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Abstract
The stability and convergence of a linearly extrapolated second order backward
difference (BDF2-LE) time-stepping scheme for solving viscoelastic fluid flow in R

d ,
d = 2, 3, are presented in this paper. The time discretization is based on the implicit
scheme for the linear term and the two-step linearly extrapolated scheme for the
nonlinear term. Mixed finite element (MFE) method is applied for the spatial
discretization. The approximations of stress tensor σ , velocity vector u and pressure p
are Pm-discontinuous, Pk-continuous and Pq-continuous elements, respectively.
Upwinding needed for convection of σ is made by a discontinuous Galerkin (DG) FE
method. For the time step �t small enough, the existence of an approximate solution
is proven. Ifm, k ≥ d

2 , q + 1≥ d
2 , and �t ≤ C0h

d
4 , then the discrete H1 and L2 errors for

the velocity and stress, and L2 error for the pressure, are bounded by
C(�t2 + hmin{m,k,q+1}), where h denotes the mesh size. The derived theoretical results
are supported by numerical tests.

MSC: 65N30; 65N12; 76A10

Keywords: viscoelastic fluid flow; linearly extrapolated BDF2; mixed finite element;
discontinuous Galerkin; stability analysis; error estimate

1 Introduction
In this paper, we consider the time-dependent incompressible viscoelastic fluid flow prob-
lem

Re(∂tu + u · ∇u) – ∇ · σ – ( – α)∇ · D(u) + ∇p = f , (.a)

λ(∂tσ + u · ∇σ ) + σ + λga(σ ,∇u) – αD(u) = , (.b)

∇ · u = , (.c)

for x ∈ � and t ∈ (, T], where � ⊂ R
d (d=, ) is a connected, bounded polygonal do-

main with the Lipschitz continuous boundary ∂�. p(x, t) represents the pressure, u =
(u(x, t), . . . , ud(x, t)) the velocity vector, and σ (x, t) the stress tensor. σ is the viscoelas-
tic part of the total stress tensor σtot = σ + ( – α)D(u) – pI. λ is the Weissenberg num-
ber, Re the Reynolds number, f(x, t) the body forces acting on the fluid and  < α < 
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may be considered as the fraction of viscoelastic viscosity. The gradient of u is defined
as (∇u)i,j = ∂ui/∂xj. D(u) = 

 (∇u + ∇uT ) is the rate of the strain tensor. For all a ∈ [–, ],
ga(σ ,∇u) is defined by

ga(σ ,∇u) =
 – a


(
σ∇u + (∇u)Tσ

)
–

 + a


(
(∇u)σ + σ (∇u)T)

. (.)

The boundary and initial conditions are given by

u(x, t) = , on ∂� × (, T], (.)

u(x, ) = u(x), σ (x, ) = σ(x), ∀x ∈ �. (.)

Time-dependent calculations of viscoelastic fluid flows are important to the understand-
ing of many problems in non-Newtonian fluid mechanics, particularity those related to
flow instabilities [–]. The existence and uniqueness of solutions to viscoelastic fluid flow
(.a)-(.) were discussed in [, ].

Numerical methods for solving the time-dependent incompressible viscoelastic fluid
flow have been investigated extensively [–]. For the analysis of the time-dependent
problem, Baranger and Wardi [] studied a DG approximation to inertialess flow in R

.
Assuming the Hood-Taylor FE pair approximation for the velocity and pressure, and a
discontinuous linear FE approximation for the stress, and Euler implicit method in time,
under the assumption �t ≤ Ch/, they obtained that the discrete H and L errors for the
velocity and stress, respectively, are bounded by C(�t + h/). Ervin and Heuer [] ana-
lyzed a fully discrete approximation for the time-dependent viscoelasticity equations with
an Oldroyd B constitutive equation in R

d , d = , . They used a Crank-Nicolson discretiza-
tion for the time derivatives. At each time level a linear system of equations is solved. To
resolve the nonlinear terms, they used a three-step extrapolation for the prediction of
the velocity and stress at the new time level. The approximation is stabilized by using a
discontinuous Galerkin approximation for the constitutive equation. Assume that �t is
sufficiently small and satisfying �t ≤ Chd/, the existence of an approximate solution is
proven. A priori error estimate for the approximation in terms of �t and h is also de-
rived. In [], Ervin and Miles analyzed the finite element spacial semi-discrete and Euler
semi-implicit fully discrete schemes, which were stabilized by using a streamline upwind
Petrov-Galerkin (SUPG) for the constitutive equation. Bensaada and Esselaoui in [] pre-
sented error analysis of a modified Euler-SUPG approximation for the time-dependent
viscoelastic flow problem. In [], based on a splitting of the error into two parts: the error
from the time discretization of the PDEs and the error from the finite element approxima-
tion of corresponding iterated time-discrete PDEs, the authors carried on unconditional
error estimates for time-dependent viscoelastic fluid flow.

In this work, we consider the convergence of BDF-LE in time and MFE in space for the
viscoelastic fluid flow. The backward difference formula (BDF) class of multi-step schemes
has been widely used as time integration method for both ordinary and partial differential
equations, see [–]. The BDF is one of the most popular BDF schemes due to its
stability and damping properties []. Girault and Raviart introduced and analyzed a first-
order and second-order BDF temporal semi-discrete schemes for Navier-Stokes equations
in []. An unconditionally stable decoupled BDF time-stepping scheme was analyzed for
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Boussinesq type Navier-Stokes equation in []. To the best of our knowledge, there is no
rigorous convergence analysis available yet for the viscoelastic fluid flow by using BDF-LE
in time. We will propose and analyze a coupled scheme which belongs to this class.

This article is organized as follows. In the next section, we introduce some notations
and preliminaries related to a continuum and discrete problem. In Section , we propose
the extrapolated time-stepping scheme, prove the existence of the numerical solution and
establish the stability analysis. The error analysis for the general scheme is presented in
Section . We also present numerical tests to confirm the theoretical results in Section .
Finally, some conclusions are drawn.

2 Notation and preliminaries
We denote the L(�) norms and corresponding inner products by ‖ · ‖ and (·, ·). Likewise,
the L(�) norms and the Sobolev W k,p(�) norms [] are denoted by ‖ · ‖Lp and ‖ · ‖W k,p ,
respectively. Hk(�) is used to represent the Sobolev space W k,(�) and ‖ · ‖k denotes the
norm in Hk(�). The space H–k(�) denotes the dual spaces of Hk

(�). All other norms will
be clearly labeled with subscripts.

The velocity and pressure spaces are X = H
(�)d , Q = L

(�), respectively. The stress
space S and divergence-free functions space V are given by

S =
{
τ = (τij); τij = τji; τij ∈ L(�);  ≤ i, j ≤ d

}

∩ {
τ = (τij); v · ∇τ ∈ L(�)d×d,∀v ∈ X

}
,

V =
{

v ∈ X; (q,∇ · v) = ,∀q ∈ Q
}

.

A weak formulation of (.a)-(.c) is as follows: Find (σ , u, p) : [, T] → (S, X, Q) for a.e.
t ∈ (, T] satisfying

Re(∂tu, v) + Rec(u, u, v) +
(
σ , D(v)

)
+ ( – α)

(
D(u), D(v)

)

– (p,∇ · v) = (f , v), (.a)

(q,∇ · u) = , (.b)

λ(∂tσ + u · ∇σ , τ ) + λ
(
ga(σ ,∇u), τ

)
+ (σ , τ ) – α

(
D(u), τ

)
=  (.c)

for all (τ , v, q) ∈ (S, X, Q) with the initial condition (.) a.e. in �, where the trilinear oper-
ator c on X × X × X is

c(u, v, w) = (u · ∇v, w).

By virtue of the divergence-free space V , the weak formulation of (.a)-(.c) can be
written as follows: Find (σ , u) ∈ (S, V ) such that, for all (τ , v) ∈ (S, V ),

Re(∂tu, v) + Rec(u, u, v) +
(
σ , D(v)

)
+ ( – α)

(
D(u), D(v)

)

= (f , v), (.a)

λ(∂tσ + u · ∇σ , τ ) + (σ , τ ) + λ
(
ga(σ ,∇u), τ

)
– α

(
D(u), τ

)
= . (.b)
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Here we assume that the initial-boundary value problem (.a)-(.) has a unique solu-
tion satisfying the regularity conditions

u ∈ L(, T ; Hk+(�)d), ∂tu ∈ L(, T ; Hk+(�)d), ∂
t u ∈ L(, T ; L(�)d),

p ∈ L(, T ; Hq+(�)
)
, σ ∈ L(, T ; Hm+(�)d×d),

∂tσ ∈ L(, T ; Hm+(�)d×d), ∂
t σ ∈ L(, T ; L(�)d×d),

‖u‖∞,‖σ‖∞,‖∇u‖∞,‖∇σ‖∞ ≤ M for all t ∈ [, T].

(.)

By using ∇ · u =  and u =  on ∂�, it is easy to see that (D(u), D(v)) = (∇u,∇v), and
‖D(u)‖ ≤ ‖∇u‖.

In order to keep the exposition simple, we restrict our attention to convex polyhedral
domains. Suppose that Th is a uniformly regular triangulation of � such that � = {⋃K :
K ∈ Th} and assume that there exist positive constants ν, ν such that νh ≤ hK ≤ νρK ,
where hK is the diameter of K , ρK is the diameter of the greatest ball included in K , and
h = maxK∈Th hK . The corresponding FE spaces are

Xh =
{

v ∈ X ∩ C(�)d; v|K ∈ Pk(K)d,∀K ∈ Th},

Sh =
{
τ ∈ S; τ|K ∈ Pm(K)d×d;∀K ∈ Th},

Qh =
{

q ∈ Q ∩ C(�); q|K ∈ Pq(K);∀K ∈ Th},

where Pm(K) denotes the space of polynomials of degree ≤ m on K ∈ Th.
We make the following assumptions on the finite dimensional subspaces.

Assumption A For (u, p) ∈ Hk+(�)d × Hq+(�), there exists (
u(u),
p(p)) ∈ Vh × Qh

such that [, –]

∥
∥u – 
u(u)

∥
∥ + h

∥
∥∇(

u – 
u(u)
)∥∥ ≤ Ciphk+‖u‖k+, (.)

∥
∥p – 
p(p)

∥
∥ ≤ Ciphq+‖p‖q+. (.)

Let 
σ (σ ) ∈ Sh be a Pm continuous interpolant of σ , and if σ ∈ Hm+(�)d×d , we have that

∥
∥σ – 
σ (σ )

∥
∥ + h

∥
∥∇(

σ – 
σ (σ )
)∥∥ ≤ Ciphm+‖σ‖m+. (.)

Assumption A (Discrete inf-sup condition) For each qh ∈ Qh, there exists a nonzero
function vh ∈ Xh such that

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖‖∇vh‖ ≥ β > , (.)

where β is a positive constant independent of the mesh size h.
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Assumption A For each ωh ∈ Xh, one has the inverse inequality, the Poincare inequality
and the second Korn’s inequality

‖∇ωh‖ ≤ Cih–‖ωh‖, ‖ωh‖∞ ≤ Cih– d
 ‖ωh‖,

‖ωh‖ ≤ Cp‖∇ωh‖,

‖∇ωh‖ ≤ Ck
∥∥D(ωh)

∥∥,

(.)

where Ci, Cp and Ck are the positive constants, which only depend on �.

There are many finite element spaces satisfying Assumptions A-A, such as the MINI
(Pb, P) elements, or the Hood-Taylor (P, P) elements for the velocity u and pressure p,
and P (or P) discontinuous element for stress tensor σ .

The discretely divergence-free velocity space is denoted by

Vh =
{

v ∈ Xh; (q,∇ · v) = , for all q ∈ Qh
}

.

Remark . The divergence-free space Vh is introduced only for theoretical analysis. The
practical computation should be based on the finite element space pair (Xh, Qh) for velocity
and pressure. We refer the readers to Heywood and Rannacher [, ] for the details on
the construction of (Xh, Qh).

Here we present a result which will be used in the stability analysis and error estimate
for pressure. Since the divergence-free space Vh ⊂ Xh, we can define the norms of the dual
spaces Xh, Vh by

‖ω‖X′
h

= sup
vh∈Xh

(ω, vh)
‖∇vh‖ , ‖ω‖V ′

h
= sup

vh∈Vh

(ω, vh)
‖∇vh‖ .

Lemma . ([–]) For ∀v ∈ Vh, the norms ‖v‖X′
h

and ‖v‖V ′
h

are equivalent.

