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Abstract
We obtain infinitely many nontrivial periodic solutions for a class of damped vibration
problems, where nonlinearities are superlinear at infinity and primitive functions of
nonlinearities are allowed to be sign-changing. By using some weaker conditions, our
results extend and improve some existing results in the literature. Besides, some
examples are given to illuminate our results.
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1 Introduction and main results
In this paper, we shall study the existence of infinitely many nontrivial periodic solutions
for the following damped vibration problem:

⎧
⎨

⎩

ü + D(t)u̇ + V (t)u + Hu(t, u) = , t ∈R,

u() – u(T) = u̇() – u̇(T) = , T > ,
(.)

where

D(t) = q(t)IN×N + B, V (t) =



Bq(t) – A(t),

IN×N is the N ×N identity matrix, q(t) ∈ L(R;R) is T-periodic and satisfies
∫ T

 q(t) dt = ,
A(t) = [aij(t)] is a T-periodic symmetric N ×N matrix-valued function with aij ∈ L∞(R;R)
(∀i, j = , , . . . , N ), B = [bij] is an antisymmetric N × N constant matrix, u = u(t) ∈
C(R,RN ), H(t, u) ∈ C(R × R

N ,R) is T-periodic and Hu(t, u) denotes its gradient with
respect to the u variable.

In fact, there are only a few results [–] of (.). In [], the authors studied a special case
(B = , zero matrix) and obtained the existence and multiplicity of periodic solutions. Re-
cently, Chen [] obtained infinitely many periodic solutions for (.) with H being asymp-
totically quadratic as |u| → ∞. But the authors [, , ] obtained infinitely many periodic
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solutions for (.) with H being superquadratic as |u| → ∞. For related topics, including
homoclinic orbits of damped vibration problems, we refer the reader to [, –].

Inspired by the above papers, we shall study (.) with H being superquadratic as |u| →
∞. As is shown in Remark ., our results improve and extend the superquadratic results
[, , ] in the positive definite case (i.e., the following (D)).

Let (·, ·) denote the standard inner product in R
N , and the associated norm is denoted

by | · |. To state our main result, we assume that:

(D)
∫ T

 [(Bu, u̇) + (A(t)u, u)]dt ≥ , which implies and the energy functional of (.) is
positive definite.

(AH) There exist c, c >  and p >  such that

∣
∣Hu(t, u)

∣
∣ ≤ c|u| + c|u|p–, ∀(t, u) ∈ [, T] ×R

N .

(AH) lim|u|→+∞ H(t,u)
|u| = +∞ uniformly in t ∈ [, T], and there exists r ≥  such that

H(t, u) ≥ , ∀t ∈ [, T],∀|u| ≥ r.

(AH) H(t, –u) = H(t, u), ∀(t, u) ∈ [, T] ×R
N .

(AH) (Hu(t, u), u) – H(t, u) ≥ , ∀(t, u) ∈ [, T] × R
N , and there exist c >  and � > 

such that

∣
∣H(t, u)

∣
∣� ≤ c|u|�

[(
Hu(t, u), u

)
– H(t, u)

]
, ∀t ∈ [, T],∀|u| ≥ r.

The condition (AH) can be replaced by the following condition.

(AH′
) There exist μ >  and κ >  such that

μH(t, u) ≤ (
Hu(t, u), u

)
+ κu, ∀(t, u) ∈ [, T] ×R

N .

Now, our main results read as follows.

Theorem . If (D) and (AH)-(AH) hold, then (.) has infinitely many nontrivial pe-
riodic solutions.

Theorem . If (D), (AH)-(AH) and (AH′
) hold, then (.) has infinitely many non-

trivial periodic solutions.

Example . Let
() H(t, u) = a(t)(u – u cos u), (t, u) ∈ [, T] ×R;
() H(t, u) = a(t)[(u – ) ln( 

 + |u|) – ( 
 + |u|) + |u| + ];

where  < inft∈[,T] a(t) < supt∈[,T] a(t) < +∞. It is easy to verify that the above functions
all satisfy our conditions (AH)-(AH) and (AH′

).

Remark . Our Theorems . and . improve and extend the results [, , ] in the
positive definite case. In all the results of [, ], the authors all used the following condition:

lim sup
|u|→

H(t, u)
|u| ≤  uniformly for a.e. t ∈ [, T], (.)



