boundary of the concerned domain can be modelled
accurately only with the help of spatio-temporal models with free boundary conditions.
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