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Abstract
In this study, we investigate the discreteness and finiteness of the negative spectrum
of the differential operator L in the Hilbert space L2(H, [0, ∞)), defined as

Ly = – d2y
dx2

+ A(A+I)
x2

y – Q(x)y, under the boundary condition y(0) = 0.
In the case when the negative spectrum is finite, we obtain an evaluation for the

sums of powers of the absolute values of negative eigenvalues. The obtained result is
applied to a class of equations of mathematical physics.
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1 Introduction
1.1 Related work
The theory of operator-differential equations with unbounded operator coefficients is a
common tool for studying infinite systems of ordinary differential equations, partial differ-
ential equations, and integro-differential equations. Numerous studies have been devoted
to the spectral theory of such equations.

The first significant study in this direction belongs to Kostyuchenko and Levitan [].
They studied the asymptotic behavior of the spectrum of the Sturm-Liouville operator
with the operator coefficient. Later this area was the subject of research by Gorbachuk
and Gorbachuk [, ], Otelbaev [], Solomyak [], Maksudov et al. [], Vladimirov [],
Aslanova [], Bayramoglu and Aslanova [], Gesztesy et al. [], and Hashimoglu [].

In the paper [], Birman and Solomyak studied the negative spectrum and obtained
evaluations for the number of negative eigenvalues of an ordinary second-order differ-
ential equation given on the half-axis. Asymptotic formulas for negative eigenvalues of
scalar differential equations were obtained by Skachek [, ], Rozenblyum [], Birman
and Solomyak [], Laptev [], Birman and Laptev [], Laptev and Safronov [], Laptev
and Solomyak [].

For operator-differential equations, the negative spectrum was studied in the papers of
Gasymov, Zhikov and Levitan [], Yafaev [], Adigezalov et al. [–], and Aslanov
and Gadirli [].
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1.2 Formulation of the problem
Consider the operator-differential expression

L = –
d

dx +
A(A + I)

x – Q(x), ()

where I is the identity operator, and the operators A and Q(x) act in the separable Hilbert
space H , and satisfy the following conditions:

(a) A = A∗ ≥  and (A + I)– ∈ σ∞.
(b) For almost all x, the operator Q(x) is self-adjoint, nonnegative, and

Bochner-integrable.
We denote by L the Hilbert space of functions with values in H defined on the half-axis,

which satisfy the condition

‖u‖
L =

∫ ∞



∥∥u(x)
∥∥

H dx.

It is assumed that the quadratic form

l[u, u] =
∫ ∞



[∥∥u′∥∥
H +

(
A(A + I)

x u, u
)

H

]
dx –

∫ ∞


(Qu, u)H dx

defined on smooth functions that are finite near x =  and x = ∞, is lower semibounded
and admits a closure in L. We denote by L the self-adjoint operator corresponding to
the closure of the quadratic form l[u, u]. The operator L is generated by the differential
expression (), and the boundary condition

u() = . ()

The purpose of this paper is to study the discreteness and finiteness of the negative
spectrum of the operator L. To obtain them, we start from the general theorems of Birman
[] on perturbations of quadratic forms.

In the case where the negative spectrum is finite, we evaluate the sums of the pow-
ers of negative eigenvalues and apply the results to the equations of mathematical
physics.

We note that in this paper the negative spectrum is evaluated for the first time in the
case of finiteness of the negative spectrum for operator-differential equations.

2 Main results
2.1 Discreteness and finiteness of the negative spectrum of the Schrödinger

operator equation with singularity at zero
We introduce some notation. We denote by L(Q) the set of H-valued functions for which
the seminorm

‖u‖
L(Q) =

∫ ∞


(Qu, u)H dx
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is finite. Next, we introduce the spaces W 
 (A) and L

(A), which are the closures of the set
of smooth, finite near x =  and x = ∞ H-valued functions, respectively, with metrics

‖u‖
W 

 (A) =
∫ ∞



[∥∥u′∥∥
H + ‖u‖

H +
(

A(A + I)
x u, u

)
H

]
dx,

‖u‖
L

(A) =
∫ ∞



[∥∥u′∥∥
H +

(
A(A + I)

x u, u
)

H

]
dx.

For the interval [, N], we denote the corresponding spaces of H-valued functions by
L(, N), L(, N ; Q), W 

 (, N ; A) and L
(, N ; A).