Peng et al. Boundary Value Problems  (2017) 2017:141 Page 3 of 10

besides, some results in the two papers rely on the following condition:

H(t, ) = , ∀t ∈ [, T]. (.)

In [], the author used (.) and the following conditions:

H(t, u) ≥ , ∀(t, u) ∈ [, T] ×R
N ,

lim inf|u|→+∞
(Hu(t, u), u) – H(t, u)

|u|ν ≥ b for some b > ,ν > ,∀t ∈ [, T].
(.)

It is not hard to check that the functions in our Example . do not satisfy the conditions
used in [, , ]. For example (the function in Example .()),

lim sup
|u|→

H(t, u)
|u| = lim sup

|u|→

a(t)[(|u| – ) ln( 
 + |u|) – ( 

 + |u|) + |u| + ]
|u| = +∞,

that is, the function in Example . does not satisfy (.). We have

H(t, ) = a(t)
[

ln  –



+ 
]

	= , ∀t ∈ [, T].

that is, it also does not satisfy (.). Besides, the function in Example .() does not satisfy
(.). However, the functions in Example . all satisfy our conditions (AH)-(AH) and
(AH′

). Therefore, our results extend and improve the above results.

2 Variational frameworks and the proofs of main results
In this section, we always assume that (AH)-(AH) ((AH′

)) hold. We shall use ‖ · ‖p to
denote the norm of Lp([, T];RN ) for any p ∈ [,∞], and we will use uk ⇀ u to denote the
weak convergence of {uk}.

Let W := H
T be defined by

H
T :=

{
u = u(t) : [, T] →R

N |
u is absolutely continuous , u() = u(T), and u̇ ∈ L([, T];RN)}

with the inner product

(u, v)W :=
∫ T



[
(u, v) + (u̇, v̇)

]
dt, ∀u, v ∈ W ,

and the corresponding norm is defined by ‖u‖W = (u, u)/
W . Obviously, W is a Hilbert

space. By the Sobolev embedding theorem, we see that the following embedding is com-
pact:

W ↪→ Lq([, T];RN)
, ∀q ∈ [, +∞], (.)

and there exists a γq >  such that

‖u‖q ≤ γq‖u‖, ∀u ∈ W . (.)
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The corresponding functional of (.) is defined as follows:

�(u) :=



∫ T


eQ(t)[|u̇| + (Bu, u̇) +

(
A(t)u, u

)]
dt –

∫ T


eQ(t)H(t, u) dt, u ∈ W ,

where Q(t) :=
∫ t

 q(s) ds. By (D), we can define an equivalent inner product 〈·, ·〉 on W with
corresponding norm ‖ · ‖ such that

‖u‖ :=
[∫ T


eQ(t)[|u̇| + (Bu, u̇) +

(
A(t)u, u

)]
dt

]/

, ∀u ∈ W .

Then � can be rewritten as

�(u) =


‖u‖ –

∫ T


eQ(t)H(t, u) dt, u ∈ W . (.)

Then by the assumptions of H , we know � is continuously differentiable and

�′(u)v = 〈u, v〉 –
∫ T


eQ(t)(Hu(t, u), v

)
dt, (.)

besides, the T-periodic solutions of (.) are the critical points of the C functional � :
W → R ([]).

We shall use the following theorem to prove our main results.

Lemma . ([, ]) Let X be an infinite dimensional Banach space,

X = Y ⊕ Z, (.)

where Y is finite dimensional. If � ∈ C(X, R) satisfies (C)c-condition for all c >  (we say
that � satisfies (C)c-condition if any sequence {uk} such that

�(uk) → c,
∥
∥�′(uk)

∥
∥
(
 + ‖uk‖

) → , (.)

has a convergent subsequence). Beside,
() �() = , �(–u) = �(u), ∀u ∈ X ;
() �|∂Bρ∩Z ≥ α for some ρ,α > ;
() for any finite dimensional subspace X̃ ⊂ X , there is R = R(X̃) >  such that �(u) ≤ 

on X̃\BR.
Then we have an unbounded sequence of critical values.