In order to describe the approximation of the constitutive equation by the method of
discontinuous finite elements, following [], we define

∂K–(u) =
{

x ∈ ∂K ; u(x) · n(x) < 
}

,

where ∂K is the boundary of K ∈ Th, and n is the outward unit normal to ∂K , and

∂�h =
{⋃

∂K : K ∈ Th
}

\ ∂�, τ±(u)(x) = lim
ε→± τ

(
x + εu(x)

)
.

Also, for all functions in
∏

K∈Th
[H(K)]d×d , we define

(σ , τ )h =
∑

K∈Th

(σ , τ )K ,

〈
σ±, τ±〉

h,u =
∑

K∈Th

∫

∂K–(u)

(
σ±(u), τ±(u)

)|n · u|ds,

〈〈
σ±〉〉

h,u =
〈
σ±,σ±〉

h,u, ‖τ‖,�h =
( ∑

K∈Th

|τ |,∂K

)/

.
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The convection term ((u · ∇)σ , τ ) is approximated by means of an operator B on Xh ×
Sh × Sh, defined by

B(u,σ , τ )

=
(
(u · ∇)σ , τ

)
h +




(∇ · uσ , τ ) +
〈
σ + – σ –, τ+〉

h,u

= –
(
(u · ∇)τ ,σ

)
h –




(∇ · uτ ,σ ) +
〈
σ –, τ– – τ+〉

h,u, (.)

which implies some ‘coercivity’ of B []:

B(u,σ ,σ ) =


〈〈
σ + – σ –〉〉

h,u. (.)

Let {tn|tn = n�t;  ≤ n ≤ N} be a uniform partition of [,T] with the time step �t =
T/N . We denote ωm = ω(x, tm). For a sequence of functions {ωn}N

n=, we define the BDF
operator �(ωn+) and the linearly extrapolated operator �(ωn+)

�
(
ωn+) =

ωn+ – ωn + ωn–

�t
, �

(
ωn+) = ωn – ωn–.

It follows from Taylor’s formula with integral remainder that []

�
(
ω(tn)

)
= ∂tω(tn) +


�t

∫ tn

tn–

{
(t – tn–)

+ –



(t – tn–)
}
∂

t ω dt,

�
(
ω(tn)

)
= ω(tn) +

∫ tn

tn–

{
(t – tn–)+ – (t – tn–)

}
∂

t ω dt,

where (t – tn–)+ = max((t – tn–), ). By the Cauchy-Schwarz inequality, we have the trun-
cation error

∥∥�
(
ω(tn)

)
– ∂tω(tn)

∥∥ ≤ CT (�t)/∥∥∂
t ω(t)

∥∥
L(tn–,tn ;L(�)), (.)

∥∥�
(
ω(tn)

)
– ω(tn)

∥∥ ≤ CT (�t)/∥∥∂
t ω(t)

∥∥
L(tn–,tn ;L(�)), (.)

where the constant CT is derived from Taylor’s formula.
The BDF operator �(ω(tn+)) satisfies the relation []

(
�

(
ωn+),ωn+)

=


�t
∥
∥ωn+∥∥ +


�t

∥
∥ωn+ – ωn + ωn–∥∥ –


�t

∥
∥ωn∥∥

+


�t
[∥∥ωn+ – ωn∥∥ –

∥∥ωn – ωn–∥∥] +


�t
∥∥ωn–∥∥. (.)

The discrete Gronwall’s lemma [] plays an important role in the following analysis.

Lemma . Let �t, H , and an, bn, cn, γn (for integers n ≥ ) be nonnegative numbers such
that

al + �t
l∑

n=

bn ≤ �t
l∑

n=

γnan + �t
l∑

n=

cn + H for l ≥ . (.)
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Suppose that �tγn <  for all n, and set ζn = ( – �tγn)–. Then

al + �t
l∑

n=

bn ≤ exp

(

�t
l∑

n=

γnζn

)(

�t
l∑

n=

cn + H

)

for l ≥ . (.)

Remark . If the first sum on the right in (.) extends only up to l – , then estimate
(.) holds for all n >  with ζn = .

Throughout the paper, the constants C, C, . . . denote different constants which are in-
dependent of h and �t.

3 Numerical scheme and its stability
In this section, we first present the linearly extrapolated BDF scheme, then study the
existence of numerical solutions, and finally establish stability of the numerical scheme.

3.1 Numerical scheme
Scheme . (BDF-LE Galerkin FEM) Given u–

h = u
h = 
u(u) ∈ Vh, σ –

h = σ 
h =


σ (σ) ∈ Sh, find un+
h ∈ Xh, pn+

h ∈ Qh, σ n+
h ∈ Sh for n = , , , . . . , N –  satisfying

Re
(
�

(
un+

h
)
, vh

)
+ Rec

(
�

(
un+

h
)
, un+

h , vh
)

+
(
σ n+

h , D(vh)
)

+ ( – α)
(
D

(
un+

h
)
, D(vh)

)
–

(
pn+

h ,∇ · vh
)

=
(
fn+, vh

)
, (.a)

(
qh,∇ · un+

h
)

= , (.b)

λ
(
�

(
σ n+

h
)
, τh

)
+

(
σ n+

h , τh
)

+ λB
(
�

(
un+

h
)
,σ n+

h , τh
)

– α
(
D

(
un+

h
)
, τh

)
+ λ

(
ga

(
�

(
σ n+

h
)
,∇un+

h
)
, τh

)
=  (.c)

for all vh ∈ Xh, qh ∈ Qh and τh ∈ Sh.

By virtue of the divergence-free subspace Vh, Scheme . can be written as another form
(Scheme .) which is used in stability analysis in this section and error analysis in Sec-
tion .

Scheme . (BDF-LE Galerkin FEM) Given u–
h = u

h = 
u(u) ∈ Vh, σ –
h = σ 

h =

σ (σ) ∈ Sh, find un+

h ∈ Vh, σ n+
h ∈ Sh for n = , , , . . . , N – , satisfying

Re
(
�

(
un+

h
)
, vh

)
+ Rec

(
�

(
un+

h
)
, un+

h , vh
)

+
(
σ n+

h , D(vh)
)

+ ( – α)
(
D

(
un+

h
)
, D(vh)

)
=

(
fn+, vh

)
, (.a)

λ
(
�

(
σ n+

h
)
, τh

)
+

(
σ n+

h , τh
)

+ λB
(
�

(
un+

h
)
,σ n+

h , τh
)

– α
(
D

(
un+

h
)
, τh

)
+ λ

(
ga

(
�

(
σ n+

h
)
,∇un+

h
)
, τh

)
=  (.b)

for all vh ∈ Vh and τh ∈ Sh.

We see that Scheme . (or Scheme .) is a linear extrapolation (semi-implicit) scheme,
which is preferred over a fully implicit scheme (see Scheme . in Section ) as it requires
only solving the linear system in each time level.
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Remark . Since Scheme . is a two-step scheme, it requires starting values (u
h,σ 

h )
and (u

h,σ 
h ) and both with second order accuracy. For simplicity, here we take (u–

h ,σ –
h ) =

(u
h,σ 

h ) = (
u(u),
σ (σ)), it ensures that (u
h,σ 

h ) is second order accuracy. We can
also use the way as [, ] to get the value (u

h,σ 
h ) = (
u(u),
σ (σ)) and (u

h,σ 
h ) =

( u/
h +u/

h
 , σ/

h +σ/
h

 ), where (u/
h ,σ /

h ) and (u/
h ,σ /

h ) are solutions of the first order back-
ward Euler scheme with time step 

�t at t = 
�t and t = 

 �t, respectively. For de-
tails, please see [, ]. Of course, we can follow the Crank-Nicolson/Adams-Bashforth
scheme [] for Navier-Stokes equations to obtain (u

h,σ 
h ).

3.2 The existence and uniqueness of the numerical solution
To ensure the computability of Scheme ., we begin by showing that it is uniquely solvable
for uh and σh at each time level.

Before proving the existence of solutions, we need to introduce the following induction
hypothesis:

∥
∥un

h
∥
∥∞,

∥
∥σ n

h
∥
∥∞ ≤ K . IH (.)

In Section , we will prove that the induction hypothesis IH is right for any n =
, , . . . , N .

Lemma . Under the condition of hypothesis IH, for �t ≤ min{ –α

RedC
k K , λα(–α)

dC
k K–α(–α) },

there exists a unique solution (un+
h ,σ n+

h , pn+
h ) ∈ Xh × Sh × Qh satisfying (.a)-(.c).

Proof Taking vh = αun+
h in (.a), qh = αpn+

h in (.b) and τh = σ n+
h in (.c), adding

together the three equations thus obtained, we deduce that

A
(
un+

h ,σ n+
h ; un+

h ,σ n+
h

)
=

αRe
�t

(
un

h – un–
h , un+

h
)

+
λ

�t
(
σ n

h ,σ n+
h

)

–
λ

�t
(
σ n–

h ,σ n+
h

)
+ α

(
fn+, un+

h
)
, (.)

where the bilinear form A(un+
h ,σ n+

h ; vh, τh) is defined by

A
(
un+

h ,σ n+
h ; vh, τh

)
=

αRe
�t

(
un+

h , vh
)

+
λ

�t
(
σ n+

h , τh
)

+
(
σ n+

h , τh
)

+ α( – α)
(
D

(
un+

h
)
, D(vh)

)
+ αRec

(
�

(
un+

h
)
, un+

h , vh
)

+ λ
(
ga

(
�

(
σ n+

h
)
,∇un+

h
)
, τh

)
+ λB

(
�

(
un+

h
)
,σ n+

h , τh
)
. (.)

We now estimate the nonlinear terms on the right-hand sides (RHS) of A(un+
h ,σ n+

h ;
vh, τh) in (.). In view of (.) and the Holder inequality, we deduce that

αRe
∣∣c

(
�

(
un+

h
)
, un+

h , un+
h

)∣∣ = αRe
∣∣(�

(
un+

h
) · ∇un+

h , un+
h

)∣∣

≤ αRe
√

d
∥∥�

(
un+

h
)∥∥∞

∥∥∇un+
h

∥∥∥∥un+
h

∥∥

≤ αRe
√

dK
∥∥∇un+

h
∥∥∥∥un+

h
∥∥

≤ ε
∥∥D

(
un+

h
)∥∥ +

dαReKC
k

ε

∥∥un+
h

∥∥,
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λ
∣∣(ga

(
�

(
σ n+

h
)
,∇un+

h
)
,σ n+

h
)∣∣ ≤ 

∥∥�
(
σ n+

h
)∇un+

h
∥∥∥∥σ n+

h
∥∥

≤ 
√

d
∥∥�

(
σ n+

h
)∥∥∞

∥∥∇un+
h

∥∥∥∥σ n+
h

∥∥

≤ 
√

d
(

∥∥σ n

h
∥∥∞ +

∥∥σ n–
h

∥∥∞
)
Ck

∥∥D
(
un+

h
)∥∥∥∥σ n+

h
∥∥

≤ 
√

dCkK
∥∥D

(
un+

h
)∥∥∥∥σ n+

h
∥∥

≤ ε̄
∥∥D

(
un+

h
)∥∥ +

dC
k K

ε̄

∥∥σ n+
h

∥∥.

Note that λB(�(un+
h ),σ n+

h ,σ n+
h ) = λ


〈〈
σ

n+,+
h –σ

n+,–
h

〉〉
h,�(un+

h ) due to the ‘coercivity’ (.)
of B(·, ·, ·).

Combining the above inequalities with (.) yields

A
(
un+

h ,σ n+
h ; un+

h ,σ n+
h

) ≥
(

αRe
�t

–
dαReKC

k
ε

)∥∥un+
h

∥∥

+
(

λ

�t
–

dC
k K

ε̄
+ 

)∥
∥σ n+

h
∥
∥

+
(
α( – α) – ε – ε̄

)∥∥D
(
un+

h
)∥∥

+
λ


〈〈
σ

n+,+
h – σ

n+,–
h

〉〉
h,�(un+

h ). (.)

