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Abstract
In this paper, we study the following nonlinear problem of Kirchhoff type:

{
–(a + b

∫
R3 |∇u|2)�u + λV(x)u = |u|p–2u, in R

3,

u ∈ H1(R3),

where the parameter λ > 0 and 4 ≤ p < 6, constants a,b > 0. By variational methods,
the results of the existence of nontrivial solutions and the concentration phenomena
of the solutions as λ → +∞ are obtained. It is worth pointing out that, for the case
p ∈ (4, 6), the potential V is permitted to be sign-changing.
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1 Introduction and main result
In this paper, we are concerned with the following Kirchhoff type problem:

⎧⎨
⎩–(a + b

∫
R |∇u|)�u + λV (x)u = |u|p–u, in R

,

u ∈ H(R),
(.)

where a, b >  are constants, λ >  is a parameter,  ≤ p < . We assume that V (x) verifies
the following hypotheses:

(V) V ∈ C(R,R) and V is bounded from below.
(V) There exists b >  such that meas{x ∈R

 : V (x) < b} < ∞.
(V) The nonempty set � := int V –() has a smooth boundary and �̄ = V –().

In recent years, more and more attention has been devoted to the study of the following
Kirchhoff type problems:

⎧⎨
⎩–(a + b

∫
RN |∇u|)�u + V (x)u = f (x, u), in R

N ,

u ∈ H(RN ),
(.)
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where V : RN →R and a, b >  are constants. (.) is a nonlocal problem as the appearance
of the term

∫
RN |∇u|, which implies that (.) is not a pointwise identity. This causes some

mathematical difficulties which make the study of (.) particularly interesting. If we put
V (x) =  and substitute R

N with a bounded domain � ⊂ R
N in (.), then we obtain the

following Kirchhoff-Dirichlet problem:

⎧⎨
⎩–(a + b

∫
�

|∇u|)�u = f (x, u), x ∈ �,

u = , x ∈ ∂�,

which is associated with the following stationary analogue of the equation:

ρ
∂u
∂t –

(
P

h
+

E
L

∫ L



∣∣∣∣∂u
∂x

∣∣∣∣


dx
)

∂u
∂x = , (.)

presented by Kirchhoff in [] as an extension of the classical D’Alembert wave equation
for free vibrations of elastic strings. For more background, we refer to [] and the refer-
ences therein.

Equation (.) has been extensively studied in recent years under variant assumptions on
V and f . In these works, various existence results of the nontrivial solutions to equation
(.) were established by the variational method. About the existence of infinitely many
radial solutions, Jin and Wu in [] proved the result by applying a fountain theorem for
N = , , V (x) ≡  and f (x, u) is subcritical, superlinear at the origin and -superlinear
at infinity. When f (x, u) is -superlinear at infinity and the potential V (x) satisfies other
conditions, Wu in [] obtained the existence of nontrivial solutions to (.) by providing
that (PS)c condition holds. In [], He and Zou proved that (.) has a positive ground state
solution by using the Nehari manifold. Wang et al. in [] also proved the multiplicity of
positive ground state solutions for (.) by the same methods in [] when N =  and
f (x, u) = λf (u) + |u|u. The existence of infinitely many solutions to (.) has been derived
by a variant version of fountain theorem in []. In [], by using a monotonicity trick and
a global compactness lemma, Li and Ye obtained the positive ground state for problem
(.) when f (x, u) = |u|p–u and p ∈ (, N

N– ). Recently, Liu and Guo in [] extended the
above result to p ∈ (, N

N– ). For more related results, we refer the readers to [–, –,
–, , , , ] and the references therein.

In some of the aforementioned references, the potential V is always assumed to be pos-
itive or vanishing at infinity. Here, we consider (.) with more general potential V , espe-
cially the potential V can be sign-changing. By a variational method like [], the existence
and concentration of nontrivial solutions of (.) are established. We need to overcome
some new difficulties, which involves many technical estimates in our paper.