Proofs of Theorems . and . To apply Lemma ., we set X = W , Y = Yk and Z = Zk ,
where

Yk := span{e, . . . , ek}, Zk := span{ek+, . . .}, ∀k ∈ N,

and {ej}∞j= is an orthonormal basis of W .
Clearly, the condition () of Lemma . holds. Therefore, if � satisfies the (C)c-condition,

and conditions () and () of Lemma . hold, then we can prove that the problem (.)
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possesses infinitely many nontrivial solutions by Lemma ., i.e., Theorems . and . are
true. �

Next, we will prove � satisfies the (C)c-condition, and conditions () and () of
Lemma . hold, i.e., the following lemmas. Clearly, the condition (AH) implies that

∣
∣H(t, u)

∣
∣ ≤ c


|u| +

c

p
|u|p ∀(t, u) ∈ [, T] ×R

N . (.)

Lemma . If assumptions (AH), (AH) and (AH) (or (AH′
)) hold, then � satisfies the

(C)c-condition.

Proof We assume that, for any sequence {uk} ⊂ W , �(uk) → c and ‖�′(uk)‖( +
‖uk‖) → . Then �′(uk) → , and

〈
�′(uk), uk 〉 → . (.)

Next, we will divide our proof into two parts by (AH) and (AH′
)).

Part . � satisfies (C)c-condition under assumptions (AH), (AH) and (AH).
(i) We prove the boundedness of {uk} by contradiction, if ‖uk‖ → ∞, we let vk = uk

‖uk‖ ,
then ‖vk‖ = . By the definitions of �(u) and �′(u), for k large, we have

∫ T


eQ(t)

[


(
Hu

(
t, uk), uk) – H

(
t, uk)

]

dt = �
(
uk) –



〈
�′(uk), uk 〉 ≤ c + . (.)

By (.), �(uk) → c and ‖uk‖ → ∞, we have

lim sup
k→∞

∫ T


eQ(t) |H(t, uk)|

‖uk‖ dt ≥ 


. (.)

Let

�k(a, b) =
{

t ∈ [, T] : a ≤ ∣
∣uk(t)

∣
∣ < b

}
,  ≤ a < b. (.)

By ‖vk‖ = , we could assume that vk ⇀ v = {v(t)}t∈[,T] in W passing to a subsequence,
which together with (.) implies vk → v in Lq for  ≤ q < ∞, and vk → v on [, T].

If v = , then vk →  in Lq,  ≤ q < ∞, and vk →  on [, T]. It follows from (.) that

∫

�k (,r)
eQ(t) |H(t, uk)|

|uk|
∣
∣vk∣∣ dt ≤

(
c


+

c

p
rp–



)∫

�k (,r)
eQ(t)∣∣vk∣∣ dt

≤
(

c


+

c

p
rp–



)∫ T


eQ(t)∣∣vk∣∣ dt → . (.)
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Let �′ = �/(� – ). Due to � >  (see (AH)), we have � > . So by (AH), (.), the Hölder
inequality and vk →  in Lq for  ≤ q < ∞, we have

∫

�k (r,∞)
eQ(t) |H(t, uk)|

|uk|
∣
∣vk∣∣ dt

≤
[∫

�k (r,∞)
eQ(t)

( |H(t, uk)|
|uk|

)�

dt
]/�[∫

�k (r,∞)
eQ(t)∣∣vk∣∣�′

dt
]/�′

≤ (c)/�
[∫

�k (r,∞)
eQ(t)

(


(
Hu

(
t, uk), uk) – H

(
t, uk)

)

dt
]/�

×
[∫

�k (r,∞)
eQ(t)∣∣vk∣∣�′

dt
]/�′

≤ [
c(c + )

]/�
∫

�k (r,∞)
eQ(t) dt · ∥∥vk∥∥

�′ → . (.)

By (.) and (.), we have

∫ T


eQ(t) |H(t, uk)|

‖uk‖ dt

=
∫

�k (,r)
eQ(t) |H(t, uk)|

|uk|
∣
∣vk∣∣ dt +

∫

�k (r,∞)
eQ(t) |H(t, uk)|

|uk|
∣
∣vk∣∣ dt → ,

which contradicts (.).
If v 	= , we let A := {t ∈ [, T] : v(t) 	= }. For all t ∈ A, by vk = uk

‖uk‖ and ‖uk‖ → ∞, we
have limk→∞ |uk| = ∞. We define

χt,�k (r,∞) :=

⎧
⎨

⎩

, t ∈ �k(r,∞),

, t /∈ �k(r,∞),
∀k ∈ N. (.)

