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Abstract
The vibrations of flexible structures in practice are described by nonlinear models of
strings, beams, plates, and so on. This paper is concerned with longitudinal vibrations
of a thermoelastic beam equation. Our main result is the general decay of the system.
Using the multiplier method and some properties of the convex functions, we
establish the general decay of energy.
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1 Introduction
Generally speaking, the vibrations of flexible structures in practice are described by non-
linear models of strings, beams, plates, and so on. The linearized vibrations of flexi-
ble structures are usually governed by partial differential equations, in particular, by the
second-order wave equation and the fourth-order Euler-Bernoulli beam equation []. Up
till now, there are many results concerning the stability of wave and plate equations by
adding some types of damping, for example, internal damping, boundary damping, ther-
mal damping, and so on, most of which can be found in the literature. For general decay
results on the wave equation, here we mention the works by Cao and Yao [], Guesmia and
Messaoudi [], Said-Houari, Messaoudi, and Guesmia [], Messaoudi [–], Messaoudi
and Al-Gharabli [, ], Messaoudi and Soufyane [], Mustafa and Messaoudi [], Tatar
[], and Wu []. When the body vibrates, the balance of linear momentum reads

mutt – σx = f ,

where σ is the stress. If the body is nonuniform, that is,

σ = σ (ux, uxt) = p(x)ux + δ(x)uxt ,

then we can derive the equation of longitudinal vibrations of a flexible structure (see, e.g.,
Liu and Liu [])

m(x)utt –
(
p(x)ux + δ(x)uxt

)
x = f ,
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where u(x, t) represents the longitudinal displacement of a particle. The functions m(x),
p(x), and δ(x) denote the mass per unit length of the structure, the coefficient of internal
material damping, and a positive function related to the stress acting on the body, respec-
tively. For this equation, Gorain [] established the exponential stability of the solution.

For the thermal effect in flexible structures, that is,

θt + qx – κutx = ,

where q(x, t) denotes the heat flux vector, and θ (x, t) is the temperature difference, we we
can find the physical background in Carlson []. If we assume that the heat flux satisfies a
different thermal law, we can obtain flexible structures with different thermal effects. For
example, if the heat flux satisfies

q(t) + ( – α)θx(t) + α

∫ ∞


g(s)θx(t – s) ds = , α ∈ (, ),

then we get the flexible structures with the Coleman-Gurtin law. The limit cases α = 
and α =  correspond to the Fourier and Gurtin-Pipkin cases. Misra et al. [] studied the
thermoelastic flexible structure with Fourier law:

⎧
⎨

⎩
m(x)utt – (p(x)ux + δ(x)uxt)x + κθx = f ,

θt – θxx + κuxt = ,

and proved the global well-posedness of the system. In addition, they established the expo-
nential decay of energy. It is a remarkable fact that the assumption of Fourier’s law causes
an unrealistic property that a sudden disturbance at some point will be felt instantly ev-
erywhere else in the material. Green and Naghdi developed a damped model, called ther-
moelasticity of type III (see, e.g., [–]),

⎧
⎨

⎩
utt – αuxx + +βθx = f ,

θtt – δθxx + γ uxtt – κθxtt = .

For decay results of this system, we refer to Quintanilla and Racke [] and Zhang and
Zuazua [] (see also []). For flexible structures with thermal effect, we also mention
the work of Alves et al. [], where the authors studied the thermoelastic flexible structure
with second sound and proved the well-posedness and stability of the system.

Taking into account all considerations mentioned, in this paper, we consider the follow-
ing longitudinal vibrations of a thermoelastic beam equation with past history:

m(x)utt –
(
p(x)ux + δ(x)uxt

)
x + κθxt = , (.)

θtt – αθxx –
∫ ∞


g(s)θxx(t – s) ds + κuxt = , (.)

where x ∈ [, L], and the constant κ is the coupling coefficient. The boundary conditions
are given by

u(, t) = u(L, t) = , θ (, t) = θ (L, t) = , t ≥ , (.)
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and the initial conditions are

u(x, ) = u(x), ut(x, ) = u(x), θ (x, t)|t≤ = θ(x, t), θt(x, ) = θ(x). (.)