Our main result concerning problem (.) is the following.

Theorem . Suppose that conditions (V)-(V) hold and  < p < . Then there exist pos-
itive constants � >  and b∗

λ >  such that problem (.) has at least one nontrivial solution
uλ ∈ H(R) for λ > � in the case of b > b∗

λ.

If V ≥ , the following result can be obtained.
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Theorem . Suppose that conditions (V)-(V) hold. Moreover, V (x) ≥  and  ≤ p < .
Then there exists a constant � >  such that problem (.) has at least one nontrivial solu-
tion uλ ∈ H(R) for λ > �.

For the concentration of the solutions of (.) as λ → +∞, we have the following.

Theorem . Let uλ be the solutions obtained in Theorem ., then uλ → ū in H(R) as
λ → +∞, where ū ∈ H

(�) is a nontrivial solution of

⎧⎨
⎩–(a + b

∫
�

|∇u|)�u = |u|p–u, in �,

u = , on ∂�.
(.)

The paper is organized as follows. In Section , we introduce some notations and the
variational framework for (.), and then establish compactness conditions. In Section ,
we prove Theorem . and Theorem .. In the last section, we study the concentration of
solutions and prove Theorem ..

2 Preliminary results
In this section, we introduce some notations and the variational framework for (.) and
establish some decomposition of the space to apply the link theorem.

Let V ±(x) = max{±V (x), }. Then V (x) = V +(x) – V –(x). We consider the space

E =
{

u ∈ H(
R

) :
∫
R

V +u < +∞
}

with respect to the inner product and norm defined through

〈u, v〉 =
∫
R

(
a∇u∇v + V +uv

)
, ‖u‖ = 〈u, u〉 

 .

For λ > , we also consider the following inner product and norm:

〈u, v〉λ =
∫
R

(
a∇u∇v + λV +uv

)
, ‖u‖λ = 〈u, u〉 


λ .

We remark that ‖u‖ ≤ ‖u‖λ for λ ≥ . Set Eλ = (E,‖ · ‖λ). By (V), (V) and the Poincaré
inequality, we can claim that the Hilbert space E is embedded continuously into H(R). In
fact, for any u ∈ E, letting d = min{a, }, Vb = {x ∈ R

 : V (t) < b}, V c
b = {x ∈ R

 : V (x) ≥ b},
we have

∫
Vb

u ≤ c
∫

Vb
|∇u| for some positive number c by the Poincaré inequality, and

therefore


d

‖u‖ =

d

∫
R

(
a|∇u| + V +u)

≥
∫
R

(|∇u| + V +u)

≥
∫
R

|∇u| +



∫
R

V +u

=
∫
R

|∇u| +



∫
Vb

V +u +



∫
V c

b

V +u
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≥
∫
R

|∇u| +



∫
Vb

V +u +
b


∫
V c

b

u

=



∫
R

|∇u| +



∫
Vb

|∇u| +



∫
V c

b

|∇u| +



∫
Vb

V +u +
b


∫
V c

b

u

≥ 


∫
R

|∇u| +


c

∫
Vb

u +
b


∫
V c

b

u

≥ min

{



,


c
,

b


}∫
R

(|∇u| + u)

= min

{



,


c
,

b


}
‖u‖H .

Namely, there exists c̄ >  such that ‖u‖H ≤ c̄‖u‖.
So, for every t ∈ [, ], there exists dt >  (independent of λ for the case λ ≥ ) such that

|u|t ≤ dt‖u‖ ≤ dt‖u‖λ for u ∈ Eλ. (.)