Choose ε = ε̄ = α( – α) and

�t ≤ min

{
 – α

RedC
k K ,

λα( – α)
dC

k K – α( – α)

}
,

thus the bilinear form A(un+
h ,σ n+

h ; vh, τh) is positive. Since system (.) is a finite dimen-
sional linear system, then the existence and uniqueness of solutions (un+

h ,σ n+
h , pn+

h ) to
Scheme . follow from the Lax-Milgram theorem and inf-sup condition (.). �

3.3 Numerical stability of Scheme 3.1
Theorem . Suppose that f ∈ L(, T ; H–(�)d), the initial value u ∈ L(�)d and σ ∈
L(�)d×d . For time step �t small enough, Scheme . is stable and satisfying

αRe
∥
∥ul

h
∥
∥ +

λ


∥
∥σ l

h
∥
∥ + �t

l–∑

n=

[
α( – α)

∥
∥D

(
un+

h
)∥∥ + 

∥
∥σ n+

h
∥
∥]

≤ exp(Tγn)

[
C

k α

( – α)
�t

l–∑

n=

∥
∥fn+∥∥

– + αRe‖u‖ + λ‖σ‖

]

, (.)

β�t
l–∑

n=

∥
∥pn+

h
∥
∥ ≤ C(Re,α, d,λ, T ,�, K , f , u,σ). (.)

Proof Choosing vh = �tun+
h in (.a), qh = �tpn+

h in (.b) and τh = �tσ n+
h in (.c),

we get

Re�t
(
�

(
un+

h
)
, un+

h
)

+ Re�tc
(
�

(
un+

h
)
, un+

h , un+
h

)

+ �t
(
σ n+

h , D
(
un+

h
))

+ ( – α)�t
∥∥D

(
un+

h
)∥∥ = �t

(
fn+, un+

h
)
, (.)
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λ�t
(
�

(
σ n+

h
)
,σ n+

h
)

+ �t
∥
∥σ n+

h
∥
∥ + λ�t

(
ga

(
�

(
σ n+

h
)
,∇un+

h
)
,σ n+

h
)

+ �tλ
〈〈
σ

n+,+
h – σ

n+,–
h

〉〉
h,�(un+

h ) – α�t
(
D

(
un+

h
)
,σ n+

h
)

= . (.)

Multiplying (.) by α and adding to (.) yield the single equation

αRe�t
(
�

(
un+

h
)
, un+

h
)

+ Reα�tc
(
�

(
un+

h
)
, un+

h , un+
h

)

+ λ�t
(
�

(
σ n+

h
)
,σ n+

h
)

+ α( – α)�t
∥
∥D

(
un+

h
)∥∥ + �t

∥
∥σ n+

h
∥
∥

+ λ�t
(
ga

(
�

(
σ n+

h
)
,∇un+

h
)
,σ n+

h
)

+ �tλ
〈〈
σ

n+,+
h – σ

n+,–
h

〉〉
h,�(un+

h )

= α�t
(
fn+, un+

h
)
. (.)

Furthermore, we have

Reα�t
∣∣c

(
�

(
un+

h
)
, un+

h , un+
h

)∣∣

= Reα�t
∣∣(
(
�

(
un+

h
) · ∇un+

h , un+
h

)∣∣

≤ Reα�t
∥∥�

(
un+

h
) · ∇un+

h
∥∥∥∥un+

h
∥∥

≤ Reα
√

dCk�t
∥∥�

(
un+

h
)∥∥∞

∥∥D
(
un+

h
)∥∥∥∥un+

h
∥∥

≤ Reα
√

dKCk�t
∥∥D

(
un+

h
)∥∥∥∥un+

h
∥∥

≤ ε�t
∥
∥D

(
un+

h
)∥∥ +

ReαdC
k K

ε
�t

∥
∥un+

h
∥
∥, (.)

λ�t
∣
∣(ga

(
�

(
σ n+

h
)
,∇un+

h
)
,σ n+

h
)∣∣

≤ λ�t
√

d
∥
∥�

(
σ n+

h
)∥∥∞

∥
∥∇un+

h
∥
∥
∥
∥σ n+

h
∥
∥

≤ λ�t
√

dCkK
∥∥D

(
un+

h
)∥∥∥∥σ n+

h
∥∥

≤ �tε̄
∥
∥D

(
un+

h
)∥∥ + �t

λdC
k K

ε̄

∥
∥σ n+

h
∥
∥ (.)

and

α�t
∣
∣(fn+, un+

h
)∣∣ ≤ α�t

∥
∥fn+∥∥

–

∥
∥∇un+

h
∥
∥

≤ αCk�t
∥
∥fn+∥∥

–

∥
∥D

(
un+

h
)∥∥

≤ �t ¯̄ε
∥
∥D

(
un+

h
)∥∥ + �t

C
k α

¯̄ε

∥
∥fn+∥∥

–. (.)

Plugging (.)-(.) into (.) and setting ε = ε̄ = ¯̄ε = α( – α) yield

αRe�t
(
�

(
un+

h
)
, un+

h
)

+ λ�t
(
�

(
σ n+

h
)
,σ n+

h
)

+ α( – α)�t
∥
∥D

(
un+

h
)∥∥ + �t

∥
∥σ n+

h
∥
∥

≤ λdC
k K

α( – α)
�t

∥∥σ n+
h

∥∥ +
RedC

k K

α( – α)
�t

∥∥un+
h

∥∥

+ �t
C

k α

( – α)
∥
∥fn+∥∥

–. (.)
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Using identity (.) to (.), we get

αRe
[

∥∥un+

h
∥∥ – 

∥∥un
h
∥∥ +

∥∥un–
h

∥∥] + αRe
[∥∥un+

h – un
h
∥∥ –

∥∥un
h – un–

h
∥∥]

+ αRe
∥
∥un+

h – un
h + un–

h
∥
∥ +

λ


[

∥
∥σ n+

h
∥
∥ – 

∥
∥σ n

h
∥
∥ +

∥
∥σ n–

h
∥
∥]

+ λ
[∥∥σ n+

h – σ n
h
∥∥ –

∥∥σ n
h – σ n–

h
∥∥] + �t

∥∥σ n+
h

∥∥

+
λ


∥∥σ n+

h – σ n
h + σ n–

h
∥∥ + α( – α)�t

∥∥D
(
un+

h
)∥∥

≤ λdC
k K

α( – α)
�t

∥∥σ n+
h

∥∥ +
RedC

k K

α( – α)
�t

∥∥un+
h

∥∥

+ �t
C

k α

( – α)
∥∥fn+∥∥

–. (.)

Summing (.) from n =  to l –  and using the identity




a –



b + (a – b) =



a +
(√

a –
b√


)

(.)

to (.) yield

αRe
[∥∥ul

h
∥∥ +

∥∥ul
h – ul–

h
∥∥] +

λ


[∥∥σ l

h
∥∥ +

∥∥σ l
h – σ l–

h
∥∥]

+ α( – α)�t
l–∑

n=

∥∥D
(
un+

h
)∥∥ + �t

l–∑

n=

∥∥σ n+
h

∥∥

≤ RedC
k K

α( – α)
�t

l–∑

n=

∥
∥un+

h
∥
∥ +

λdC
k K

α( – α)
�t

l–∑

n=

∥
∥σ n+

h
∥
∥

+ �t
C

k α

( – α)

l–∑

n=

∥
∥fn+∥∥

– + αRe‖u‖ + λ‖σ‖. (.)

In order to use the discrete Gronwall Lemma ., here we set

al = αRe
∥
∥ul

h
∥
∥ +

λ


∥
∥σ l

h
∥
∥, bn = α( – α)

∥
∥D

(
un+

h
)∥∥ + 

∥
∥σ n+

h
∥
∥,

an = αRe
∥
∥un+

h
∥
∥ +

λ


∥
∥σ n+

h
∥
∥,

γn = max

{
RedC

k K

α( – α)
,

λdC
k K

α( – α)

}
, ζn =


 – �tγn

,

cn =
C

k α

( – α)
∥∥fn+∥∥

–, H = αRe‖u‖ + λ‖σ‖.

For time step �t such that γn�t ≤ 
 , thus using the discrete Gronwall lemma to (.)

yields the result (.).
Now we bound the pressure. As Vh ⊂ Xh, for all vh ∈ Vh, we have from (.a)

Re
(
�

(
un+

h
)
, vh

)
+ Rec

(
�

(
un+

h
)
, un+

h , vh
)

+
(
σ n+

h , D(vh)
)

+ ( – α)
(∇un+

h ,∇vh
)

=
(
fn+, vh

)
.
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Dividing by ‖∇vh‖ and using the Cauchy-Schwarz inequality, we get

Re
(�(un+

h ), vh)
‖∇vh‖ ≤ Re

√
dCp

∥∥�
(
un+

h
)∥∥∞

∥∥∇un+
h

∥∥ +
∥∥σ n+

h
∥∥

+ ( – α)
∥∥∇un+

h
∥∥ +

∥∥fn+∥∥
–.

Taking the supremum over vh ∈ Vh yields

Re
∥
∥�

(
un+

h
)∥∥

V ′
h
≤ (Re

√
dCpK +  – α)

∥
∥∇un+

h
∥
∥ +

∥
∥σ n+

h
∥
∥

+
∥∥fn+∥∥

–.

The bound along with Lemma . provides the following estimate:

Re
∥∥�

(
un+

h
)∥∥

X′
h
≤ (Re

√
dCpK +  – α)

∥∥∇un+
h

∥∥ +
∥∥σ n+

h
∥∥

+
∥∥fn+∥∥

–.

From (.a) we have

(∇ · vh, pn+
h

)
= Re

(
�

(
un+

h
)
, vh

)
+ Rec

(
�

(
un+

h
)
, un+

h , vh
)

+
(
σ n+

h , D(vh)
)

+ ( – α)
(∇un+

h ,∇vh
)

–
(
fn+, vh

)
.

Dividing by ‖∇vh‖ and using the Cauchy-Schwarz inequality yield

(∇ · vh, pn+
h )

‖∇vh‖ ≤ Re
(�(un+

h ), vh)
‖∇vh‖ + (Re

√
dCpK +  – α)

∥∥∇un+
h

∥∥

+
∥
∥σ n+

h
∥
∥ +

∥
∥fn+∥∥

–.

Taking the supremum over vh ∈ Xh and using the inf-sup conditions (.), we have

β
∥
∥pn+

h
∥
∥ ≤ Re

∥
∥�

(
un+

h
)∥∥

X′
h

+ (Re
√

dCpK +  – α)
∥
∥∇un+

h
∥
∥

+
∥
∥σ n+

h
∥
∥ +

∥
∥fn+∥∥

–

≤ (Re
√

dCpK +  – α)
∥
∥∇un+

h
∥
∥ + 

∥
∥σ n+

h
∥
∥ + 

∥
∥fn+∥∥

–. (.)

Applying (a + b + c) ≤ (a + b + c) to (.) yields

β∥∥pn+
h

∥∥ ≤ (Re
√

dCpK +  – α)∥∥∇un+
h

∥∥ + 
∥∥σ n+

h
∥∥ + 

∥∥fn+∥∥
–.

Now multiplying by �t, summing over n from  to l –  and using the bound (.), we get
the required result (.). �

4 Error analysis of BDF2-LE scheme
We proceed to give an a priori error estimate for the BDF-LE Galerkin FEM. In order to
simplify the descriptions, we denote

en
u = un – un

h, en
p = pn – pn

h, en
σ = σ n – σ n

h ,
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where (un, pn,σ n) and (un
h, pn

h,σ n
h ) are the solutions of problems (.a)-(.c) and (.a)-

(.c), respectively. We construct the error equations for velocity en
u, pressure en

p and stress
tensor en

σ . Decompose

en
u =

(
un – 
u

(
un)) +

(

u

(
un) – un

h
)

= ηn
u + ϕn

u ,

en
p =

(
pn – 
p

(
pn)) +

(

p

(
pn) – pn

h
)

= ηn
p + ϕn

p ,

en
σ =

(
σ n – 
σ

(
σ n)) +

(

σ

(
σ n) – σ n

h
)

= ηn
σ + ϕn

σ ,

(.)

where (
u(u),
p(p),
σ (σ )) denote the elements in Xh × Qh × Sh and satisfy the approx-
imation properties (.)-(.). To establish the error estimate, we introduce the following
discrete norms:

|||ω|||∞,k = max
≤n≤N–

∥∥ωn+∥∥
k , |||ω|||,k =

[

�t
N–∑

n=

∥∥ωn+∥∥
k

] 


. (.)