For large k ∈ N, A ⊂ �k(r,∞) and limk→∞ |uk| = ∞ for all t ∈ A, since the definition
of Q(t) implies that eQ(t) ≥ M for some constant M >  (∀t ∈ [, T]), it follows from (.),
(.), (AH), Fatou’s lemma, ‖vk‖ = , ‖uk‖ → ∞, �(uk) → c and ‖vk‖ ≤ γ‖vk‖ (see (.))
that

 = lim
k→∞

c + o()
‖uk‖

= lim
k→∞

�(uk)
‖uk‖

= lim
k→∞

[



–
∫ T


eQ(t) H(t, uk)

(uk)

(
vk) dt

]

= lim
k→∞

[



–
∫

�k (,r)
eQ(t) H(t, uk)

(uk)

(
vk) dt –

∫

�k (r,∞)
eQ(t) H(t, uk)

(uk)

(
vk) dt

]

≤ lim sup
k→∞

[



+
(

c


+

c

p
rp–



)∫ T


eQ(t)∣∣vk

n
∣
∣ dt –

∫

�k (r,∞)
eQ(t) H(t, uk)

(uk)

(
vk) dt

]
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≤ 


+
(

c


+

c

p
rp–



)

γ 
 – lim inf

k→∞

∫

�k (r,∞)
eQ(t) H(t, uk)

(uk)

(
vk) dt

=



+
(

c


+

c

p
rp–



)

γ 
 – lim inf

k→∞

∫ T


eQ(t) H(t, uk)

(uk) [χt,�k (r,∞)]
(
vk) dt

≤ 


+
(

c


+

c

p
rp–



)

γ 
 – M

∫ T


lim inf

k→∞
H(t, uk)

(uk) [χt,�k (r,∞)]
(
vk) dt

= –∞. (.)

It is a contradiction. So {uk} is bounded in W .
(ii) The boundedness of {uk} implies that uk ⇀ u in W passing to a subsequence, where

u = {u(t)}t∈[,T]. First, we prove

∫ T


eQ(t)[Hu

(
t, uk)(uk – u

)]
dt → , k → ∞. (.)

Note that (.) implies that uk → u in Lq for all  ≤ q < ∞, so we have

∥
∥uk – u

∥
∥

 → ,
∥
∥uk – u

∥
∥

p → . (.)

The boundedness of {uk} and (.) imply that ‖uk‖q < ∞ for all  ≤ q < ∞, since the defi-
nition of Q(t) implies that eQ(t) ≤ c′

 for some constant c′
 >  (∀t ∈ [, T]), it follows from

(AH), (.) and the Hölder inequality that

∣
∣
∣
∣

∫ T


eQ(t)[Hu

(
t, uk)(uk – u

)]
dt

∣
∣
∣
∣

≤
∫ T


eQ(t)∣∣Hu

(
t, uk)(uk – u

)∣
∣dt

≤
∫ T


eQ(t)[(c

∣
∣uk∣∣ + c

∣
∣uk∣∣p–)∣∣uk – u

∣
∣
]
dt

= c

∫ T


eQ(t)[∣∣uk‖uk – u

∣
∣
]

dt + c

∫ T


eQ(t)[(

∣
∣uk∣∣p–∣∣uk – u

∣
∣
]

dt

≤ cc′

∥
∥uk∥∥



∥
∥uk – u

∥
∥

 + cc′

∥
∥uk∥∥p–

p

∥
∥uk – u

∥
∥

p → . (.)

So (.) holds. Therefore, by (.), �′(uk) → , uk ⇀ u in W and the definition of �′,
we have

 = lim
k→∞

〈
�′(uk), uk – u

〉

= lim
k→∞

(
uk , uk – u

)
– lim

k→∞

∫ T


eQ(t)(Hu

(
t, uk)(uk – u

))
dt

= lim
k→∞

∥
∥uk∥∥ – ‖u‖ – . (.)