Set

Fλ =
{

u ∈ Eλ : supp u ⊂ V –([,∞)
)}

and F⊥
λ will be used to denote the orthogonal complement of Fλ in Eλ. If V ≥ , then

Eλ = Fλ, otherwise F⊥
λ �= . Let Aλ = –� + λV , then Aλ is formally self-adjoint in L(R),

and the following associated bilinear form:

aλ(u, v) =
∫
R

(
a∇u∇v + λV (x)uv

)

is continuous in Eλ. For fixed λ > , study the eigenvalue problem in F⊥
λ as follows:

–a�u + λV +(x)u = αλV –(x)u. (.)

We can get that u �→ ∫
R λV –(x)u dx is weakly continuous since supp V – is of finite mea-

sure. According to the result in [], we can obtain a sequence of positive eigenvalues
αk(λ), which is expressed by

αk(λ) = inf
k≤dim G,G⊂F⊥

λ

sup

{
‖u‖

λ : u ∈ G,λ
∫
R

V –(x)u = 
}

, k = , , . . . .

The eigenvalues admit the decompositions:  < α(λ) < α(λ) ≤ · · · ≤ αk(λ) → +∞ as k →
+∞, and the corresponding eigenfunctions ek , which may be chosen so that 〈ei, ej〉 = δi,j

are a basis for F⊥
λ . Let

Êλ = span
{

ek : αj(λ) ≤ 
}

and E+
λ = span

{
ek : αj(λ) > 

}
.

Then Eλ = Êλ ⊕ E+
λ ⊕ Fλ is an orthogonal decomposition with dim Êλ < +∞. The bilinear

form aλ is negative semidefinite on Êλ and positive definite on E+
λ ⊕ Fλ. If u, v are in dif-

ferent subspaces of the above decomposition of Eλ, then aλ(u, v) = . These results will be
used later.
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The energy functional associated with (.) is

Iλ(u) =



∫
R

(
a|∇u| + λV (x)u) +

b


(∫
R

|∇u|
)

–

p

∫
R

|u|p. (.)

Let E be a real Banach space and I : E →R be a function of class C. We say that {un} ⊂ E
is a (C)c sequence if I(un) → c and ( + ‖un‖)I ′(un) → .

Lemma . Suppose that conditions (V)-(V) hold and p ∈ (, ). Then any (C)c sequence
of Iλ is bounded in Eλ for every c ∈ R.

Proof Assume that {un} ⊂ Eλ is a (C)c sequence of Iλ. Then

Iλ(un) → c,
(
 + ‖un‖λ

)
I ′(un) →  in E–

λ . (.)

Thus, for n large enough, we have

Iλ(un) –

p
〈
I ′

λ(un), un
〉

=
(




–

p

)
‖un‖

λ –
(




–

p

)∫
R

λV –(x)u
n +

(



–

p

)
b
(∫

R
|∇un|

)

≤ c + . (.)

Combining (V) and (.), we deduce that

(



–

p

)
‖un‖

λ ≤ c +  +
(




–

p

)∫
R

λV –(x)u
n –

(



–

p

)
b
(∫

R
|∇un|

)

≤ c +  +
(




–

p

)∫
R

λV –(x)u
n

≤ c +  + C
(




–

p

)∫
R

λu
n,

where C >  is a constant.
Thus we get

‖un‖
λ ≤ C

∫
R

λu
n+(c + )

p
p – 

.

Therefore, it is sufficient to show that {un} is bounded in L(R). Assume by contradiction
that |un| → +∞ as n → ∞. Let vn = un

|un| , then |vn| = . By (.) we have

‖vn‖
λ – λ

∫
R

V –(x)v
n +

p – 
(p – )

b
(∫

R
|∇vn|

)∫
R

u
n ≤ c + 

( 
 – 

p )
∫
R u

n
(.)

and therefore, the sequences ‖vn‖λ and (
∫
R |∇vn|)|un| are both bounded. Up to a sub-

sequence, we have

vn ⇀ v in Eλ, vn → v in Ls
loc

(
R

), vn → v a.e. in R
 for  ≤ s < .
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By (.) and noting that ‖vn‖
λ – λ

∫
R V –(x)v

n =
∫
R a|∇vn| + λ

∫
R V (x)vn

, we have

λ

∫
R

V (x)v
n ≤ c + 

( 
 – 

p )
∫
R u

n
→  as n → ∞. (.)