To prove the discreteness and finiteness of the negative part of the spectrum of the op-
erator L we start with providing two general theorems of Birman [] on perturbations of
quadratic forms.

Theorem  ([], Theorem .) Let A ≥  and B ≥  be symmetric operators in H with the
common domain D(A) and C(α) = A – αB (α > ). Then, for the operator C(α) to be lower
semibounded and for its closure C̃(α) to have only a discrete negative spectrum for all α > ,
it is necessary and sufficient that the form B[u, u] was completely continuous in D[A]. Here
D[A] denotes a complete Hilbert space with scalar product (u, v)D[A] = (Au, v) + (u, v).

Theorem  ([], Theorem .) Let A and B be symmetric nonnegative operators in H with
the common domain D(A), A[u, u] >  for u �= , and the form B[u, u] admits the closure
B[u, u] in semi-space HA. Then, for the operator C(α) = A – αB to be semibounded below
and for the negative spectrum of the operator C̃(α) to be finite for all α > , it is necessary
and sufficient that the form B[u, u] was completely continuous in HA.

It follows from Theorem  that the operator has only a discrete negative spectrum when
the embedding operator from W 

 (A) into L(Q) is completely continuous. Similarly, in
order to find the finiteness condition for the negative spectrum of the operator L, by The-
orem  it is necessary to find the condition when the embedding operator from L

(A) into
L(Q) is completely continuous.

The following assertion follows from the Hausdorff theorem on finite ε-nets: In order
that the set U of vector-valued functions y(x) be compact in the metric of L(Q), it is
necessary and sufficient that the set U be compact in the metric L(, N ; Q), for any N ,
and

lim
N→∞

[
sup
u∈U

∫ ∞

N
(Qu, u)H dx

]
= . ()

Lemma  If conditions (a) and (b) hold for the operators A and Q(x), then the embedding
operator from W 

 (, N ; A) into L(, N ; Q) is completely continuous.

Proof Let V be the embedding operator from W 
 (, N ; A) into L(, N), and let B be the

operator of multiplication by Q 
 (x) in L(, N):

(Bu)(x) = Q

 (x)u(x).

For the proof of Lemma , it is sufficient to prove the continuity of the operator BV from
W 

 (, N ; A) to L(, N). Let us prove that V is completely continuous.
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If we can prove that, for the set Y = {u ∈ Y :
∫ N

 [‖u′‖
H + ‖u‖

H + ( A(A+I)
x u, u)H ] dx ≤ }

(that is, for the unit ball), for any ε > , there exists a compact ε-net in L(, N), then we
can conclude the complete continuity of the operator V .

Let γ ≤ γ ≤ · · · ≤ γn ≤ . . . be eigenvalues of the operator A, and e, e, . . . , en, . . . be the
corresponding orthonormal eigenvectors.

Then u(x) =
∑∞

k= uk(x)ek and ‖u‖
H =

∑∞
k= |uk(x)|, where uk(x) = (u(x), ek)H .

For any ε >  there exists a number l(ε) such that for l ≥ l(ε):
∫ N

 (
∑∞

k=l+ |uk(x)|) dx < ε.
Indeed, since γl → ∞ as l → ∞, then for any ε >  there is a number l(ε) such that for
l ≥ l(ε):

γl(γl + )
N >


ε

.

From this, for l ≥ l(ε), it follows that

∫ N



( ∞∑
k=l+

∣∣uk(x)
∣∣

)
dx =

N

γl(γl + )

∫ N



( ∞∑
k=l+

γl(γl + )
N

∣∣uk(x)
∣∣

)
dx

≤ N

γl(γl + )

∫ ∞



[∥∥u′∥∥
H + ‖u‖

H +
(

A(A + I)
x u, u

)
H

]
dx

≤ N

γl(γl + )
< ε.

Hence, the set El = (u(x), u(x), . . . , ul(x)) is an ε-net for the set Y , where uk(x) =
(u(x), ek)H .

For the functions uk(x) (k = , , . . . , l), the following inequalities are satisfied:

∫ N



∣∣uk(x)
∣∣ dx ≤

∫ N


(u, u) dx ≤ ,

∫ N



∣∣uk(x + η) – uk(x)
∣∣ =

∫ η



∫ η


ds dt

∫ N



∣∣u′
k(x + s)uk(x + t)

∣∣dx

≤
∫ η



∫ η


ds dt

∫ ∞



∥∥u′(x)
∥∥

H dx ≤ η.