Our goal in this paper is to establish a general decay of solutions to problem (.)-(.)
with exponential and polynomial decays as only particular cases. We use the multiplier
method and some properties of convex functions to establish a general decay result.

To deal with the memory, motivated by Dafermos [] and Giorgi et al. [, ], we
define the new variable η = ηt(x, s) by

ηt(x, s) = θ (x, t) – θ (x, t – s), (t, s) ∈ [,∞) ×R
+. (.)

Then

ηt + ηs = θt , (x, t, s) ∈R
n ×R

+ ×R
+.

It follows from (.) that

∫ ∞


g(s)θxx(t – s) ds =

∫ ∞


g(s) dsθxx –

∫ ∞


g(s)ηt

xx(s) ds.

Assuming for simplicity that α –
∫ ∞

 g(s) = , problem (.)-(.) is transformed into the
new problem

m(x)utt –
(
p(x)ux + δ(x)uxt

)
x + κθxt = , (.)

θtt – θxx +
∫ ∞


g(s)ηxx(s) ds + κuxt = , (.)

ηt
t + ηt

s = θt , (.)

u(x, ) = u(x), ut(x, ) = u(x), ηt(x, ) = , x ∈ [, L], (.)

θ (x, t)|t≤ = θ(x, t), θt(x, ) = θ(x), x ∈ [, L], (.)

η(x, s) = η(x, s), (x, s) ∈ [, L] ×R
+, (.)

u(, t) = u(L, t) = , θ (, t) = θ (L, t) = , t ≥ . (.)

The plan of the paper is as follows. In Section , we give some assumptions and our main
results. The proof of the general decay result is given in Section .

2 Assumptions and main results
By Lq(, L) ( ≤ q ≤ ∞) and H(, L) we denote the standard Lebesgue integral and Sobolev
spaces. The norm in a space B is denoted by ‖ · ‖B. For simplicity, we use ‖u‖ instead of
‖u‖ when q = .

Now we give some assumptions used in this paper.

(A) The functions m(x), p(x), δ(x) : [, L] → R
+ are functions of class C(, L), and there

exist positive constants m, m, p, p, δ, and δ such that

m ≤ m(x) ≤ m, p ≤ p(x) ≤ p, and δ ≤ δ(x) ≤ δ. (.)
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(A) The function g : R+ →R
+ is a C a nonincreasing function satisfying

g() > ,  –
∫ ∞


g(s) ds = l > , (.)

and there exists a positive constant a < m such that, for any u ∈ H
(, L),

a

∫ L


u

x dx ≤
∫ L


m(x)u

x dx –
∫ L



(∫ ∞


g(s) ds

)
u

x dx. (.)

In addition, there exists an increasing strictly convex function G : R+ → R
+ of class

C(R+) ∩ C(R+) satisfying

G() = G′() = , lim
t→∞ G′(t) = ∞, (.)

and
∫ ∞



g(s)
G–(–g ′(s))

ds + sup
s∈R+

g(s)
G–(–g ′(s))

< ∞. (.)

To consider the new variable η, we define the weighted L-spaces

M = L
g
(
R

+, H
(, L)

)
=

{
η : R+ → H

 :
∫ ∞


g(s)

∥∥ηx(s)
∥∥ ds < ∞

}
,

which is a Hilbert space endowed with inner product and norm

(η, ζ )M =
∫ ∞


g(s)

(
ηx(s), ζx(s)

)
ds and ‖η‖

M =
∫ ∞


g(s)

∥∥ηx(s)
∥∥ ds.

Now we define the phase space

H = H
(, L) × L(, L) × H

(, L) × L(, L) ×M

equipped with the norm

∥∥(u, v, θ ,ϑ ,η)
∥∥
H = ‖ux‖ + ‖v‖ + ‖θx‖ + ‖ϑ‖ + ‖η‖

M.