By Fatou’s lemma together with (.), we see that

(∫
R

|∇v|
)

≤ lim
n→∞ inf

(∫
R

|∇vn|
)

≤ lim
n→∞ inf

C
|un|

= .

Hence v ≡ constant. Since v ∈ H(R), we infer that v = .
Let Vb = {x ∈ R

 : V (x) < b}, V c
b = {x ∈ R

 : V (x) ≥ b}. By (V), for any given ε > ,
there exists Rε >  with meas(Bc

Rε
() ∩ Vb) < ε, where BRε () = {x ∈ R

 : |x| ≤ Rε}, Bc
Rε

() =
R

\BRε (). Therefore, for any fixed t ∈ (, ), as n is large enough, we have

∫
Vb

V (x)v
n dx ≤

∫
BRε ()∩Vb

bv
n dx +

∫
Bc

Rε ()()∩Vb

bv
n dx

≤ ε + b|vn|tt meas
(
Bc

Rε
() ∩ Vb

) t–
t

≤ cε. (.)

Therefore, it follows from (.) and |vn| =  that

∫
R

V (x)v
n dx =

∫
V c

b

V (x)v
n dx +

∫
Vb

V (x)v
n dx

≥ b
∫

V c
b

v
n dx + o()

≥ b
(

 –
∫

Vb

v
n dx

)
+ o() = b + o() > ,

which contradicts (.). This completes the proof. �

Now, we describe the following lemma for the case p ∈ [, ) and V ≥ .

Lemma . Assume that p ∈ [, ), V ≥  and conditions (V)-(V) hold. Then there exists
� >  such that Iλ satisfies (C)c condition for all λ > � and c = cλ := infγ∈ maxt∈[,] Iλ(γ (t)),
which is showed in (.) later.

Proof Let un be a (C)c sequence. By Lemma ., un is bounded in Eλ and there exists C
such that ‖un‖λ ≤ C (for the case p = , that is also true by (.) and V ≥ ).

Hence, without loss of generality, we can say that

un ⇀ u in Eλ, un → u in Ls
loc

(
R

) for  ≤ s <  and
∫
R

|∇un| → A.

Firstly, we can claim that I ′
λ(u) =  for  ≤ p < .

If u ≡ , then the claim is finished.
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If u �≡ , then we see
∫
R

|∇u| ≤ lim
n→∞

∫
R

|∇un| = A.

Suppose
∫
R |∇u| < A, since I ′

λ(un) →  and
∫
R |∇un| → A, then

∫
R

(
a∇u∇ϕ + λV (x)uϕ

)
+ bA

∫
R

∇u∇ϕ –
∫
R

|u|p–uϕ = , ∀ϕ ∈ Eλ.

Then I ′
λ(u)u < . Noting that I ′

λ(tu)(tu) >  for small t >  and 〈I ′
λ(tu), tu〉 is continuous on

t ∈ [, ]. Therefore, there exists t ∈ (, ) such that

〈
I ′
λ(tu), tu

〉
= .

Observing the definition of cλ and Iλ(tu) = maxt∈[,]I(tu), we have

cλ ≤ Iλ(tu) = Iλ(tu) –



〈
I ′
λ(tu), tu

〉

=
t



∫
R

(
a|∇u| + λV (x)u) +

(



–

p

)
tp


∫
R

|u|p

<



∫
R

(
a|∇u| + λV (x)u) +

(



–

p

)∫
R

|u|p

≤ lim
n→∞ inf

[



∫
R

(
a|∇un| + λV (x)u

n
)

+
(




–

p

)∫
R

|un|p
]

= lim
n→∞ inf

[
Iλ(un) –




〈
I ′
λ(un), un

〉]
= cλ,

which is impossible. Then
∫
R |∇u| = A = limn→∞

∫
R |∇un|, and so I ′

λ(u) =  for  ≤
p < . Thus, the claim is got.