Theorem . Suppose that (u, p,σ ) is a weak solution to (.a)-(.c) with additional reg-
ularities (.). (ul

h, pl
h,σ l

h) is given by (.a)-(.c) for l ∈ {, , . . . , N – }. For hypothesis IH
and �tγn ≤ 

 , we have

αRe
∥∥ϕl+

u
∥∥ + αRe

∥∥ϕl+
u – ϕl

u
∥∥ +

λ


∥∥ϕl+

σ

∥∥ +
λ


∥∥ϕl+

σ – ϕl
σ

∥∥

+ α( – α)�t
l∑

n=

∥
∥D

(
ϕn+

u
)∥∥ + �t

l∑

n=

∥
∥ϕn+

σ

∥
∥ ≤ W (�t, h), (.)

where

γn = max

{
,

dM

α

(
 +

λd
Re

)
,

dC
k λ

α( – α)

(
dM


+ K

)
, λdM

}
,

and

W (�t, h) = exp(Tγn)
[
(�t)(∥∥∂

t u
∥
∥

L(,T ;L(�)d) +
∥
∥∂

t σ
∥
∥

L(,T ;L(�)d×d)

+
∥∥∂

t u
∥∥

L(,T ;L(�)d) +
∥∥∂

t σ
∥∥

L(,T ;L(�)d×d)

)

+
(
hq+|||p|||,q+ + hm|||σ |||,m+ + hk|||u|||,k+

+ hk‖∂tu‖
L(,T ;Hk+(�)d) + hm‖∂tσ‖

L(,T ;Hm+(�)d×d)

)]
. (.)

Proof At time tn+ = (n + )�t, the true solution (u, p,σ ) of (.a)-(.b) satisfies

Re
(
�

(
un+), vh

)
+ Rec

(
�

(
un+), un+, vh

)
+

(
σ n+, D(vh)

)

+ ( – α)
(
D

(
un+), D(vh)

)

= Re
(
�

(
un+) – ∂tun+, vh

)

+
(
fn+, vh

)
+

(
pn+,∇ · vh

)
+ Rec

(
�

(
un+) – un+, un+, vh

)
, (.a)
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λ
(
�

(
σ n+), τh

)
+

(
σ n+, τh

)
+ λB

(
�

(
un+),σ n+, τh

)

– α
(
D

(
un+), τh

)
+ λ

(
ga

(
�

(
σ n+),∇un+), τh

)

= λ
(
�

(
σ n+) – ∂tσ

n+, τh
)

+ λB
(
�

(
un+) – un+,σ n+, τh

)

+ λ
(
ga

(
�

(
σ n+) – σ n+,∇un+), τh

)
(.b)

for all (vh, τh) ∈ Vh × Sh. Subtract (.a)-(.b) from (.a)-(.b) to yield the following
error equations for eu and eσ :

Re
(
�

(
en+

u
)
, vh

)
+

(
en+
σ , D(vh)

)
+ ( – α)

(
D

(
en+

u
)
, D(vh)

)

+ Rec
(
�

(
un+), un+, vh

)
– Rec

(
�

(
un+

h
)
, un+

h , vh
)

=
(
pn+,∇ · vh

)
+ Re

(
�

(
un+) – ∂tun+, vh

)

+ Rec
(
�

(
un+) – un+, un+, vh

)
, (.a)

λ
(
�

(
en+
σ

)
, τh

)
+

(
en+
σ , τh

)
– α

(
D

(
en+

u
)
, τh

)

+ λB
(
�

(
un+),σ n+, τh

)
– λB

(
�

(
un+

h
)
,σ n+

h , τh
)

+ λ
(
ga

(
�

(
σ n+),∇un+), τh

)
– λ

(
ga

(
�

(
σ n+

h
)
,∇un+

h
)
, τh

)

= λ
(
�

(
σ n+) – ∂tσ

n+, τh
)

+ λB
(
�

(
un+) – un+,σ n+, τh

)

+ λ
(
ga

(
�

(
σ n+) – σ n+,∇un+), τh

)
. (.b)

Taking vh = ϕn+
u in (.a) and τh = ϕn+

σ in (.b) yields

Re
(
�

(
ϕn+

u
)
,ϕn+

u
)

+ ( – α)
(
D

(
ϕn+

u
)
, D

(
ϕn+

u
))

+
(
ϕn+

σ , D
(
ϕn+

u
))

+ Rec
(
�

(
un+

h
)
,ϕn+

u ,ϕn+
u

)
= F

(
ϕn+

u
)
, (.a)

λ
(
�

(
ϕn+

σ

)
,ϕn+

σ

)
+

(
ϕn+

σ ,ϕn+
σ

)
– α

(
D

(
ϕn+

u
)
,ϕn+

σ

)

+ λB
(
�

(
un+

h
)
,ϕn+

σ ,ϕn+
σ

)
= F

(
ϕn+

σ

)
, (.b)

where

F
(
ϕn+

u
)

= Re
(
�

(

u

(
un+)) – ∂tun+,ϕn+

u
)

+
(
pn+,∇ · ϕn+

u
)

–
(
ηn+

σ , D
(
ϕn+

u
))

– ( – α)
(
D

(
ηn+

u
)
, D

(
ϕn+

u
))

+ Rec
(
�

(
un+) – un+, un+,ϕn+

u
)

– Rec
(
�

(
ϕn+

u
)
, un+,ϕn+

u
)

– Rec
(
�

(
ηn+

u
)
, un+,ϕn+

u
)

– Rec
(
�

(
un+

h
)
,ηn+

u ,ϕn+
u

)
, (.)

and

F
(
ϕn+

σ

)
= λ

(
�

(

σ

(
σ n+)) – ∂tσ

n+,ϕn+
σ

)
+ α

(
D

(
ηn+

u
)
,ϕn+

σ

)

–
(
ηn+

σ ,ϕn+
σ

)
– λB

(
�

(
ϕn+

u
)
,σ n+,ϕn+

σ

)
– λB

(
�

(
ηn+

u
)
,σ n+,ϕn+

σ

)

– λB
(
�

(
un+

h
)
,ηn+

σ ,ϕn+
σ

)
+ λB

(
�

(
un+) – un+,σ n+,ϕn+

σ

)
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– λ
(
ga

(
�

(
ϕn+

σ

)
,∇un+),ϕn+

σ

)
– λ

(
ga

(
�

(
ηn+

σ

)
,∇un+),ϕn+

σ

)

– λ
(
ga

(
�

(
σ n+

h
)
,∇ϕn+

u
)
,ϕn+

σ

)
– λ

(
ga

(
�

(
σ n+

h
)
,∇ηn+

u
)
,ϕn+

σ

)

+ λ
(
ga

(
�

(
σ n+) – σ n+,∇un+),ϕn+

σ

)
. (.)

Multiplying (.a) by α and adding to (.b), using the ‘coercivity’ (.) of B(·, ·, ·) yield
the single equation

αRe
(
�

(
ϕn+

u
)
,ϕn+

u
)

+ α( – α)
∥∥D

(
ϕn+

u
)∥∥ + λ

(
�

(
ϕn+

σ

)
,ϕn+

σ

)

+
∥
∥ϕn+

σ

∥
∥ +

λ


〈〈
ϕn+,+

σ – ϕn+,–
σ

〉〉
h,�(un+

h )

= αF
(
ϕn+

u
)

+ F
(
ϕn+

σ

)
. (.)

Applying identity (.) to (.) yields

αRe
�t

[

∥
∥ϕn+

u
∥
∥ – 

∥
∥ϕn

u
∥
∥ +

∥
∥ϕn–

u
∥
∥] +

αRe
�t

[∥∥ϕn+
u – ϕn

u
∥
∥

–
∥∥ϕn

u – ϕn–
u

∥∥] +
αRe
�t

[∥∥ϕn+
u – ϕn

u + ϕn–
u

∥∥] +
λ

�t
[

∥∥ϕn+

σ

∥∥

– 
∥∥ϕn

σ

∥∥ +
∥∥ϕn–

σ

∥∥] +
λ

�t
[∥∥ϕn+

σ – ϕn
σ

∥∥ –
∥∥ϕn

σ – ϕn–
σ

∥∥]

+
λ

�t
[∥∥ϕn+

σ – ϕn
σ + ϕn–

σ

∥∥] +
∥∥ϕn+

σ

∥∥ + α( – α)
∥∥D

(
ϕn+

u
)∥∥

+
λ


〈〈
ϕn+,+

σ – ϕn+,–
σ

〉〉
h,�(un+

h )

= αF
(
ϕn+

u
)

+ F
(
ϕn+

σ

)
. (.)

Multiplying both sides of (.) by �t, summing (.) with respect to n from  to l and
using identity (.) give

αRe
∥
∥ϕl+

u
∥
∥ + αRe

∥
∥ϕl+

u – ϕl
u
∥
∥ +

λ


∥
∥ϕl+

σ

∥
∥ +

λ


∥
∥ϕl+

σ – ϕl
σ

∥
∥

+ �t
l∑

n=

∥∥ϕn+
σ

∥∥ + α( – α)�t
l∑

n=

∥∥D
(
ϕn+

u
)∥∥

+ λ�t
l∑

n=

〈〈
ϕn+,+

σ – ϕn+,–
σ

〉〉
h,�(un+

h )

≤ αRe
∥∥ϕ

u
∥∥ + λ

∥∥ϕ
σ

∥∥ + �t
l∑

n=

[
αF

(
ϕn+

u
)

+ F
(
ϕn+

σ

)]
. (.)

Note that
∥∥�

(
σ n+

h
)∥∥ =

∥∥σ n
h – σ n–

h
∥∥ ≤ 

∥∥σ n
h
∥∥ +

∥∥σ n–
h

∥∥ + 
∥∥σ n

h
∥∥∥∥σ n–

h
∥∥

≤ 
∥∥σ n

h
∥∥ +

∥∥σ n–
h

∥∥ + 
[




∥∥σ n
h
∥∥ +

∥∥σ n–
h

∥∥
]

= 
∥∥σ n

h
∥∥ + 

∥∥σ n–
h

∥∥ (.)
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and

∥
∥�

(
un+

h
)∥∥ =

∥
∥un

h – un–
h

∥
∥ ≤ 

∥
∥un

h
∥
∥ +

∥
∥un–

h
∥
∥. (.)

We proceed to bound each term on the RHS of (.), absorb like-terms into the left-
hand side.

We first estimate the linear terms of F(ϕn+
u ) in (.). For the pressure term, using the

Cauchy-Schwarz, Korn’s and Young’s inequalities, we have

∣∣(pn+,∇ · ϕn+
u

)∣∣ =
∣∣(pn+ – 
p

(
pn+),∇ · ϕn+

u
)∣∣

≤ √
d
∥∥pn+ – 
p

(
pn+)∥∥∥∥∇ϕn+

u
∥∥

≤ √
dCk

∥
∥pn+ – 
p

(
pn+)∥∥

∥
∥D

(
ϕn+

u
)∥∥

≤ ε
∥∥D

(
ϕn+

u
)∥∥ +

dC
k

ε

∥∥pn+ – 
p
(
pn+)∥∥. (.)

Similarly, we see that

(
ηn+

σ , D
(
ϕn+

u
)) ≤ ε

∥∥D
(
ϕn+

u
)∥∥ +


ε

∥∥ηn+
σ

∥∥, (.)

( – α)
(
D

(
ηn+

u
)
, D

(
ϕn+

u
)) ≤ ε

∥
∥D

(
ϕn+

u
)∥∥ +

( – α)

ε

∥
∥D

(
ηn+

u
)∥∥, (.)

Re
(
�

(

u

(
un+)) – ∂tun+,ϕn+

u
)

≤ Re
∥∥�

(

u

(
un+)) – ∂tun+∥∥∥∥ϕn+

u
∥∥

≤ εRe
∥
∥ϕn+

u )
∥
∥ +

Re
ε

∥
∥�

(

u

(
un+)) – ∂tun+∥∥. (.)

For the nonlinear terms of F(ϕn+
u ), using the Cauchy-Schwarz inequality, Young’s in-

equality, the regularity assumption (.) of velocity and hypothesis IH, we obtain

Rec
(
�

(
un+) – un+, un+,ϕn+

u
)

≤ dRe
∥
∥�

(
un+) – un+∥∥

∥
∥∇un+∥∥∞

∥
∥ϕn+

u
∥
∥

≤ dMRe
∥
∥�

(
un+) – un+∥∥

∥
∥ϕn+

u
∥
∥

≤ εRe
∥∥ϕn+

u
∥∥ +

dMRe
ε

∥∥�
(
un+) – un+∥∥, (.)