These inequalities show that the functions u(x), u(x), . . . , ul(x) are uniformly bounded
and equicontinuous. This proves the compactness of the set El , that is, for a set Y , for any
ε >  there exists a compact ε-net. The complete continuity of the operator V is proved.

Now we prove that the operator BV is completely continuous. The operator-valued
function Q(x) is Bochner-integrable; therefore, for any number ε > , it can be approx-
imated by a finite-valued operator function such that ‖Qε(x)‖H < c and

∫ ∞



∥∥Q(x) – Qε(x)
∥∥

H dx < ε. ()

It is obvious that the operator Qε(x)V is completely continuous. Notice that

‖BVu‖
L(,N) =

∫ N



(
Q


 u, Q


 u

)
H dx =

∫ N


(Qu, u)H dx ()
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and

‖BVu‖
L(,N) – ‖BεVu‖

L(,N) ≤
∫ N



∥∥Q(x) – Qε(x)
∥∥

H‖u‖
H dx.

According to (), and the well-known inequality

max
x

∥∥u(x)
∥∥

H ≤ c‖u‖W 
 (,N) ≤ c‖u‖W 

 (,N ;A)

we obtain
∫ N



∥∥Q(x) – Qε(x)
∥∥

H‖u‖
H dx ≤ max

xε[,N]

∥∥u(x)
∥∥

H .ε ≤ cε‖u‖
W 

 (,N ;A). ()

From () and () we obtain

‖BVu‖
L(,N) ≤ ‖BεVu‖

L(,N) + ε‖u‖
W 

 (,N ;A). ()

From this inequality it follows that the operator BV is completely continuous. Indeed, for
any sequence of functions u(x), u(x), . . . , ul(x), . . . weakly convergent to zero in the metric
W 

 (, N ; A), and with ‖u‖W 
 (,N ;A) =  we obtain

lim
n→∞‖BVun‖

L(,N) ≤ lim
n→∞‖BεVun‖

L(,N) + ε.

Taking into account that

lim
n→∞‖BεVun‖

L(,N) ≤ lim
n→∞‖BεVun‖

W 
 (,N ;A) = 

we obtain

lim
n→∞‖BVun‖

L(,N) ≤ ε.

By the arbitrariness of ε > , we get

lim
n→∞‖BVun‖L(,N) = ,

that is, the operator BV is completely continuous. The lemma is proved. �

Lemma  Under the conditions of Lemma , the embedding operator from L
(, N ; A) into

L(, N ; Q) is completely continuous.

The proof is similar to the proof of Lemma .
It remains to find under what conditions for Q(x), condition () is satisfied, where U

denotes the unit ball in W 
 (A), or in L

(A).

Theorem  In order that the embedding operator from W 
 (A) into L

(Q) be completely
continuous, it is sufficient that

lim
x→∞

∥∥∥∥
∫ x+

x
Q(t) dt

∥∥∥∥
H

= . ()
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Proof Suppose that, for any ε > , there exists a number N = N(ε) such that
‖ ∫ x+

x Q(t) dt‖H < ε when x ≥ N . We divide the semi-axis [,∞) into segments �p =
(ap, ap+). We define 	(x) = 	p(x) =

∫ ap+
x Q(t) dt ≥ . Since everywhere on �p : 	′(x) ≤ ,

i.e. for any f ∈ H : (	′(x)f , f )H = d
dx (	(x)f , f )H ≤ , it follows (	(x)f , f )H ≤ (	(ap)f , f )H for

any xε�p. Then ‖	(x)‖H ≤ ‖	(ap)‖H ≤ ‖ ∫ ap+
ap

Q(t) dt‖H for any xε�p.
Now let us evaluate the integral

∫ ap+
ap

(Q(x)y, y)H dx from above.
We first integrate the quadratic form by parts

∫ ap+

ap

(
Q(x)y, y

)
H dx = –

∫ ap+

ap

(
	′(x)y, y

)
H dx

= –
(
	(x)f , f

)
H

∣∣ap+
ap

+  Re

(∫ ap+

ap

(
	′(x)y, y′)

H dx
)

≤ ∥∥	(ap)
∥∥

H · ∥∥y(ap)
∥∥

H +
∥∥	(ap)

∥∥
H ·

∫ ap+

ap

‖y‖H
∥∥y′∥∥

H dx

≤ 
∥∥	(ap)

∥∥
H ·

∫ ap+

ap

[∥∥y′∥∥
H + ‖y‖

H
]

dx

≤ 
∥∥	(ap)

∥∥
H ·

∫ ap+

ap

[∥∥y′∥∥
H +

(
A(A + I)

x y, y
)

H
+ ‖y‖

H

]
dx.