Using semigroup theory, we can easily prove the existence of solutions to problem (.)-
(.); see, for example, Alves et al. [].

Theorem . Assume that (.)-(.) hold. Let U(t) = (u, ut , θ , θt ,η). If the initial data
U ∈ H, then problem (.)-(.) has a unique mild solution U(t) ∈ C([,∞),H) with
U() = U.

Define the energy E(t) of problem (.)-(.) by

E(t) =



[∫ L


m(x)u

t dx +
∫ L


p(x)u

x dx +
∫ L


θ

t dx +
∫ L


θ

x dx + ‖η‖
M

]
. (.)

The general decay result can be given in the following theorem.
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Theorem . Assume that (.)-(.) hold. Let (u, u, θ(·, ), θ,η) ∈H be given. Suppose
that there exists a constant C ≥  such that, for any s > ,

‖ηx‖ ≤ C. (.)

Then there exist positive constants k, k, ε such that, for any t ∈R
+,

E(t) ≤ kH–(kt), (.)

where

H(s) =
∫ 

s


τG′(ετ )

dτ .

3 General decay
In this section, to prove Theorem ., we establish a general decay of solutions to problem
(.)-(.). We need the following technical lemmas.

Lemma . For the energy E(t) defined in (.), there exists a constant c >  such that, for
any t > ,

E′(t) ≤ –
∫ L


δ(x)u

xt dx +
∫ L


g ′(s)

∥
∥ηx(s)

∥
∥ ds ≤ . (.)

Proof Multiplying (.) by ut and (.) by θt and then integrating the result over (, L), we
easily get the desired estimate (.). �

Lemma . Under the assumptions of Theorem ., for the functional φ(t) defined by

φ(t) =
∫ L


m(x)u(t)ut(t) dx + κ

∫ L


θx(t)u(t) dx,

there exists a positive constant c such that, for any t > ,

φ′(t) ≤ –



∫ L


p(x)u

x dx +
∫ L


m(x)u

x dx +
κ



∫ L


θ

x dx + c

∫ L


u

xt dx, (.)

where c = κ
λ

, and λ >  is the Poincaré constant.

Proof Taking the derivative of φ(t) with respect to t and using (.), we get

φ′(t) = –
∫ L


δ(x)uxuxt dx –

∫ L


p(x)u

x dx +
∫ L


m(x)u

t dx

+ κ

∫ L


θxut dx. (.)

Young’s inequality, Poincaré’s inequality, and (.) give us

–
∫ L


δ(x)uxuxt dx ≤ 



∫ L


p(x)u

x dx +
δ


p

∫ L


u

xt dx
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and

κ

∫ L


θxut dx ≤ κ



∫ L


θ

x dx +
κ

λ

∫ L


u

xt dx,

which, together with (.), give us (.). �

Lemma . Under the assumptions of Theorem ., the functional ψ(t) defined by

ψ(t) =
∫ L


θ (t)θt(t) dx + κ

∫ L


ux(t)θ (t) dx

satisfies

ψ ′(t) ≤ –



∫ L


θ

x dx +
(

κ


+ 

)∫ L


θ

t dx +
κ

λ

∫ L


u

xt dx +
 – l


‖η‖

M (.)

for all t > .

Proof It follows from (.) that

ψ ′(t) = –
∫ L


θ

x dx +
∫ L


θ

t dx –
∫ L


θx(t)

∫ ∞


g(s)ηx(s) ds + κ

∫ L


uxθt dx. (.)