That is,

lim
k→∞

∥
∥uk∥∥ = ‖u‖. (.)
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It follows from uk ⇀ u in W that

∥
∥uk – u

∥
∥ =

(
uk – u, uk – u

) → ,

that is, {uk} has a convergent subsequence in W . Thus � satisfies (C)c-condition.
Part . � satisfies (C)c-condition under assumptions (AH), (AH) and (AH′

).
Similar to the Part , we need prove that {uk} is bounded in W . We prove it by contra-

diction. If ‖uk‖ → ∞, we let vk = uk

‖uk‖ , then ‖vk‖ = . By (.), (AH′
), �(uk) → c and the

definitions of � and �′, for large k ∈ N we have

c +  ≥ �
(
uk) –


μ

〈
�′(uk), uk 〉

=
μ – 

μ

∥
∥uk∥∥ +

∫ T


eQ(t)

[

μ

(
Hu

(
t, uk), uk) – H

(
t, uk)

]

dt

≥ μ – 
μ

∥
∥uk∥∥ –

κ

μ

∫ T


eQ(t) dt · ∥∥uk∥∥

. (.)

It follows from ‖uk‖ → ∞ and vk = uk

‖uk‖ that

κ

μ – 

∫ T


eQ(t) dt lim sup

k→∞

∥
∥vk∥∥

 ≥ . (.)

‖vk‖ =  implies that vk ⇀ v in W passing to a subsequence, then it follows from (.) and
(.) that v 	= . So similar to (.), we can conclude a contradiction. Therefore {uk} is
bounded in W . The rest of the proof is the same as that in (ii) of Part . �

Lemma . The condition () of Lemma . holds, i.e., there exist constants ρ,α >  such
that

�|∂Bρ∩Zk ≥ α.

Proof Let

l(k) := sup
u∈Zk\{}

‖u‖

‖u‖ , lp(k) := sup
u∈Zk\{}

‖u‖p

‖u‖ . (.)

It is clear that  < l(k + ) ≤ l(k), so that l(k) → l ≥  as k → ∞. For every k ≥ , there
exists uk ∈ Zk such that ‖uk‖ =  and ‖uk‖ > l(k)/. By the definition of Zk , uk ⇀  in W ,
then by (.), uk →  in L. Therefore, we have l = , that is, l(k) → . Similarly, lp(k) → .

Note that eQ(t) ≤ c′
 (∀t ∈ [, T]) for some constant c′

 > , we can choose a large integer
k >  such that

‖u‖
 ≤ 

cc′

‖u‖, ‖u‖p

p ≤ p
cc′


‖u‖p, ∀u ∈ Zk . (.)
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Then by (.), (.) and (.), we have

�(u) =


‖u‖ –

∫ T


eQ(t)H(t, u) dt

≥ 

‖u‖ –

cc′



‖u‖

 –
cc′


p

‖u‖p
p

≥ 


(‖u‖ – ‖u‖p)

=
p– – 

p+ := α, ∀u ∈ Zm,‖u‖ =



:= ρ.

Thus, this lemma is proved. �

Lemma . The condition () of Lemma . holds, i.e., for any finite dimensional subspace
W̃ ⊂ W , there is R = R(W̃ ) >  such that

�(u) ≤ , ∀u ∈ W̃ , ‖u‖ ≥ R. (.)

Proof In order to prove our conclusion, we only need to prove

�(u) → –∞, ‖u‖ → ∞, ∀u ∈ W̃ .

By contradiction, if there exists a sequence {uk} ⊂ W̃ with ‖uk‖ → ∞ such that �(uk) ≥
–M for some M > , ∀k ∈ N. Let vk = uk

‖uk‖ , then ‖vk‖ = . Passing to a subsequence, we
can assume that vk ⇀ v in W . Since W̃ is finite dimensional, vk → v in W , thus ‖v‖ = .
Similar to (.) we can conclude we have a contradiction. Thus (.) holds. Therefore,
the proof is finished. �

3 Conclusion
We obtain infinitely many periodic solutions for a class of superlinear damped vibration
problems with primitive functions of nonlinearities being allowed to be sign-changing. By
using some weaker conditions, our results extend and improve some existing results in
the literature.
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