Note that in the last evaluation we used the following well-known inequality:

∥∥y(ap)
∥∥

H ≤ 
∫ ap+

ap

[∥∥y′∥∥
H + ‖y‖

H
]

dx.

Thus, we have proved the main inequality:

∫ ap+

ap

(
Q(x)y, y

)
H dx

≤ 
∥∥∥∥
∫ ap+

ap

Q(x) dx
∥∥∥∥

H

∫ ap+

ap

[∥∥y′∥∥
H +

(
A(A + I)

x y, y
)

H
+ ‖y‖

H

]
dx

≤ ε

∫ ap+

ap

[∥∥y′∥∥
H +

(
A(A + I)

x y, y
)

H
+ ‖y‖

H

]
dx.

Summing over all �p, we obtain

∫ ∞

N

(
Q(x)y, y

)
H dx ≤ ε

∫ ∞

N

[∥∥y′∥∥
H +

(
A(A + I)

x y, y
)

H
+ ‖y‖

H

]
dx.

Since y ∈ W 
 (A) and ‖y‖W 

 (A) ≤ , for any ε >  there is a number N(ε) such that for
N > N(ε):

∫ ∞
N (Q(x)y, y)H dx ≤ ε. Hence, we get limN→∞

∫ ∞
N (Q(x)y, y)H dx = .

Taking Lemma  into account, we see that the embedding operator from W 
 (A) into

L(Q) is completely continuous. The theorem is proved. �

Theorem  For an imbedding operator from L
(A) to L(Q) to be completely continuous,

it is sufficient that

lim
x→∞ x

∥∥∥∥
∫ ∞

x
Q(t) dt

∥∥∥∥
H

= . ()
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Proof Let 	(x) =
∫ ∞

x Q(t) dt. Then 	′(x) = –Q(x) ≤ . We evaluate the integral∫ ∞
N (Q(x)y, y) dx from above. We integrate the quadratic form by parts. Assuming y(x) to

be an N-finite H-valued function, we obtain

∫ ∞

N

(
Q(x)y, y

)
H dx = –

∫ ∞

N

(
	′(x)y, y

)
H dx

= –
(
	(x)y, y

)
H

∣∣∞
N +  Re

(∫ ∞

N

(
	(x)y, y′)

H dx
)

≤ 
∫ ∞

N

∥∥	(x)
∥∥

H‖y‖H
∥∥y′∥∥

H dx

= N
∫ ∞

N

∥∥x	(x)
∥∥

Hx–‖y‖H
∥∥y′∥∥

H dx

≤ N max
x≥N

[
x
∥∥	(x)

∥∥
H

] ∫ ∞

N
x–‖y‖H

∥∥y′∥∥
H dx

= N
∥∥∥∥
∫ ∞

N
Q(t) dt

∥∥∥∥
H

∫ ∞

N
x–‖y‖H

∥∥y′∥∥
H dx. ()

As in the scalar case, it is easy to prove the inequality

∫ ∞

N
x–‖y‖H

∥∥y′∥∥
H dx ≤ c

∫ ∞

N

∥∥y′∥∥
H dx.

Taking this inequality into account, from () we obtain

∫ ∞

N

(
Q(x)y, y

)
H dx ≤ cN

∥∥∥∥
∫ ∞

N
Q(t) dt

∥∥∥∥
H

∫ ∞

N

[∥∥y′∥∥
H +

(
A(A + I)

x y, y
)

H

]
dx.

It follows from condition () that, for the set ‖y‖L
(A) ≤ ,

lim
N→∞

∫ ∞

N

(
Q(x)y, y

)
H dx = .

Taking Lemma  into account, we see that the embedding operator from L
(A) into L(Q)

is completely continuous. The theorem is proved. �

Theorems  and , and Theorems  and  from [] imply the following theorems.

Theorem  In order to the operator L to be lower semibounded and to have only a discrete
negative spectrum, it is sufficient that condition () be satisfied.