Using Young’s and Poincaré’s inequalities, we infer that

–
∫ L


θx(t)

∫ ∞


g(s)ηx(s) ds dx ≤ 



∫ L


θ

x dx +
 – l


‖η‖

and

κ

∫ L


uxθt dx ≤ κ



∫ L


θ

t dx +
κ

λ

∫ L


u

xt dx,

which, along with (.), implies (.). �

Lemma . Under the assumptions of Theorem ., for the functional χ (t) defined by

χ (t) = –
∫ L


θt(t)

∫ ∞


g(s)η(s) ds dx,

there exists a positive constant c such that, for any t > ,

χ ′(t) ≤ –
 – l



∫ L


θ

t dx +
κ

λ

∫ L


u

xt dx + ( – l)‖η‖
M

– c

∫ ∞


g ′(s)

∥∥ηx(s)
∥∥ ds. (.)
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Proof Direct differentiation using (.) implies

χ ′(t) =
∫ L


θx

(∫ ∞


g(s)ηx(s) ds

)
dx

︸ ︷︷ ︸
:=I

+
∫ L



(∫ ∞


g(s)ηx(s) ds

)

dx
︸ ︷︷ ︸

:=I

– κ

∫ L


ut

∫ ∞


g(s)ηx(s) ds dx

︸ ︷︷ ︸
:=I

–
∫ L


θt

∫ ∞


g(s)ηt(s) ds dx

︸ ︷︷ ︸
:=I

.

(.)

It follows from Hölder’s and Young’s inequalities that

I ≤ 


∫ L


θ

x dx +
 – l


‖η‖

M, I ≤ ( – l)‖η‖
M,

and

I ≤ κ

λ

∫ L


u

xt dx +
 – l


‖η‖

M.

Noting (.) and using Young’s inequality, we have

I = –( – l)
∫ L


θ

t dx –
∫ L


θt

∫ ∞


g ′(s)η(s) ds dx

≤ –
( – l)



∫ L


θ

t dx –
l

( – l)λ

∫ ∞


g ′(s)

∥∥ηx(s)
∥∥ ds,

where l = –
∫ ∞

 g ′(s) ds. Inserting these estimates into (.), we get (.) with

c =
l

( – l)λ
.

The proof is completed. �

We further define the Lyapunov functional L(t) by

L(t) = NE(t) + Nφ(t) + Nψ(t) + Nχ (t),

where N , N, N, N are positive constants to be chosen later. First, it is easy to verify that
there exists two positive constants β and β such that

βE(t) ≤L(t) ≤ βE(t). (.)

Lemma . For suitable constants N , N, N, N > , there exist two positive constants c

and c such that

L′(t) ≤ –cE(t) + c

∫ ∞


g(s)

∥∥ηx(s)
∥∥ ds. (.)
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Proof Combining (.)-(.), (.), and (.) and using (.), we can obtain that, for any
t > ,

L′(t) = NE′(t) + Nφ
′(t) + Nψ

′(t) + Nχ
′(t)

≤ –
[

Nδ –
(

m

λ
+ c

)
N –

κ

λ
N –

κ

λ
N

]∫ L


u

xt dx

–
Np



∫ L


u

x dx –
(

N


–

κ


N

)∫ L


θ

x dx + c‖η‖
M

–
[

 – l


N –
(

κ


+ 

)
N

]∫ L


θ

t dx + (N – cN)
∫ ∞


g ′(s)

∥∥ηx(s)
∥∥ ds,

where c = N
–l
 + N( – l).

At this point, we first choose N, N, N >  that satisfy

N >
κ + 

( – l)
N, N > κN,

which implies

N


–

κ


N > ,

 – l


N –
(

κ


+ 

)
N > .

Then we get that there exist constants γ >  and μ >  such that

L′(t) ≤ –
[

Nδ –
(

m

λ
+ c

)
N –

κ

λ
N –

κ

λ
N –

μ

λ

]∫ L


u

xt dx

– γ E(t) + c‖η‖
M + (N – cN)

∫ ∞


g ′(s)

∥
∥ηx(s)

∥
∥ ds. (.)