Rec
(
�

(
ϕn+

u
)
, un+,ϕn+

u
)

≤ Red
∥∥�

(
ϕn+

u
)∥∥∥∥∇un+∥∥∞

∥∥ϕn+
u

∥∥

≤ εRe
∥∥ϕn+

u
∥∥ +

RedM

ε

∥∥�
(
ϕn+

u
)∥∥

≤ εRe
∥∥ϕn+

u
∥∥ +

RedM

ε

∥∥ϕn
u – ϕn–

u
∥∥, (.)
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Rec
(
�

(
ηn+

u
)
, un+,ϕn+

u
)

≤ Red
∥∥�

(
ηn+

u
)∥∥∥∥∇un+∥∥∞

∥∥ϕn+
u

∥∥

≤ εRe
∥
∥ϕn+

u
∥
∥ +

RedM

ε

∥
∥�

(
ηn+

u
)∥∥, (.)

Rec
(
�

(
un+

h
)
,ηn+

u ,ϕn+
u

) ≤ Red
∥∥�

(
un+

h
)∥∥∞

∥∥∇ηn+
u

∥∥∥∥ϕn+
u

∥∥

≤ RedKCk
∥∥D

(
ηn+

u
)∥∥∥∥ϕn+

u
∥∥

≤ εRe
∥∥ϕn+

u
∥∥ +

RedKC
k

ε

∥∥D
(
ηn+

u
)∥∥. (.)

Combining (.)-(.), we have the following estimate of αF(ϕn+
u ):

αF
(
ϕn+

u
) ≤ αRe(ε + ε + ε + ε + ε)

∥∥ϕn+
u

∥∥

+
αdMRe

ε

∥
∥ϕn

u – ϕn–
u

∥
∥ + α(ε + ε + ε)

∥
∥D

(
ϕn+

u
)∥∥

+
dC

k α

ε

∥
∥pn+ – 
p

(
pn+)∥∥ +

α

ε

∥
∥ηn+

σ

∥
∥ +

α( – α)

ε

∥
∥D

(
ηn+

u
)∥∥

+
Reα
ε

∥∥�
(

u

(
un+)) – ∂tun+∥∥ +

dαMRe
ε

∥∥�
(
un+) – un+∥∥

+
αRedM

ε

∥∥�
(
ηn+

u
)∥∥ (.)

Now we bound the terms of F(ϕn+
σ ) in (.). For the first three linear terms, applying

the Cauchy-Schwarz inequality and Young’s inequality, we obtain

λ
(
�

(

σ

(
σ n+)) – ∂tσ

n+,ϕn+
σ

)

≤ λ
∥∥�

(

σ

(
σ n+)) – ∂tσ

n+∥∥∥∥ϕn+
σ

∥∥

≤ βλ
∥
∥ϕn+

σ

∥
∥ +

λ

β

∥
∥�

(

σ

(
σ n+)) – ∂tσ

n+∥∥, (.)

(
ηn+

σ ,ϕn+
σ

) ≤ ∥
∥ηn+

σ

∥
∥
∥
∥ϕn+

σ

∥
∥ ≤ β

∥
∥ϕn+

σ

∥
∥ +


β

∥
∥ηn+

σ

∥
∥, (.)

α
(
D

(
ηn+

u
)
,ϕn+

σ

) ≤ α
∥∥D

(
ηn+

u
)∥∥∥∥ϕn+

σ

∥∥

≤ β
∥
∥ϕn+

σ

∥
∥ +

α

β

∥
∥D

(
ηn+

u
)∥∥. (.)

We estimate some nonlinear terms of the convection term about σ . The first nonlinear
term B(�(ϕn+

u ),σ n+,ϕn+
σ ) of F(ϕn+

σ ) can be rewritten as

λB
(
�

(
ϕn+

u
)
,σ n+,ϕn+

σ

)

= λ
(
�

(
ϕn+

u
) · ∇σ n+,ϕn+

σ

)
h

+
λ


((∇ ·�(

ϕn+
u

))
σ n+,ϕn+

σ

)
+ λ

〈
σ n+,+ – σ n+,–,ϕn+,+

σ

〉
h,�(ϕn+

u ). (.)
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Note that the term λ〈σ n+,+ – σ n+,–,ϕn+,+
σ 〉h,�(ϕn+

u ) =  due to the continuity of σ . The
other two terms on the RHS of (.) may be bounded by

λ
(
�

(
ϕn+

u
) · ∇σ n+,ϕn+

σ

)
h

≤ λ
∥∥�

(
ϕn+

u
) · ∇σ n+∥∥∥∥ϕn+

σ

∥∥

≤ λ
√

d
∥∥∇σ n+∥∥∞

∥∥�
(
ϕn+

u
)∥∥∥∥ϕn+

σ

∥∥ ≤ λ
√

dM
∥∥�

(
ϕn+

u
)∥∥∥∥ϕn+

σ

∥∥

≤ βλ
∥
∥ϕn+

σ

∥
∥ +

λdM

β

∥
∥ϕn

u – ϕn–
u

∥
∥, (.)

λ


((∇ ·�(

ϕn+
u

))
σ n+,ϕn+

σ

)

≤ dλ


∥
∥∇ ·�(

ϕn+
u

)∥∥
∥
∥σ n+∥∥∞

∥
∥ϕn+

σ

∥
∥

≤
√

dMλ


∥∥∇�

(
ϕn+

u
)∥∥∥∥ϕn+

σ

∥∥

≤
√

dMCkλ


∥
∥D

(
�

(
ϕn+

u
))∥∥

∥
∥ϕn+

σ

∥
∥

≤ αε


∥∥D

(
�

(
ϕn+

u
))∥∥ +

dC
k Mλ

εα

∥∥ϕn+
σ

∥∥

≤ αε
(∥∥D

(
ϕn

u
)∥∥ +

∥
∥D

(
ϕn–

u
)∥∥) +

dC
k Mλ

εα

∥
∥ϕn+

σ

∥
∥. (.)

Similarly as (.), we write the second nonlinear term λB(�(ηn+
u ),σ n+,ϕn+

σ ) of F(ϕn+
σ )

as

λB
(
�

(
ηn+

u
)
,σ n+,ϕn+

σ

)

= λ
(
�

(
ηn+

u
) · ∇σ n+,ϕn+

σ

)
h

+
λ


((∇ ·�(

ηn+
u

))
σ n+,ϕn+

σ

)
+ λ

〈
σ n+,+ – σ n+,–,ϕn+,+

σ

〉
h,�(ηn+

u ). (.)

Using the same method as (.) to estimate the three terms on the RHS of (.) leads
to

λ
(
�

(
ηn+

u
) · ∇σ n+,ϕn+

σ

)
h

≤ λ
∥∥�

(
ηn+

u
) · ∇σ n+∥∥∥∥ϕn+

σ

∥∥

≤ λ
√

d
∥∥�

(
ηn+

u
)∥∥∥∥∇σ n+∥∥∞

∥∥ϕn+
σ

∥∥

≤ λ
√

dM
∥∥�

(
ηn+

u
)∥∥∥∥ϕn+

σ

∥∥

≤ βλ
∥
∥ϕn+

σ

∥
∥ +

λdM

β

∥
∥�

(
ηn+

u
)∥∥, (.)

λ


((∇ ·�(

ηn+
u

))
σ n+,ϕn+

σ

)

≤ λd


∥∥∇ ·�(
ηn+

u
)∥∥∥∥σ n+∥∥∞

∥∥ϕn+
σ

∥∥



Zhang et al. Boundary Value Problems  (2017) 2017:140 Page 19 of 35

≤ λ
√

dM


∥∥∇�
(
ηn+

u
)∥∥∥∥ϕn+

σ

∥∥

≤ βλ
∥∥ϕn+

σ

∥∥ +
λdM

β

∥∥∇�
(
ηn+

u
)∥∥, (.)

λ
〈
σ n+,+ – σ n+,–,ϕn+,+

σ

〉
h,�(ηn+

u ) = , (.)

where we have used the continuity of σ n+ in (.).
By the same way, the third nonlinear term λB(�(un+

h ),ηn+
σ ,ϕn+

σ ) of F(ϕn+
σ ) can be writ-

ten as

λB
(
�

(
un+

h
)
,ηn+

σ ,ϕn+
σ

)

= λ
(
�

(
un+

h
) · ∇ηn+

σ ,ϕn+
σ

)
h

+
λ


(∇ ·�(

un+
h

)
ηn+

σ ,ϕn+
σ

)
+ λ

〈
ηn+,+

σ – ηn+,–
σ ,ϕn+,+

σ

〉
h,�(un+

h ). (.)

For the first term in (.), using (.) and hypothesis IH, we can get

λ
(
�

(
un+

h
) · ∇ηn+

σ ,ϕn+
σ

)
h

≤ λ
∥
∥�

(
un+

h
) · ∇ηn+

σ

∥
∥
∥
∥ϕn+

σ

∥
∥

≤ √
dλ

∥
∥�

(
un+

h
)∥∥∞

∥
∥∇ηn+

σ

∥
∥
∥
∥ϕn+

σ

∥
∥

≤ 
√

dλK
∥
∥∇ηn+

σ

∥
∥
∥
∥ϕn+

σ

∥
∥

≤ βλ
∥∥ϕn+

σ

∥∥ +
λdK

β

∥∥∇ηn+
σ

∥∥. (.)

Making use of inverse inequality (.), (.) and hypothesis IH to the second term in
(.) yields

λ


(∇ ·�(

un+
h

)
ηn+

σ ,ϕn+
σ

) ≤ λ


d
∥∥∇�

(
un+

h
)∥∥∞

∥∥ηn+
σ

∥∥∥∥ϕn+
σ

∥∥

≤ λd


Cih–∥∥�
(
un+

h
)∥∥∞

∥∥ηn+
σ

∥∥∥∥ϕn+
σ

∥∥

≤ βλ
∥
∥ϕn+

σ

∥
∥ +

λdKC
i h–

β

∥
∥ηn+

σ

∥
∥. (.)

Applying the continuity of ηn+
σ to the third term on the RHS of (.) leads to

λ
〈
ηn+,+

σ – ηn+,–
σ ,ϕn+,+

σ

〉
h,�(un+

h ) = . (.)

Using ∇ · u =  and the continuity of σ n+ to the term λB(�(un+) – un+,σ n+,ϕn+
σ ), we

obtain

λ
∣∣B

(
�

(
un+) – un+,σ n+,ϕn+

σ

)∣∣

≤ λ
∣∣((�

(
un+) – un+) · ∇σ n+,ϕn+

σ

)
h

∣∣

+
λ


∣∣(
(∇ · (�(

un+) – un+)σ n+,ϕn+
σ

)∣∣
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+ λ
∣∣〈σ n+,+ – σ n+,–,ϕn+,+

σ

〉
h,�(un+)–un+

∣∣

≤ λ
∥∥(
�

(
un+) – un+) · ∇σ n+∥∥∥∥ϕn+

σ

∥∥

≤ λ
√

d
∥∥∇σ n+∥∥∞

∥∥�
(
un+) – un+∥∥∥∥ϕn+

σ

∥∥

≤ βλ
∥
∥ϕn+

σ

∥
∥ +

λdM

β

∥
∥�

(
un+) – un+∥∥. (.)

We will estimate the last five terms of F(ϕn+
σ ) in (.). Applying the Cauchy-Schwarz

inequality, Young’s inequality, Korn’s inequality, the regularity assumption (.) of velocity
and hypothesis IH, we can obtain

λ
(
ga

(
�

(
ϕn+

σ

)
,∇un+),ϕn+

σ

) ≤ λ
∥∥ga

(
�

(
ϕn+

σ

)
,∇un+)∥∥∥∥ϕn+

σ

∥∥

≤ λd
∥∥�

(
ϕn+

σ

)∥∥∥∥∇un+∥∥∞
∥∥ϕn+

σ

∥∥

≤ λdM
∥∥�

(
ϕn+

σ

)∥∥∥∥ϕn+
σ

∥∥

≤ βλ
∥
∥ϕn+

σ

∥
∥ +

λdM

β

∥
∥ϕn

σ – ϕn–
σ

∥
∥, (.)

λ
(
ga

(
�

(
ηn+

σ

)
,∇un+),ϕn+

σ

) ≤ λ
∥
∥ga

(
�

(
ηn+

σ

)
,∇un+)∥∥

∥
∥ϕn+

σ

∥
∥

≤ λd
∥
∥�

(
ηn+

σ

)∥∥
∥
∥∇un+∥∥∞

∥
∥ϕn+

σ

∥
∥

≤ λdM
∥
∥�

(
ηn+

σ

)∥∥
∥
∥ϕn+

σ

∥
∥

≤ βλ
∥∥ϕn+

σ

∥∥ +
λdM

β

∥∥�
(
ηn+

σ

)∥∥, (.)