Theorem  In order to the operator L to have only a finite negative spectrum, it is sufficient
that condition () be satisfied.

These theoretical results can be applied to the study of the negative spectra in certain
problems of mathematical physics.

Example  We denote by L(D) the Hilbert space of measurable functions f (x) such that∫
D |f (x)| dx < ∞.
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We will assume that D is the angular region of the plane with the center at the origin
and with the angular value α.

In the space L(D) we consider the operator L generated by the differential expression

L = –
–q(x) for x ∈ D

and the boundary condition

u |∂D= .

Here we assume that q(x) is a positive function of x.
Let us investigate the discrete spectrum of the operator L in the space L(D). We will

do this as in [] by reducing the equation Lu = λu to an infinite system of ordinary
differential equations.

Denote 	n(ϕ) =
√


α

sin nπ
α

ϕ. It is easy to see that the system of functions {	n(ϕ)}∞n=

forms a complete orthonormal system in the space L(,α). We seek the solution of the
equation Lu = λu in the form

u(x,λ) =
∞∑
l=

√
r

ul(r,λ)	l(ϕ).

Substituting this value into the equation

Lu = –
(

∂u
∂r +


r
∂u
∂r

+

r

∂u
∂ϕ

)
– q(x)u = λu

we obtain

–
∞∑
l=

u′′
l (r)	l(ϕ) +

∞∑
l=

( π l
α

) – 


r ul(r)	l(ϕ) –
∞∑
l=

q(r,ϕ)ul(r)	l(ϕ)

= λ
∞∑
l=

ul(r)	l(ϕ).

We multiply both sides of this equation by 	l (ϕ), and integrate over ϕ from  to α. Then

–u′′
l +

( π l
α

) – 


r ul –
∞∑
l=

ul(r)
∫ α


q(r,ϕ)	l (ϕ)	l(ϕ) dϕ = λul (r)

or

–uII
l +

( π l
α

) – 


r ul –
∞∑
l=

ul(r)qll(r,α) = λul (r), l = , , . . . ()
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Let us denote

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

π
α

– 
   · · ·  · · ·

 π
α

– 
  · · ·  · · ·

· · · · · · · · · · · · · · · · · ·
   · · · nπ

α
– 

 
· · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Q(r) =

⎡
⎢⎢⎢⎢⎢⎢⎣

q q q · · · qn · · ·
q q q · · · qn · · ·
· · · · · · · · · · · · · · · · · ·
qn qn qn · · · qnn · · ·
· · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

, y =

⎡
⎢⎢⎢⎢⎢⎢⎣

u

u

· · ·
un

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then the system of equations () takes the form

⎧⎨
⎩

–y′′ + A(A+I)
r y – Q(r)y = λy,

y() = .
()

We introduce the Hilbert space L(l; [,∞)) consisting of all functions f (r) = (f(r),
f(r), . . .) such that

∫ ∞
 ‖f (r)‖

l dr < ∞.
The scalar product in L(l; [,∞)) is defined as

(f , g)L(l;[,∞)) =
∫ ∞



(
f (r), g(r)

)
l

dr.

Let f (x) ∈ L(D). We expand this function to the orthonormal system {	n(ϕ)}∞n=:

f (x) =
∞∑

n=

√
r

fn(r)	n(ϕ),

where

∞∑
n=

√
r

fn(r) =
∫ α


f (x)	n(ϕ) dϕ.

It is clear that

∥∥f (x)
∥∥

L(D) =
∫

D

∣∣f (x)
∣∣ dx

=
∫ ∞


r dr

∫ α




r

( ∞∑
n=

fn(r)	n(ϕ),
∞∑

n=

fn(r)	n(ϕ)

)
dϕ

=
∫ ∞



( ∞∑
n=

∣∣fn(r)
∣∣

)
dr.

From this, it can be seen that the spaces L(D) and L(l; [,∞)) are isomorphic. Conse-
quently, the spectra of the operators –
–q(x) and – d

dr + A(A+I)
r –Q(r) coincide. Therefore,

we need to investigate only the spectrum of the last operator.
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Now let us find under what conditions the operator L has only a discrete negative spec-
trum and under what conditions it has a finite number of negative eigenvalues.