Finally, for fixed N, N, N > , we take N >  large enough so that

Nδ –
(

m

λ
+ c

)
N –

κ

λ
N –

κ

λ
N –

μ

λ
> , N – cN > ,

which, together with (.), gives us (.). �

Lemma . Under the assumptions of Theorem ., there exists a positive constant γ > 
such that, for any ε > ,

G′(εE(t)
)∫ ∞


g(s)

∥
∥ηx(s)

∥
∥ ds ≤ –γE′(t) + γεE(t)G′(εE(t)

)
. (.)

Proof We prove this lemma by using the method developed by Guesmia []. It follows
from (.), (.), and (.) that

∫ L


η

x dx ≤ 
∫ L



(
u

x(x, t) + u
x(x, t – s)

)
dx

≤  sup
t≥

∫ L


u

x(t) dx +  sup
s>

∫ L


u

x(x, s) dx
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≤ 
a

E() +  sup
s>

∫ L



((
η

x
)(x, s) + u

x(x, )
)

dx

≤ 
a

E() + C := C, (.)

where C is a positive constant depending on E(), a, and C.
First, if g ′(s) =  for some s ≥ , then from (.) we infer that g(s) = . Since g(t) is

nonincreasing and nonnegative, we know that g(s) =  for any s ≥ s. Therefore

∫ ∞


g(s)η

x(s) ds =
∫ s


g(s)η

x(s) ds.

Without loss of generality, we can assume that g ′(s) <  for s ∈R
+.

For s ∈R
+, we define K(s) = s

G–(s) . By the properties of G we know that K() = G′() = ,
and hence the function K(s) is nondecreasing. Taking into account (.), we obtain that,
for any s > ,

K
(
–sg ′(s)‖ηx‖) ≤ K

(
–Csg ′(s)

)
.

Therefore, for ε, τ > ,

∫ L


g(s)

∥∥ηx(s)
∥∥ ds

=


τG′(εE(t))

∫ ∞


G–(–sg(s)‖ηx‖)τG′(εE(t))g(s)

–sg(s)
K

(
–sg(s)‖ηx‖)ds

≤ 
τG′(εE(t))

∫ ∞


G–(–sg(s)‖ηx‖)τG′(εE(t))g(s)

–sg(s)
K

(
–Csg ′(s)

)
ds

≤ 
τG′(εE(t))

∫ ∞


G–(–sg(s)‖ηx‖)CτG′(εE(t))g(s)

G–(–Csg ′(s))
ds. (.)

Now we denote the conjugate function of the convex function G by G∗ (see, e.g., Arnold
[], Daoulatli et al. [], Lasiecka and Doundykov [], and Lasiecka and Tataru []),
that is,

G∗(s) = sup
t∈R+

(
st – G(t)

)
.

Then,

G∗(s) = s
(
G′)–(s) – G

[(
G′)–(s)

]

for s ≥  is the Legendre transform of G, which satisfies

tt ≤ G(t) + G∗(t).

for t, t ≥ . Denoting

t = G–(–sg(s)‖ηx‖), t =
CτG′(εE(t))g(s)

G–(–Csg ′(s))
,
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from (.) we see that

∫ ∞


g(s)

∥
∥ηx(s)

∥
∥ ds ≤ –s

τG′(εE(t))

∫ ∞


g ′(s)

∥
∥ηx(s)

∥
∥ ds

+


τG′(εE(t))

∫ ∞


G∗

(
CτG′(εE(t))g(s)

G–(–Csg ′(s))

)
ds,

which, together with (.) and the inequality G∗(s) ≤ s(G′)–(s), gives

∫ ∞


g(s)

∥∥ηx(s)
∥∥ ds

≤ –s

τG′(εE(t))
E′(t)

+ C

∫ ∞



g(s)
G–(–Csg ′(s))

(
G′)–

(
CτG′(εE(t))g(s)

G–(–Csg ′(s))

)
ds. (.)

Using (.), we denote

sup
s>

g(s)
G–(–g ′(s))

= b < +∞.

By the properties of G we get the function (G′)– is nondecreasing. Then taking s = 
C

,
we conclude from (.) that

∫ ∞


g(s)

∥
∥ηx(s)

∥
∥ ds ≤ –

CτG′(εE(t))
E′(t)

+ C
(
G′)–(CbτG′(εE(t)

))∫ ∞



g(s)
G–(–g ′(s))

ds. (.)