λ
(
ga

(
�

(
σ n+

h
)
,∇ϕn+

u
)
,ϕn+

σ

) ≤ λ
∥
∥ga

(
�

(
σ n+

h
)
,∇ϕn+

u
)∥∥

∥
∥ϕn+

σ

∥
∥

≤ dλ
∥
∥�

(
σ n+

h
)∥∥∞

∥
∥∇ϕn+

u
∥
∥
∥
∥ϕn+

σ

∥
∥

≤ dλKCk
∥
∥D

(
ϕn+

u
)∥∥

∥
∥ϕn+

σ

∥
∥

≤ αε
∥
∥D

(
ϕn+

u
)∥∥ +

dλKC
k

εα

∥
∥ϕn+

σ

∥
∥, (.)

λ
(
ga

(
�

(
σ n+

h
)
,∇ηn+

u
)
,ϕn+

σ

) ≤ λ
∥∥ga

(
�

(
σ n+

h
)
,∇ηn+

u
)∥∥∥∥ϕn+

σ

∥∥

≤ dλ
∥∥�

(
σ n+

h
)∥∥∞

∥∥∇ηn+
u

∥∥∥∥ϕn+
σ

∥∥

≤ dλKCk
∥∥D

(
ηn+

u
)∥∥∥∥ϕn+

σ

∥∥

≤ βλ
∥∥ϕn+

σ

∥∥ +
dλKC

k
β

∥∥D
(
ηn+

u
)∥∥, (.)

λ
(
ga

(
�

(
σ n+) – σ n+,∇un+),ϕn+

σ

)

≤ λ
∥
∥ga

(
�

(
σ n+) – σ n+,∇un+)∥∥

∥
∥ϕn+

σ

∥
∥

≤ λd
∥
∥�

(
σ n+) – σ n+∥∥

∥
∥∇un+∥∥∞

∥
∥ϕn+

σ

∥
∥

≤ λdM
∥
∥�

(
σ n+) – σ n+∥∥

∥
∥ϕn+

σ

∥
∥

≤ βλ
∥∥ϕn+

σ

∥∥ +
dMλ

β

∥∥�
(
σ n+) – σ n+∥∥. (.)
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Combining inequalities (.)-(.), we obtain the estimate for F(ϕn+
σ )

F
(
ϕn+

σ

) ≤ ∥∥ϕn+
σ

∥∥
λ

[
β + β + β + · · · + β +

dC
k Mλ

εα

+
dλKC

k
εα

]
+ (β + β)

∥
∥ϕn+

σ

∥
∥ +

λdM

β

∥
∥ϕn

σ – ϕn–
σ

∥
∥

+ αε
(∥∥D

(
ϕn

u
)∥∥ +

∥∥D
(
ϕn–

u
)∥∥) + αε

∥∥D
(
ϕn+

u
)∥∥

+
λdM

β

∥
∥ϕn

u – ϕn–
u

∥
∥ +

λ

β

∥
∥�

(

σ

(
σ n+)) – ∂tσ

n+∥∥ +


β

∥
∥ηn+

σ

∥
∥

+
α

β

∥∥D
(
ηn+

u
)∥∥ +

λdM

β

∥∥�
(
ηn+

u
)∥∥ +

λdM

β

∥∥∇�
(
ηn+

u
)∥∥

+
λdK

β

∥∥∇ηn+
σ

∥∥ +
λdKC

i h–

β

∥∥ηn+
σ

∥∥

+
λdM

β

∥∥�
(
un+) – un+∥∥ +

λdM

β

∥∥�
(
ηn+

σ

)∥∥

+
dλKC

k
β

∥∥D
(
ηn+

u
)∥∥ (.)

Plugging estimate (.) of αF(ϕn+
u ) and estimate (.) of F(ϕn+

σ ) into (.) yields

αRe
∥
∥ϕl+

u
∥
∥ + αRe

∥
∥ϕl+

u – ϕl
u
∥
∥ +

λ


∥
∥ϕl+

σ

∥
∥ +

λ


∥
∥ϕl+

σ – ϕl
σ

∥
∥

+ α( – α)�t
l∑

n=

∥
∥D

(
ϕn+

u
)∥∥ + �t

l∑

n=

∥
∥ϕn+

σ

∥
∥

≤ αRe
∥∥ϕ

u
∥∥ + λ

∥∥ϕ
σ

∥∥ + �t
l∑

n=

[
αRe(ε + ε + · · · + ε)

]∥∥ϕn+
u

∥∥

+ �t
l∑

n=

[
αdMRe

ε
+

λdM

β

]∥∥ϕn
u – ϕn–

u
∥∥ + �t

l∑

n=

[
α(ε

+ ε + ε + ε)
]∥∥D

(
ϕn+

u
)∥∥ + �t

l∑

n=

αε
(∥∥D

(
ϕn

u
)∥∥ +

∥∥D
(
ϕn–

u
)∥∥)

+ �t
l∑

n=

[
λ

(
β + β . . . + β +

dC
k Mλ

εα
+

dλKC
k

εα

)]∥
∥ϕn+

σ

∥
∥

+ �t
l∑

n=

(β + β)
∥
∥ϕn+

σ

∥
∥ + �t

l∑

n=

λdM

β

∥
∥ϕn

σ – ϕn–
σ

∥
∥

+ �t
l∑

n=

dC
k α

ε

∥∥pn+ – 
p
(
pn+)∥∥ + �t

l∑

n=

Reα
ε

∥∥�
(

u

(
un+)) – ∂tun+∥∥

+ �t
l∑

n=

λ

β

∥∥�
(

σ

(
σ n+)) – ∂tσ

n+∥∥ + �t
l∑

n=

dMλ

β

∥∥�
(
σ n+)

– σ n+∥∥ + �t
l∑

n=

[
αdMRe

ε
+

λdM

β

]∥∥�
(
un+) – un+∥∥
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+ �t
l∑

n=

(
α

ε
+


β

)∥∥ηn+
σ

∥∥ + �t
l∑

n=

[
αRedM

ε
+

λdM

β

]∥∥�
(
ηn+

u
)∥∥

+ �t
l∑

n=

[
α( – α)

ε
+

α

β
+

αRedKC
k

ε
+

dλKC
k

β

]∥
∥D

(
ηn+

u
)∥∥

+ �t
l∑

n=

λdM

β

∥
∥�

(
ηn+

σ

)∥∥

+ �t
l∑

n=

λdK

β

∥∥∇ηn+
σ

∥∥ + �t
l∑

n=

λdKC
i h–

β

∥∥ηn+
σ

∥∥. (.)

With the following choices: ε = ε = ε = ε = ε = –α
 , ε = ε = ε = ε = ε = 

 ,
β = β = · · · = β = 

λ
, β = β = 

 , u
h = 
u(u)(⇒ ϕ

u = ), σ 
h = 
σ (σ)(⇒ ϕ

σ = ),
substituting these into (.) yields

αRe
∥
∥ϕl+

u
∥
∥ + αRe

∥
∥ϕl+

u – ϕl
u
∥
∥ +

λ


∥
∥ϕl+

σ

∥
∥ +

λ


∥
∥ϕl+

σ – ϕl
σ

∥
∥

+ α( – α)�t
l∑

n=

∥∥D
(
ϕn+

u
)∥∥ + �t

l∑

n=

∥∥ϕn+
σ

∥∥

≤ αRe�t
l∑

n=

∥∥ϕn+
u

∥∥ + �t
l∑

n=

[
dMRe + λdM]∥∥ϕn

u – ϕn–
u

∥∥

+ �t
l∑

n=

[
dC

k Mλ

α( – α)
+

dλKC
k

α( – α)

]∥∥ϕn+
σ

∥∥ + λdM�t
l∑

n=

∥∥ϕn
σ

– ϕn–
σ

∥
∥ + �t

l∑

n=

αdC
k

 – α

∥
∥pn+ – 
p

(
pn+)∥∥ + Reα�t

l∑

n=

∥
∥�

(

u

(
un+))

– ∂tun+∥∥ + λ�t
l∑

n=

∥
∥�

(

σ

(
σ n+)) – ∂tσ

n+∥∥

+ dMλ�t
l∑

n=

∥
∥�

(
σ n+) – σ n+∥∥ +

[
α

 – α
+ 

]
�t

l∑

n=

∥
∥ηn+

σ

∥
∥

+
[
αdMRe + λdM]�t

l∑

n=

∥∥�
(
un+) – un+∥∥ +

[
α( – α)

+ λα + αRedKC
k + dλKC

k
]�t

l∑

n=

∥∥D
(
ηn+

u
)∥∥

+
[
αRedM + λdM]�t

l∑

n=

∥∥�
(
ηn+

u
)∥∥

+ λdM�t
l∑

n=

∥∥�
(
ηn+

σ

)∥∥

+ λdK�t
l∑

n=

∥
∥∇ηn+

σ

∥
∥ +

λdKC
i h–


�t

l∑

n=

∥
∥ηn+

σ

∥
∥. (.)
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We now apply the approximation properties (.)-(.) to the terms on the RHS of
(.). Using elements of order k for velocity, elements of order m for stress, and elements
of order q for pressure, we have

�t
l∑

n=

αdC
k

 – α

∥
∥pn+ – 
p

(
pn+)∥∥ ≤ αdC

k C
ip

 – α
hq+|||p|||,q+, (.)

[
α

 – α
+ 

]
�t

l∑

n=

∥∥ηn+
σ

∥∥ ≤
[

α

 – α
+ 

]
C

iphm+|||σ |||,m+, (.)

[
α( – α) + λα + dKC

k
(
αRe + λ)]�t

l∑

n=

∥∥D
(
ηn+

u
)∥∥

≤ [
α( – α) + λα + dKC

k
(
αRe + λ)]C

iphk|||u|||,k+, (.)

[
αRedM + λdM]�t

l∑

n=

∥
∥�

(
ηn+

u
)∥∥

≤ [
αRedM + λdM]C

iphk+|||u|||,k+, (.)

λdM


�t

l∑

n=

∥∥∇�
(
ηn+

u
)∥∥ ≤ λdM


C

iphk|||u|||,k+, (.)

λdM�t
l∑

n=

∥∥�
(
ηn+

σ

)∥∥ ≤ λdMC
iphm+|||σ |||,m+, (.)

λdK�t
l∑

n=

∥
∥∇ηn+

σ

∥
∥ +

λdKC
i h–


�t

l∑

n=

∥
∥ηn+

σ

∥
∥

≤ λdK
[

 +
dC

i


]
C

iphm|||σ |||,m+. (.)

In view of the truncation error (.) and the interpolation properties (.), we can ob-
tain

∥
∥�

(

u

(
un+)) – ∂tun+∥∥

=
∥
∥�

(

u

(
u(tn+)

))
– ∂tu(tn+)

∥
∥

≤ ∥
∥
u

(
�

(
u(tn+)

)
– ∂tu(tn+)

)∥∥ +
∥
∥∂t

(

u

(
u(tn+)

)
– u(tn+)

)∥∥

≤ CT (�t)/∥∥∂
t u

∥
∥

L(tn–,tn ;L(�)d) + Cip
hk

√�t
‖∂tu‖L(,T ;Hk+(�)d). (.)

Then we have

Reα�t
l∑

n=

∥
∥�

(

u

(
un+)) – ∂tun+∥∥ + λ�t

l∑

n=

∥
∥�

(

σ

(
σ n+)) – ∂tσ

n+∥∥

≤ ReαC
T�t∥∥∂

t u
∥
∥

L(,T ;L(�)d) + λC
T�t∥∥∂

t σ
∥
∥

L(,T ;L(�)d×d)

+ ReαC
iphk‖∂tu‖

L(,T ;Hk+(�)d) + λC
iphm‖∂tσ‖

L(,T ;Hm+(�)d×d). (.)
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Similarly, using the truncation error (.), we get

[
αdMRe + λdM]�t

l∑

n=

∥∥�
(
un+) – un+∥∥

+ dMλ�t
l∑

n=

∥∥�
(
σ n+) – σ n+∥∥

≤ [
αdMRe + λdM]C

T�t∥∥∂
t u

∥∥
L(,T ;L(�)d)

+ dMλC
T�t∥∥∂

t σ
∥
∥

L(,T ;L(�)d×d). (.)