Since f =
∑∞

n= fn	n(ϕ),

(∫
Q(r) dr

)
f =

∞∑
k=

fk

∫
Q(r)	k(ϕ) dr

=
∞∑

k=

fk

∫
q(r,ϕ)	k(ϕ) dr

=
∫

q(r,ϕ) dr
∞∑

k=

fk	k(ϕ) =
(∫

q(r,ϕ) dr
)

· f .

From this we get

∥∥∥∥
∫

Q(r) dr
∥∥∥∥ = sup

‖f ‖L(,α)=

(∫
Q(r) drf , f

)

= sup
‖f ‖L(,α)=

∫
q(r,ϕ) dr‖f ‖

= sup
≤ϕ≤α

∫
q(r,ϕ) dr.

Hence, by Theorem , the negative spectrum of L is discrete, if the following condition
is satisfied:

lim
x→∞ sup

≤ϕ≤α

∫ x+

x
q(r,ϕ) dr = .

When the condition

lim
x→∞ sup

≤ϕ≤α

x
∫ ∞

x
q(r,ϕ) dr = 

is satisfied, from Theorem  it follows that the negative spectrum of the operator L is finite.

2.2 Evaluation of the sums of the powers of negative eigenvalues of the
Schrödinger operator equation with singularity at zero

Consider the same differential operator as in Section .:

⎧⎨
⎩

Ly = – dy
dx + A(A+I)

x y – Q(x)y,

y() = .

We have already shown that under conditions (a)-(b) (Section .) the negative part of
the spectrum of the operator L is finite, if limx→∞ x‖ ∫ ∞

x Q(t) dt‖H = .
Suppose that the following conditions are also satisfied:
(c)

∫ ∞
 x

∥∥Q(x)
∥∥dx < ∞,

(d)
∫ ∞

 x
∥∥Q(x)

∥∥γ + dx < ∞ when γ > .
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Under conditions (a)-(c), we evaluate the number of negative eigenvalues of the opera-
tor L.

Let N be the number of negative eigenvalues of the operator L. Then this number is less
than the number of eigenvalues of the form

∫ ∞
 ‖Q(x)‖(y, y) dx lying to the right side of 

in the space L
(A), or the number of eigenvalues μk of an infinite system of differential

equations

–
dyk

dx +
γk(γk + )

x yk = μ
∥∥Q(x)

∥∥yk , yk() = , k = , , . . .

lying to the left side of , where γ ≤ γ ≤ · · · ≤ γk ≤ . . . are the eigenvalues of the opera-
tor A.

Let Nk be the number of eigenvalues of the differential equation

–
dy
dx +

γk(γk + )
x y = μ

∥∥Q(x)
∥∥y, y() = , ()

lying to the left side of , in the space L[,∞). Then

N ≤
∑

k

Nk . ()

Let us evaluate each number Nk . Equation () can be reduced to the integral equation


μ

y(x) =


γk + 

∫ ∞



∥∥Q(t)
∥∥Gk(x, t)y(t) dt,

where

Gk(x, t) =

⎧⎨
⎩

xγk +tγk , when  ≤ x < t,

x–γk tγk +, when  ≤ t ≤ x.

The number Nk is less than the number of eigenvalues of the operator
Mky = 

γk +
∫ ∞

 ‖Q(t)‖Gk(x, t)y(t) dt, which are greater than . Therefore

Nk ≤
∑
μk≤

 =
∑


μk

=αk≥

 =
∑
αk≥

αk =
∞∑

k=

αk = tr(Mk) =


γk + 

∫ ∞


x
∥∥Q(x)

∥∥dx. ()

Let τ be a number such that

γτ– +  ≤
∫ ∞


x
∥∥Q(x)

∥∥dx ≤ γτ + . ()

Then for k > τ we get Nk ≤ tr(Mk) < .
Therefore,

Nk =  for k > τ . ()
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Taking into account (), (), (), and (), we obtain

N ≤
τ∑

k=

Nk ≤
τ∑

k=

tr(Mk) ≤
τ∑

k=


γk + 

∫ ∞


x
∥∥Q(x)

∥∥dx.

This proves the following theorem.

Theorem  Under conditions (a)-(c), the number of the negative spectrum of the operator
L satisfies the following inequality:

N ≤
τ∑

k=


γk + 

∫ ∞


x
∥∥Q(x)

∥∥dx, ()

where the number τ satisfies the inequality ().

To evaluate the sum of the powers of negative eigenvalues, we need to prove the follow-
ing lemma.