Similarly, denoting

∫ ∞



g(s)
G–(–g ′(s))

ds = d < +∞

and picking τ = 
Cb , we infer from (.) that

∫ ∞


g(s)

∥∥ηx(s)
∥∥ ds ≤ –b

G′(εE(t))
E′(t) + C dεE(t),

which gives (.). �

Proof of Theorem . Multiplying (.) by G′(εE(t)) and using (.), we obtain

G′(εE(t)
)
L′(t) ≤ –(c – cγε)E(t)G′(εE(t)

)
– γcE′(t).

Taking ε small enough so that c – cγε > , we get that there exists a constant c > 
such that

G′(εE(t)
)
L′(t) + γcE′(t) ≤ –cE(t)G′(εE(t)

)
. (.)
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Define

E(t) = τ
(
G′(εE(t)

)
L(t) + γcE(t)

)

with τ > . Noting that G′(εE(t)) is nonincreasing, we can easily get from (.) that

E ′(t) ≤ –cτG′(εE(t)
)
E(t). (.)

Using (.) and the inequality G′(εE(t)) ≤ G′(εE()), we can get that there exist two pos-
itive constants β and β such that

βE(t) ≤ E(t) ≤ βE(t).

Choose τ >  small enough so that

E(t) ≤ E(t), E() ≤ . (.)

Noting that s �→ sG′(εs) is nondecreasing, from (.) we obtain

E ′(t) ≤ –cE(t)G′(εE(t)
)

(.)

with c = cτ . This shows that (H(E(t)))′ ≥ c, where

H(t) =
∫ 

t


sG′(εs)

ds.

Integrating it over [, t], we see that

H
(
E(t)

) ≥ ct + H
(
E()

)
,

which, together with (.) and H() = , implies

H
(
E(t)

) ≥ ct.

Since H– is decreasing, we get

E(t) ≤ H–(ct).

Then (.) follows from the equivalence E(t) ∼ E(t). �

Remark . Condition (.) allows g to have a decay rate close to 
t , and the rate of energy

decay (.) depends on g .

Finally, we give three examples to illustrate several rates of energy decay, which can be
found in Guesmia [].
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Example  Let g(t) = μ

(+t)p with p >  and μ >  small enough so that (.) holds. Con-

dition (.) is satisfied for G(t) = t+ 
q with q ∈ (, p–

 ). Then from (.) we get that there
exists a constant β >  such that, for any q ∈ (, p–

 ),

E(t) ≤ β

( + t)q .

Example  Let g(t) = μe–(ln(+t))p with p >  and μ >  small enough so that (.) holds.
For

G(t) =
∫ t


(– ln s)– 

q e–(– ln s)

q ds,

when t is near zero, (.) holds with with q ∈ (, p). Then from (.) we get that there exist
two constants β >  and β >  such that, for any q ∈ (, p),

E(t) ≤ βe–β(ln(+t))q
.

Example  Let g(t) = μe–(+t)p with p ∈ (, ) and μ >  small enough so that (.) holds.
For

G(t) =
∫ t


(– ln s)– 

q ds,

when t is near zero, (.) holds with q ∈ (, p
 ). Then from (.) we get that there exist two

constants β >  and β >  such that, for any q ∈ (, p
 ),

E(t) ≤ βe–βtq .

4 Conclusions
In this work, we consider a model to the longitudinal vibrations of a beam equation with
thermoviscoelastic damping. Motivated by Dafermos [], we introduce a new variable,
and the system is transformed into a new system. We give the global existence of solutions
without proof. The main result is the energy decay of solutions. Under suitable assump-
tions, we established a general decay result of energy for the initial value problem by using
the energy perturbation method and some properties of convex functions. Finally, we give
three examples, which can be found in Guesmia [], to illustrate several rates of energy
decay.
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