Furthermore, from V ≥  and p ∈ [, ), it follows that aλ(u, u) = ‖u‖
λ and

Iλ(u) = Iλ(u) –



〈
I ′
λ(u), u

〉
=




‖u‖
λ +

(



–

p

)
|u|pp ≥ . (.)

Next, we show that un → u in Eλ. Let vn := un – u.
By (V) and a proof similar to (.), we have

|vn| =
∫

{V (x)≥b}
v

n dx +
∫

{V (x)<b}
v

n dx ≤ 
λb

‖vn‖
λ + o(). (.)

Then, by Hölder’s inequality and Sobolev’s embedding theorem, we have

|vn|p = |vn|θ|vn|–θ
 ≤ d|vn|θ|∇vn|–θ

 ≤ d(λb)– θ
 ‖vn‖λ + o(), (.)

as n → +∞, where θ = –p
p and d is a constant independent of λ.

Applying the Brezis-Lieb lemma, we have

∫
R

|∇vn| =
∫
R

|∇un| –
∫
R

|∇u| + o()
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and

(∫
R

|∇vn|
)

=
(∫

R
|∇un|

)

–
(∫

R
|∇u|

)

+ o().

Moreover, we obtain

Iλ(vn) = Iλ(un) – Iλ(u) + o() and I ′
λ(vn) →  as n → ∞. (.)

Therefore, by (.) we have




‖vn‖
λ +

(



–

p

)
|vn|pp = Iλ(vn) –




〈
I ′

λ(vn), vn
〉

= cλ – Iλ(u) + o() ≤ cλ + o(). (.)

Hence,

|vn|p–
p ≤

(
p

p – 

) p–
p

c
p–

p
λ + o() <

(
p

p – 

) p–
p

c
p–

p
λ + o(). (.)

If p = , it follows from (.) and (.) that

|vn|p–
p ≤ dp–

p ‖vn‖p–
λ ≤ (dp)p–cλ

p–
 + o(), (.)

where a constant dp >  is independent of λ ≥ . Hence, whenever p >  or p = , it follows
from (.)-(.) that

|vn|p–
p ≤ max

{(
p

p – 

) p–
p

c
p–

p
λ , (dp)p–c

p–
p

λ

}
+ o(). (.)

Let bλ = max{( p
p– )

p–
p c

p–
p

λ , (dp)p–c
p–

p
λ }. Then, in terms of (.), we have

|vn|pp = |vn|pp–|vn|p ≤ bλd(λb)–θ‖vn‖ + o(). (.)

Since 〈I ′
λ(vn), vn〉 = o(), we have

o() = ‖vn‖
λ + b

(∫
R

|∇vn|
)

– |vn|pp
≥ ‖vn‖

λ – |vn|pp
≥ (

 – bλd(λb)–θ
)‖vn‖

λ + o(). (.)

Hence, there exists a positive number � such that vn →  in Eλ as n → ∞ for λ > �. �

Remark . About the proof of Lemma ., we can see that formula (.) is vital. Since
V is sign-changing, for any critical point u of Iλ, it becomes more difficult to induce the
result that Iλ(u) ≥ . Indeed, we have the following corollary.
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Corollary . Suppose that conditions (V)-(V) hold and p ∈ (, ). Let {un} be a (C)c se-
quence of Iλ with level c = cλ > , where cλ = infγ∈ maxu∈Q Iλ(γ (u)),  := {C(Q, Eλ) : γ |∂Q =
Id}, which is mentioned in Proposition .. Then there exists � >  such that, up to a subse-
quence, un → u in Eλ. Moreover, the nontrivial critical point of Iλ satisfies Iλ(u) ≤ c for all
λ > �.