Combining inequalities (.)-(.) with (.) yields

αRe
∥∥ϕl+

u
∥∥ + αRe

∥∥ϕl+
u – ϕl

u
∥∥ +

λ


∥∥ϕl+

σ

∥∥ +
λ


∥∥ϕl+

σ – ϕl
σ

∥∥

+ α( – α)�t
l∑

n=

∥
∥D

(
ϕn+

u
)∥∥ + �t

l∑

n=

∥
∥ϕn+

σ

∥
∥

≤ αRe�t
l∑

n=

∥
∥ϕn+

u
∥
∥ +

[
dMRe + λdM]�t

l∑

n=

∥
∥ϕn

u

– ϕn–
u

∥
∥ + �t

l∑

n=

[
dC

k Mλ

α( – α)
+

dλKC
k

α( – α)

]∥
∥ϕn+

σ

∥
∥

+ λdM�t
l∑

n=

∥∥ϕn
σ – ϕn–

σ

∥∥ +
αdC

k C
ip

 – α
hq+|||p|||,q+

+
[

α

 – α
+  + λdM

]
C

iphm+|||σ |||,m+ +
[

α( – α) + λα

+ αRedKC
k + dλKC

k +
λdM



]
C

iphk|||u|||,k+

+
[
αRedM + λdM]C

iphk+|||u|||,k+ + λKd
[



+
dC

i


]
C

iphm|||σ |||,m+ + ReαC
iphk‖∂tu‖

L(,T ;Hk+(�)d)

+
[
αdMRe + λdM]C

T�t∥∥∂
t u

∥
∥

L(,T ;L(�)d)

+ ReαC
T�t∥∥∂

t u
∥∥

L(,T ;L(�)d) + λC
iphm‖∂tσ‖

L(,T ;Hm+(�)d×d)

+ λC
T�t∥∥∂

t σ
∥∥

L(,T ;L(�)d×d)

+ dMλC
T�t∥∥∂

t σ
∥
∥

L(,T ;L(�)d×d). (.)

In order to use the discrete Gronwall Lemma ., here we set

al = αRe
∥∥ϕl+

u
∥∥ + αRe

∥∥ϕl+
u – ϕl

u
∥∥ +

λ


∥∥ϕl+

σ

∥∥ +
λ


∥∥ϕl+

σ – ϕl
σ

∥∥,

bn = α( – α)
∥∥D

(
ϕn+

u
)∥∥ +

∥∥ϕn+
σ

∥∥,



Zhang et al. Boundary Value Problems  (2017) 2017:140 Page 25 of 35

an = αRe
∥∥ϕn+

u
∥∥ + αRe

∥∥ϕn+
u – ϕn

u
∥∥ +

λ


∥∥ϕn+

σ

∥∥ +
λ


∥∥ϕn+

σ – ϕn
σ

∥∥,

γn = max

{
,

dM

α

(
 +

λd
Re

)
,

dC
k λ

α( – α)

(
dM


+ K

)
, λdM

}
,

cn = , ζn =


 – �tγn
,

H = other (non-summing) terms on the RHS of (.).

For γn�t ≤ 
 , using the discrete Gronwall lemma to (.) yields Theorem .. �

We will deduce that the induction assumption IH (.) is right for any n = , , , . . . , N ,
by mathematical induction.

Lemma . Let (ul
h, pl

h,σ l
h) ∈ Xh × Qh × Sh satisfy (.a)-(.c) for each l ∈ {, , , . . . , N}.

There is a bounded constant K such that

∥
∥σ l

h
∥
∥∞ ≤ K ,

∥
∥ul

h
∥
∥∞ ≤ K . (.)

Proof Since ‖σ 
h ‖∞ = ‖
σ (σ)‖∞ ≤ ‖σ‖∞ ≤ M ≤ K . Now we assume that (.) holds

true for n = , , , . . . , l. By interpolation properties, inverse estimates, the regularity as-
sumption (.) of σ , and result (.), we have that

∥∥σ l+
h

∥∥∞ ≤ ∥∥(
σ l+

h – 
σ

(
σ l+)) +

(

σ

(
σ l+) – σ l+) + σ l+∥∥∞

≤ ∥∥ϕl+
σ

∥∥∞ +
∥∥ηl+

σ

∥∥∞ +
∥∥σ l+∥∥∞

≤ Ch– d

∥
∥ϕl+

σ

∥
∥ + Ch– d


∥
∥ηl+

σ

∥
∥ + M

≤ C
(�th– d

 + hk– d
 + hm– d

 + hq+– d

)

+ M. (.)

We can see that the expression C(�th– d
 + hk– d

 + hm– d
 + hq+– d

 ) is independent of l.
Hence, if we set k, m ≥ d

 , q +  ≥ d
 , and choose h, �t such that

hk– d
 , hm– d

 , hq+– d
 ≤ 

C
, �t ≤ 

C
h

d
 ,

then from (.)

∥∥σ l+
h

∥∥∞ ≤  + M = K .

Similarly, we get ‖ul+
h ‖∞ ≤  + M = K . �

Theorem . Under the conditions of Theorem . and �t ≤ Ch d
 , we have

αRe
∥∥ul – ul

h
∥∥ +

λ


∥∥σ l – σ l

h
∥∥ + �t

l∑

n=

∥∥σ n+ – σ n+
h

∥∥

+ α( – α)�t
l∑

n=

∥
∥D

(
un+ – un+

h
)∥∥ ≤ W (�t, h). (.)
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Proof We add both sides of (.) with

Extraterms = αRe
∥∥ηl+

u
∥∥ + αRe

∥∥ηl+
u – ηl

u
∥∥ +

λ


∥∥ηl+

σ – ηl
σ

∥∥

+
λ


∥∥ηl+

σ

∥∥ + �t
l∑

n=

[
α( – α)

∥∥D
(
ηn+

u
)∥∥ +

∥∥ηn+
σ

∥∥], (.)

and apply the triangle inequality for the left-hand side. Noticing that the upcoming terms
are already contained in the RHS of the model, we obtain the a priori error estimate
(.). �

Theorem . Under the conditions of Theorem ., for any  ≤ l ≤ N –, there is a positive
constant C independent of �t and h such that

β�t
l∑

n=

∥
∥pn+ – pn+

h
∥
∥ ≤ CW (�t, h). (.)

Proof As Vh ⊂ Xh, for all vh ∈ Vh, we have from (.a)

Re
(
�

(
en+

u
)
, vh

)
+

(
en+
σ , D(vh)

)
+ ( – α)

(∇(
en+

u
)
,∇(vh)

)

+ Rec
(
�

(
en+

u
)
, un+, vh

)
+ Rec

(
�

(
un+

h
)
, en+

u , vh
)

=
(
pn+ – λn+

h ,∇ · vh
)

+ Re
(
�

(
un+) – ∂tun+, vh

)

+ Rec
(
�

(
un+) – un+, un+, vh

)
, (.)

where λn+
h is an approximation to pn+. Dividing by ‖∇vh‖, using the Cauchy-Schwarz

inequality and the Poincaré inequality lead to

Re
|(�(en+

u ), vh)|
‖∇(vh)‖ ≤ ∥∥en+

σ

∥∥ + ( – α)
∥∥∇(

en+
u

)∥∥

+ ReCp
√

d
∥
∥�

(
en+

u
)∥∥

∥
∥∇un+∥∥∞ + Re

√
d
∥
∥�

(
un+

h
)∥∥∞

∥
∥en+

u
∥
∥

+
√

d
∥
∥pn+ – λn+

h
∥
∥ + ReCp

∥
∥�

(
un+) – ∂tun+∥∥

+ ReCp
∥
∥�

(
un+) – un+∥∥

∥
∥∇un+∥∥∞. (.)

Applying Lemma . and the regularity assumption (.) and taking the supremum over
vh ∈ Vh yield

Re
∥∥�

(
en+

u
)∥∥

X′
h
≤ ∥∥en+

σ

∥∥ + ( – α)
∥∥∇(

en+
u

)∥∥ + ReCpM
√

d
∥∥�

(
en+

u
)∥∥

+ ReK
√

d
∥∥en+

u
∥∥ +

√
d
∥∥pn+ – λn+

h
∥∥

+ ReCp
∥∥�

(
un+) – ∂tun+∥∥ + ReCpM

∥∥�
(
un+) – un+∥∥. (.)



Zhang et al. Boundary Value Problems  (2017) 2017:140 Page 27 of 35

Splitting pn+ – pn+
h = (pn+ – λn+

h ) + (λn+
h – pn+

h ), we get from (.) that

(
λn+

h – pn+
h ,∇ · vh

)

= –
(
pn+ – λn+

h ,∇ · vh
)

+ Re
(
�

(
en+

u
)
, vh

)

+
(
en+
σ , D(vh)

)
+ ( – α)

(∇(
en+

u
)
,∇(vh)

)
+ Rec

(
�

(
en+

u
)
, un+, vh

)

+ Rec
(
�

(
un+

h
)
, en+

u , vh
)

– Re
(
�

(
un+) – ∂tun+, vh

)

+ Rec
(
�

(
un+) – un+, un+, vh

)
. (.)

Combining the inf-sup condition (.) with (.)-(.), we have

β
∥
∥λn+

h – pn+
h

∥
∥ ≤ 

√
d
∥
∥λn+

h – pn+∥∥ + 
∥
∥en+

σ

∥
∥ + ( – α)

∥
∥∇(

en+
u

)∥∥

+ 
√

dReC
pM

∥
∥∇(

�
(
en+

u
))∥∥ + ReCp

∥
∥�

(
un+) – ∂tun+∥∥

+ 
√

dReKCp
∥
∥∇en+

u
∥
∥ + ReCpM

∥
∥�

(
un+) – un+∥∥. (.)

Applying the triangle inequality to (.) yields

β
∥∥pn+ – pn+

h
∥∥ ≤ ( + 

√
d)

∥∥λn+
h – pn+∥∥ + 

√
dReC

pM
∥∥∇(

�
(
en+

u
))∥∥

+ ReCp
∥∥�

(
un+) – ∂tun+∥∥ + [ – α + 

√
dReKCp]

∥∥∇(
en+

u
)∥∥

+ 
∥∥en+

σ

∥∥ + ReCpM
∥∥�

(
un+) – un+∥∥. (.)

Applying (a + · · · + a) ≤ (a
 + · · · + a

) to above equation, summing (.) with respect
to n from  to l, and multiplying both sides of the equation by �t yield

β�t
l∑

n=

∥
∥pn+ – pn+

h
∥
∥

≤ ( + 
√

d)�t
l∑

n=

∥
∥λn+

h – pn+∥∥

+ ( – α + 
√

dReKCp)C
k �t

l∑

n=

∥∥D
(
en+

u
)∥∥

+ dReC
p MC

k �t
l∑

n=

∥∥D
(
�

(
en+

u
))∥∥

+ ReC
p�t

l∑

n=

∥∥�
(
un+) – ∂tun+∥∥

+ �t
l∑

n=

∥∥en+
σ

∥∥ + ReC
pM�t

l∑

n=

∥∥�
(
un+) – un+∥∥. (.)

Making use of the approximation property (.) of pressure, the error estimate |||σ –σh|||,

and |||D(u – uh)|||, in Theorem ., the truncation errors (.) and (.) of the temporal
discretion, we can derive the required result (.). �
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If the domain � ⊂R
, then we can use the MINI elements (Pb, P) pair, which satisfies

the discrete inf-sup condition (.), to approximate the velocity u and pressure p and the
P discontinuous element to approximate the stress σ , that is, k = , q = , m = , we have
the following convergence result.

Corollary . Under the conditions of Theorem . and using the pair (Pb, P, Pdc) el-
ements to approximate (u, p,σ ), there is a positive constant C independent of �t and h
such that

αRe
∥
∥ul – ul

h
∥
∥ +

λ


∥
∥σ l – σ l

h
∥
∥ + �t

l∑

n=

∥
∥σ n+ – σ n+

h
∥
∥

+ α( – α)�t
l∑

n=

∥
∥D

(
un+ – un+

h
)∥∥ + �t

l∑

n=

∥
∥pn+ – pn+

h
∥
∥

≤ C
(�t + h).

Corollary . If the domain � ⊂ R
d , d = , , and making use of Taylor-Hood (P, P)

elements to approximate velocity u and pressure p, and P discontinuous element for σ ,
that is, k = , q = , m = , we have

αRe
∥
∥ul – ul

h
∥
∥ +

λ


∥
∥σ l – σ l

h
∥
∥ + �t

l∑

n=

∥
∥σ n+ – σ n+

h
∥
∥

+ α( – α)�t
l∑

n=

∥
∥D

(
un+ – un+

h
)∥∥ + �t

l∑

n=

∥
∥pn+ – pn+

h
∥
∥

≤ C
(�t + h).