Lemma  Let B be an operator with a finite negative spectrum. We denote by Nλ the num-
ber of negative eigenvalues of the operator B smaller than –λ (λ > ), and by Sγ (B) (γ > ),
the sum of the numbers |λi|γ taken over all negative eigenvalues of the operator B. Then

Sγ (B) =
∑
λi<

|λi|γ = γ

∫ ∞


λγ –Nλ dλ. ()

Proof Let the number of negative eigenvalues of B be equal to M. Then

Nλ =

⎧⎪⎪⎨
⎪⎪⎩

, if – λ ≤ λ,

i, if λi < –λ ≤ λi+,

M, if λM < –λ ≤ .

Taking into account the value of Nλ, we obtain

γ

∫ ∞


λγ –Nλ dλ = γ

∫ |λ|


λγ –Nλ dλ

= γ

M–∑
i=

i
∫ |λi|

|λi+|
λγ – dλ + γ M

∫ |λM |


λγ – dλ

=
M–∑
i=

i
(|λi|γ – |λi+|γ

)
+ M|λM|γ

=
(|λ|γ – |λ|γ

)
+ 

(|λ|γ – |λ|γ
)

+ · · ·
+ (M – )

(|λM–|γ – |λM|γ )
+ M|λM|γ

=
M∑
i=

|λi|γ = Sγ (B).

The lemma is proved. �
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By Theorem  and Lemma , we evaluate Sγ (L). Let Nλ be the number of negative eigen-
values of L less than –λ (λ > ). Then

Nλ ≤ M, ()

where M is the number of negative eigenvalues of the operator

⎧⎨
⎩

Ky = – dy
dx + A(A+I)

x y – (‖Q(x)‖ – λ)+Iy,

y() = .

(‖Q(x)‖ – λ)+ is the positive part of the function ‖Q(x)‖ – λ.
Taking into account (), (), and (), we obtain

Sγ (L) ≤ γ

∫ ∞


λγ –M dλ

≤ γ

∫ ∞


λγ –

(
τ∑

k=


γk + 

∫ ∞


x
(∥∥Q(x)

∥∥ – λ
)

+ dx

)
dλ

= γ

∫ ∞



τ∑
k=


γk + 

∫ ∞


x
(∥∥Q(x)

∥∥ – λ
)

+λγ – dλdx

= γ

τ∑
k=


γk + 

∫ ∞


x dx

∫ ‖Q(x)‖



(
Q(x) – λ

)
λγ – dλ

=


γ + 

τ∑
k=


γk + 

∫ ∞


x
∥∥Q(x)

∥∥γ + dx.

Thus we have proved the following theorem.

Theorem  Under conditions (a)-(d) the sum of the numbers |λi|γ , taken over all negative
eigenvalues of the operator L, satisfies the following inequality:

Sγ (L) ≤ 
γ + 

τ∑
k=


γk + 

∫ ∞


x
∥∥Q(x)

∥∥γ + dx, γ > ,

where the number τ satisfies the inequality ().

Remark The sum of the numbers |λi|γ , taken over all negative eigenvalues of the operator
in Example , satisfies the inequality

Sγ (L) =
α

π (γ + )

τ∑
k=


k

∫ ∞


r
(

sup
≤ϕ≤α

q(r,ϕ)
)γ +

dr,

where the number τ satisfies the following inequality:

τ –  ≤ α

π

∫ ∞


r
(

sup
≤ϕ≤α

q(r,ϕ)
)

dr < τ .
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3 Conclusion
In this paper, we established the discreteness and finiteness of the negative spectrum for
the Schrödinger operator-differential equation with a singularity at zero. Investigating the
negative part of the spectrum is important for the following reasons. The study of negative
eigenvalues is interesting because every negative eigenvalue of the Schrödinger operator
generates a soliton solution. In addition, evaluations of the number of negative eigenvalues
play an important role both in quantum mechanics and in the spectral theory of differen-
tial operators.

The results obtained in this paper can be interpreted as a generalization of the results
of [], where the Schrödinger operator-differential equation without singularities is con-
sidered. In the case where the negative spectrum is finite, estimates were first obtained
for the sums of the powers of absolute values of the negative eigenvalues. The obtained
results were applied to a class of equations of mathematical physics. In the future, the pro-
posed derivations can be developed for the case where the boundary condition contains
the spectral parameter.
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