Proof We adopt an approach similar to the proof of Lemma .. In terms of Lemma .,
we know that {un} is bounded by cλ in Eλ. Then un ⇀ u in Eλ, and u is a critical point of Iλ.
However, since V can be sign-changing and

Iλ(u) = Iλ(u) –



〈
I ′

λ(u), u
〉

=



‖u‖
λ –

λ



∫
R

V –(x)u +
(




–

p

)
|u|pp,

we cannot deduce that Iλ(u) ≥ . Next, we only need to consider the following two cases:

(i) Iλ(u) < ; (ii) Iλ(u) ≥ .

In case (i), obviously, u is a nontrivial solution and the conclusion is obtained.
In case (ii), as in the proof of Lemma ., we can see un → u in Eλ. Let vn = un –u, indeed,

by (V) and deduction similar to (.), we have

λ

∫
R

V –(x)v
n dx → . (.)

Therefore, similar to (.), we have




‖vn‖
λ +

(



–

p

)
|vn|pp + o() ≤ cλ – Iλ(u) + o() ≤ cλ + o().

So we also have (.). Hence un → u in Eλ and Iλ(u) = c >  and the proof is finished. �

3 Proof of Theorem 1.1 and Theorem 1.2
We first give the link theorem [] under (C)c condition which is useful in the case of V
is sign-changing. We will obtain the solutions of (.) and give the proofs of Theorem .
and Theorem ..

Proposition . Let E = E ⊕E be a Banach space with dim E < ∞, � ∈ C(E,R). If there
exist R > ρ > ,κ >  and e ∈ E such that

κ = inf�(E ∩ Sρ) > sup�(∂Q),

where Sρ = {u ∈ E : ‖u‖ = ρ}, Q = {u = v + te : v ∈ E, t ≥ ,‖u‖ ≤ R}. Then c ≥ κ and �

has a (C)c sequence, where c = infγ∈ maxu∈Q Iλ(γ (u)),  := {C(Q, E) : γ |∂Q = Id}.

Here, we use Proposition . with E = E+
λ ⊕ Fλ and E = Êλ. For every j fixed, by

Lemma . in [], we have αj(λ) →  as λ → ∞. Hence, for λ > �, Êλ is the finite di-
mensional space and there is � >  such that Êλ �= ∅. All of this indicates that there exists
Ĉλ >  with

|u|p ≥ Ĉλ‖u‖ for u ∈ Êλ, (.)
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where Ĉλ is a constant dependent on λ. Now we will verify that the functional Iλ satisfies
the linking structure.

Lemma . For each λ > �, there exist ρλ >  and κλ >  such that Iλ(u) ≥ κλ for all
u ∈ E+

λ ⊕ Fλ with ‖u‖λ = ρλ. Furthermore, as V ≥ , we can choose the constants ρ and κ

independent of λ for the case λ ≥ .

Proof By the definition of E+
λ , there exists δλ >  such that

aλ(u, u) ≥ δλ‖u‖
λ for u ∈ E+

λ ,

and

aλ(u, u) = ‖u‖
λ for u ∈ Fλ.

Therefore, for u = v + w ∈ E+
λ ⊕ Fλ, since 〈v, w〉λ =  and aλ(v, w) =  as mentioned before,

we have

Iλ(u) =



aλ(v, v) +



aλ(w, w) +
b


(∫
R

|∇u|
)

–

p
|u|pp

≥ 


min{δλ, }‖u‖
λ – c̄‖u‖p

λ,

where the constant c̄ is independent of λ ≥ .
By (.), we can choose ρλ >  and small κλ such that the first half of the lemma holds.

If V ≥ , note that aλ(u, u) = ‖u‖
λ, thus we finally have the conclusion. �

Now, we choose e ∈ C∞
 (�) which will be used in the following lemma, by (V), we have

e ∈ Fλ.