5 Numerical experiments
In this section, some numerical tests are performed by using FreeFem++ [] to confirm
our theoretical analysis.

5.1 Analytical solution
A known analytical solution example is used to verify theoretical convergence rates of the
linearized scheme. We choose the final time T = . and computer domain � = [, ].
Same as [, ], the right-hand side function is added to the constitutive equation (.b)
such that the analytical solutions (u, p,σ ) are taken as follows:

u(x, y) = x(x – )y(y – )(y – ) cos(t),

u(x, y) = –x(x – )(x – )y(y – ) cos(t),

p(x, y) = (x – )(y – ) cos(t),

σ = αD(u), u = (u, u),

with the parameter λ = ., α = ., a = , Re = .. It is easy to see that the known solu-
tion of velocity is divergence-free. The source term f , initial and boundary conditions are
chosen to correspond to the exact solution. The spatial discretization is effected via the
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Figure 1 A uniform mesh with h =
√

2/8.

Table 1 Errors and CPU performance of the BDF2-LE scheme by using(P1b, P1, P1dc) finite
element for T = 0.1 and �t = 0.1h2

1/h |||eσ |||∞,0 |||eσ |||0,0 ‖eu‖∞,0 |||∇eu|||0,0 |||ep|||0,0 CPU

4 0.0668476 0.020227 0.0144429 0.0680567 0.0802753 3.932
6 0.0329998 0.0102078 0.00709982 0.0423537 0.0363262 16.068
8 0.0197219 0.00603989 0.00417817 0.0309046 0.0204888 47.252
12 0.00961065 0.00283642 0.00192262 0.0201723 0.00904258 223.86
16 0.0058987 0.00166652 0.00109412 0.0150118 0.00501535 698.801
24 0.00311194 0.000809214 0.000489492 0.00995059 0.00214579 3,569.78
32 0.00205163 0.000499604 0.000275582 0.00744755 0.00116269 11,565.2

order 1.67091 1.78025 1.90816 1.06096 2.03938

Table 2 Errors and CPU performance of the BDF2-LE scheme by using (P2, P1, P2dc) finite
element for T = 0.1 and �t = 0.1h2

1/h |||eσ |||∞,0 |||eσ |||0,0 ‖eu‖∞,0 |||∇eu|||0,0 |||ep|||0,0 CPU

4 0.0092267 0.00275575 0.00172818 0.0144507 0.0803158 9.064
6 0.00315424 0.000907616 0.00050577 0.0069492 0.0362654 36.925
8 0.00151397 0.000411656 0.000206825 0.00401875 0.0204507 109.762
12 0.000570131 0.000139673 5.93583e–005 0.00182162 0.00903151 533.443
16 0.000296275 6.74014e–005 2.59447e–005 0.00103212 0.00501414 1,732.81
24 0.000122468 2.56494e–005 1.1174e–005 0.000462319 0.00214968 8,761.63
32 6.67788e–005 1.34476e–005 8.7483e–006 0.000262501 0.00116617 29,263.6

order 2.3616 2.55223 2.50376 1.93062 2.03803

pairs (Pb, P, Pdc) and (P, P, Pdc) to approximate velocity, pressure and stress tensor
on a uniform triangular grid (see Figure  for h =

√
/), respectively.

Tables  and  are numerical results of the BDF-LE scheme (.a)-(.c) by using
(Pb, P, Pdc) elements and (P, P, Pdc) elements, respectively. We see that |||D(eu)|||,

error has optimal convergence rate; however, |||eσ |||∞,, |||eσ |||, and |||eu|||∞, errors are not
optimal, while |||ep|||, is super-convergence for (Pb, P, Pdc) elements.

Choosing �t = .h and using (P, P, Pdc) elements, we present the results in Table 
to verify time convergence order. It is easy to see that the time convergence order is two.

In order to test the computational efficiency, we compared the CPU time of the BDF-LE
scheme (Scheme .) with the classical fully implicit BDF scheme (Scheme .).
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Table 3 Errors and CPU performance of the BDF2-LE scheme by using (P2, P1, P2dc) finite
element with �t = 0.05h and T = 0.1

�t |||eσ |||∞,0 |||eσ |||0,0 ‖eu‖∞,0 |||∇eu|||0,0 |||ep|||0,0 CPU

1/120 3.09191e–3 8.76703e–4 5.05062e–4 6.74744e–3 0.0352161 16.61
1/160 1.47401e–3 3.98486e–4 2.06665e–4 3.92193e–3 0.0199588 37.535
1/240 5.53103e–4 1.35618e–4 5.93415e–5 1.78953e–3 8.87254e–3 125.627
1/320 2.87945e–4 6.56174e–5 2.58288e–5 1.01788e–3 4.94498e–3 317.612
1/480 1.19708e–4 2.50901e–5 1.11776e–5 4.57881e–4 2.12907e–3 1,124.82

order 2.35658 2.57344 2.78518 1.93818 2.02091

Table 4 Errors and CPU performance of the BDF2-nonlinear scheme by using (P1b, P1, P1dc)
finite element for T = 0.1 and �t = 0.1h2

1/h |||eσ |||∞,0 |||eσ |||0,0 ‖eu‖∞,0 |||∇eu|||0,0 |||ep|||0,0 CPU

4 0.0668514 0.0202271 0.0144429 0.0680566 0.0802749 12.651
6 0.0330003 0.0102078 0.00709982 0.0423537 0.0363262 55.302
8 0.0197219 0.00603989 0.00417817 0.0309046 0.0204888 113.306
12 0.00961065 0.00283642 0.00192262 0.0201723 0.00904258 557.295
16 0.0058987 0.00166652 0.00109412 0.0150118 0.00501535 1,759.45
24 0.00311194 0.000809214 0.000489492 0.00995059 0.00214579 9,120.06
32 0.00205163 0.000499604 0.000275582 0.00744755 0.00116269 29,252.6

order 1.67093 1.78026 1.90816 1.06096 2.03938

Scheme . (BDF fully implicit scheme) Given u–
h = u

h ∈ Vh, σ –
h = σ 

h ∈ Sh, find
(un+

h , pn+
h ,σ n+

h ) ∈ Xh × Qh × Sh for n = , , , . . . , N –  such that

Re
(
�

(
un+

h
)
, vh

)
+ Rec

(
un+

h , un+
h , vh

)
+

(
σ n+

h , D(vh)
)

+ ( – α)
(
D

(
un+

h
)
, D(vh)

)
–

(
pn+

h ,∇ · vh
)

=
(
fn+, vh

)
,

(
qh,∇ · un+

h
)

= ,

λ
(
�

(
σ n+

h
)
, τh

)
+

(
σ n+

h , τh
)

+ λB
(
un+

h ,σ n+
h , τh

)

– α
(
D

(
un+

h
)
, τh

)
+ λ

(
ga

(
σ n+

h ,∇un+
h

)
, τh

)
= 

for all (vh, qh, τh) ∈ Xh × Qh × Sh.

Unlike the BDF-LE, the classical fully implicit BDF presented in Scheme . requires
to solve a nonlinear problem at each time level. We employ the Newton iterative method.
When relative nonlinear residual is less than –, the Newton iteration is stopped. The
results of Scheme . are presented in Tables  and .

Comparing Tables - with Tables -, respectively, we find that two numerical schemes
have the same level of accuracy, while the BDF-LE scheme can save significant CPU time
for both (Pb, P, Pdc) elements and (P, P, Pdc) elements.

5.2 4-to-1 planar contraction flow
Numerical simulations of viscoelastic flow through a planar or axisymmetric contraction
have been widely studied in [, ]. Here the case of planar flow through a contraction
geometry with a ratio of : with respect to upstream and downstream channel widths is
considered. The contraction angle is fixed π/, and the channel lengths are sufficiently
long to impose a fully developed Poiseuille flow in the inflow and outflow channels. The
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Table 5 Errors and CPU performance of a fully implicit BDF2 scheme by using (P2, P1, P2dc)
finite element for T = 0.1,and �t = 0.1h2

1/h |||eσ |||∞,0 |||eσ |||0,0 ‖eu‖∞,0 |||∇eu|||0,0 |||ep|||0,0 CPU

4 0.00922671 0.00275576 0.00172819 0.0144507 0.0803158 29.361
6 0.00315424 0.000907616 0.00050577 0.0069492 0.0362654 90.013
8 0.00151397 0.000411656 0.000206825 0.00401875 0.0204507 279.113
12 0.000570131 0.000139673 5.93583e–005 0.00182162 0.00903151 1,416.41
16 0.000296275 6.74015e–005 2.59467e–005 0.00103212 0.00501414 4,432.56
24 0.000122468 2.56494e–005 1.08e–005 0.000462319 0.00214968 22,743.7
32 6.67788e–005 1.34476e–005 8.74507e–006 0.000262501 0.00116617 75,954.1

order 2.3616 2.55223 2.49823 1.93062 2.03803

Figure 2 Plot of 4:1 contraction domain geometry and sample contraction mesh.

geometry of the computational domain is illustrated in Figure . The lower left corner of
the domain corresponds to x = y = .

The computations of the mesh are also shown in Figure  with �xmin = . and
�ymin = .. We denote �in = {(x, y) : x = ,  ≤ y ≤ } and �out = {(x, y) : x = ,  ≤
y ≤ .}. On this domain the velocity boundary conditions are

u =

[


 ( – y)


]

on �in, u =

[
( 

 – y)


]

on �out. (.)

For stress tensor σ on �in,

σ =
–αλ(a + )(–y/)

(a – )λ(–y/) – 
,

σ = σ =
–α(–y/)

(a – )λ(–y/) – 
,

σ =
–αλ(a – )(–y/)

(a – )λ(–y/) – 
.

(.)

Symmetry conditions are imposed on the bottom of the computational domain. Besides,
the parameters Re, α, λ and a are chosen to be , /, . and , respectively.

We performed the following study: starting from rest, we measured the time that the ap-
proximation solution reaches a steady state by using (Pb, P, Pdc) elements. The criterion
to stop this process is the following:

max

{‖un+
h – un

h‖
‖un+

h ‖ ,
‖σ n+

h – σ n
h ‖

‖σ n+
h ‖

}
≤ –,

where n + , n denote tn+, tn, respectively.
We plot the evolution of the kinetic energy . ∗ ‖un+

h ‖ and . ∗ ‖σ n+
h ‖ using time

step �t = . until it reaches its steady state in Figure  and Figure , respectively. We
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Figure 3 Evolution of 0.5 ∗ ‖un+1
h ‖2 in time with

time step �t = 0.01 by using (P1b, P1, P1dc)
element.

Figure 4 Evolution of 0.5 ∗ ‖σ n+1
h ‖2 in time with

time step �t = 0.01 by using (P1b, P1, P1dc)
element.

Figure 5 Horizontal velocity u1 near reentrant
corner (x = 4.0625). The mark ‘o’ indicates results
for the steady problem and ‘+’ indicates results for
the time-dependent problem at final time t = 6.31
with time step �t = 0.01 and (P1b,P1,P1dc) element.

observe that it converges towards a steady state, while the kinetic energy of velocity has
some oscillations at the beginning.

Figures  and  present the horizontal and vertical velocities near the reentrance corner
along the vertical line x = .. We observe that the horizontal velocity is almost con-
tinuous, while the vertical velocity has high gradients near y = .. However, we find that
the solutions of the time-dependent problem can converge to the solutions of the steady
problem.

We plot the streamlines of velocity for the steady problem and the time-dependent prob-
lem at final time t = . in Figure  and Figure , respectively. It is easy to observe that
the two figures are almost alike.
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Figure 6 Vertical velocity u2 near reentrant
corner (x = 4.0625). The mark ‘o’ indicates results
for the steady problem and ‘+’ indicates results for
the time-dependent problem at final time t = 6.31
with time step �t = 0.01 and (P1b,P1,P1dc) element.

Figure 7 Streamlines of velocity contours for u: steady problem.

Figure 8 Streamlines of velocity contours for u: time-dependent problem at final time t = 6.31.

6 Conclusions and discussions
In this work, we have applied the BDF-LE time-stepping scheme with Galerkin finite
element to solve the time-dependent viscoelastic fluid flow in R

d , d = , . We establish
the stability analysis and a priori error estimates. Some numerical tests are provided to
support the theoretical results and to demonstrate the effectiveness of the method.

Also, our analysis can be easily extended to the BDF-LE decoupled scheme and other
nonlinear viscoelastic fluid flow.
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