Lemma . Suppose that assumptions in Theorem . hold. For each λ > �, there exist
b∗(λ) >  and Rλ > ρλ such that for b < b∗(λ)

sup
u∈∂Q

Iλ(u) < κλ,

where Q = {u = v + te : v ∈ Êλ, t ≥ ,‖u‖ ≤ Rλ}, κλ and ρλ mentioned in Lemma ..

Proof (i) For u = v + w ∈ Êλ ⊕Re, since aλ(v, w) =  as before, we have

aλ(u, u) = aλ(v, v) + aλ(w, w).

We show that aλ(v, v) ≤ .
In fact, assume that Êλ = L(e, e, . . . , em), and ej is an eigenfunction corresponding to

eigenvalue αj(λ) with  < αj(λ) ≤ , j = , , . . . . It follows from (.) that

〈ej,φ〉λ = αj(λ)λ
∫
R

V –(x)ejφ, ∀φ ∈ Eλ. (.)
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Thus, noting that  < αj(λ) ≤ , we have

〈ej, ej〉λ ≤ λ

∫
R

V –(x)e
j , (.)

and therefore aλ(ej, ej) ≤ . Similarly, by (.) we also have

 = 〈ej, ei〉λ = αj(α)λ
∫
R

V –(x)ejei, i �= j. (.)

Now, noting that {ej} is a base of Êλ, we can prove that aλ(v, v) ≤ . Hence, we have

aλ(u, u) ≤ aλ(w, w) = a|∇w| ≤ ‖u‖.

In view of the equivalence of all the norms on a finite dimensional space, we obtain

Iλ(u) ≤ 

‖u‖ +

b


|∇u| –

p
|u|p → –∞

for u ∈ Êλ ⊕Re with ‖u‖λ → +∞. As a result, there exists Rλ >  such that Iλ(u) ≤ κλ for
u ∈ Êλ ⊕Re satisfying ‖u‖λ = Rλ.

(ii) For u ∈ Êλ with ‖u‖λ ≤ Rλ, we have

Iλ(u) ≤ b


(∫
R

|∇u|
)

≤ b


‖u‖
λ ≤ b


R

λ. (.)

Therefore, taking b∗(λ) = κλ

R
λ

, we obtain the conclusion. �

Proof of Theorem . By Lemmas .-. and applying Proposition ., it follows that for
any λ > � and  < b < b∗

λ, Iλ possesses a (C)c sequence {un} with c = cλ. Now, by Lemma .
and Corollary ., we can obtain the conclusion of Theorem .. �

Proof of Theorem . For the case V ≥ , we can easily prove that the functional I satis-
fies the conditions of mountain-pass theorem, and therefore, the existence of nontrivial
solutions can be obtained.

Since V (x) ≥ , we have

Iλ(u) =


‖u‖

λ +
b


(∫
R

|∇u|
)

–

p

∫
R

|u|p

≥ 

‖u‖

λ –

p

∫
R

‖u‖p
λ.

Hence there exist two positive numbers α, ρ such that Iλ(u) ≥ α for ‖u‖λ = ρ small enough.
Let e ∈ C∞

 (�), then

Iλ(te) =
t



∫
R

(
a|∇e| + λV (x)e


)

+
b


t
(∫

R
|∇e|

)

–
tp



∫
R

|e|p dx

→ –∞ (.)
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as t → ∞. Then there exists t >  large such that

Iλ(te) <  and ‖te‖λ > ρ.

By the mountain-pass theorem, there exists a (C)c sequence {un} ⊂ Eλ such that

Iλ(un) → cλ, I ′
λ(un) →  in E–

λ ,

where

 < cλ =: inf
γ∈

max
t∈[,]

Iλ
(
γ (t)

) ≤ sup
t≥

Iλ(te) ≤ C, (.)

 = {γ ∈ C([, ], Eλ) : γ () = ,‖γ ()‖λ > ρ, Iλ(γ ()) < }.
By Lemma ., for λ large enough, we can get a nontrivial critical point u for Iλ with

Iλ(uλ) ∈ [cλ, C]. �

4 Concentration for solutions
Now, using the same notation as before, we are ready to investigate the concentration for
solutions and give the proof of Theorem ..

Proof For any sequence λn → +∞, let un := uλn be the critical points of Iλn obtained in
Theorem ..

It follows from (.) and

Iλn (un) = Iλn (un) –



〈
I ′
λn (un), un

〉
=




‖un‖
λn +

(



–

p

)
|un|pp

that

sup
n≥

‖un‖
λn ≤ C, (.)

where the constant C is independent of λn.
Therefore, we may assume that un ⇀ ū in E and un → ū in Ls

loc(R) for  ≤ s < . By
Fatou’s lemma, we deduce

∫
R

V (x)ū ≤ lim
n→∞ inf

∫
R

V (x)u
n ≤ lim

n→∞ inf
‖un‖

λn

λn
= .

Therefore ū =  a.e in R
\V –(), and so ū ∈ H

(�) by (V).
Now, for any ϕ ∈ C∞

 (�), since 〈I ′
λn (un),ϕ〉 = , we obtain

∫
�

a∇ū∇ϕ + b
∫

�

|∇ū|
∫

�

∇ū∇ϕ =
∫

�

|ū|p–ūϕ.

By the density of C∞
 (�) in H

(�), ū is a weak solution of (.).
Next, we need to prove that un → ū in Ls(R) for s ∈ (, ). If not, from the vanishing

lemma, it follows that there exist two positive constants δ, ρ and xn ∈R
 such that

∫
Bρ (xn)

(un – ū) ≥ δ.
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Moreover, |xn| → ∞. Therefore meas(Bρ(xn) ∩ {x ∈ R
 : V (x) < b}) → . By Hölder’s

inequality and an argument similar to that used in the proof of (.), we have

∫
Bρ (xn)∩{V (x)<b}

(un – ū) dx → .

Consequently,

‖un‖
λn ≥ λnb

∫
Bρ (xn)∩{V (x)≥b}

u
n dx = λnb

∫
Bρ (xn)∩{V (x)≥b}

(un – ū) dx

= λnb
(∫

Bρ (xn)
(un – ū) dx + o()

)
→ +∞,

which contradicts (.).
Last, we only need to prove that un → ū in E. Since 〈I ′

λn (un), un〉 = 〈I ′
λn (un), ū〉 = , we

have

‖un‖
λn + b

(∫
R

|∇un|
)

=
∫
R

|un|p, (.)

and

〈un, ū〉λn + b
∫
R

|∇un|
∫
R

∇un∇ū =
∫
R

|un|p–unū. (.)

We can prove that

(∫
R

|∇un|
)

–
∫
R

|∇un|
∫
R

∇un∇ū → . (.)

Combining (.), (.) and (.), we obtain

lim
n→∞‖un‖

λn = lim
n→∞〈un, ū〉λn = lim

n→∞〈un, ū〉 = ‖ū‖.

Thanks to the weak lower semi-continuity, we have

‖ū‖ ≤ lim
n→∞ inf‖un‖ ≤ lim

n→∞ inf‖un‖
λn ,

so, up to a subsequence, ‖un‖ → ‖ū‖. Thus, it follows from un ⇀ ū in a Hilbert space E
that un → ū in E.

Since un �= , by (.) we have

‖un‖ ≤ ‖un‖
λn ≤ |un|pp ≤ C‖un‖p,

which implies that ū �= . Then we can obtain the conclusion. �
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5 Conclusion
In this paper, by using the variational methods, the existence of nontrivial solutions and the
concentration phenomena of the solutions to equation (.) were established. We consider
(.) with more general potential V , especially the potential V can be sign-changing. (.)
is a nonlocal problem as the appearance of the term

∫
RN |∇u|, so we need to overcome

some new difficulties, which involves many technical estimates in our paper.
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