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Abstract
In this paper, we are concerned with the existence and uniqueness of solutions for
impulsive fractional integro-differential equation of mixed type with constant
coefficient and antiperiodic boundary condition. Our results are based on the Banach
contraction mapping principle and the Krasnoselskii fixed point theorem. Some
examples are also given to illustrate our results.
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1 Introduction
Fractional differential equations appear naturally in a number of fields such as physics,
chemistry, electromagnetic, engineering, control, and other branches; see [–] and the
references therein. Fractional differential equations have recently gained much impor-
tance and attention. The study of fractional differential equations ranges from the the-
oretical aspects of the existence of solutions to the analytic and numerical methods for
finding solutions.

Impulsive differential equations arising from the real world describe the dynamics of
processes in which sudden discontinuous jumps occur. Such processes are naturally seen
in physics, engineering, biology, and so on. Due to their significance, it is important to
study the solvability of impulsive differential equations. Impulsive differential equations
of fractional order have not been much studied, and many aspects of these equations are
yet to be explored. The recent results on impulsive fractional differential equations can be
found in [–] and the references therein.

Recently, the boundary value problem of impulsive fractional differential equations with
antiperiodic boundary conditions have been studied in the literature; see [–]. The
authors of [–] investigated the following antiperiodic boundary value problem for
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impulsive differential equations of fractional order:

⎧
⎪⎪⎨

⎪⎪⎩

cDqu(t) = f (t, u(t)), t ∈ [, T] \ {t, t, . . . , tm},  < q ≤ ,

�u|t=tk = Ik(u(tk)), �u′|t=tk = Jk(u(tk)), k = , , . . . , m,

u() = –u(T), u′() = –u′(T),

where cDq is the Caputo fractional derivative of order q, f : [, T] × R → R is continuous,
Ik , Jk : R → R, R = (–∞, +∞),  = t < t < · · · < tm < tm+ = T . By applying the Banach
contraction mapping principle, Krasnoselskii fixed point theorem, Schaefer fixed point
theorem, and a nonlinear alternative of the Leray-Schauder-type theorem, some existence
results of solutions are obtained.

However, the existence and uniqueness of solutions to impulsive fractional differential
equations for antiperiodic boundary value problems with constant coefficients seem to
be rarely involved. It should be pointed out that Kilbas et al. (see (..)-(..) in [])
obtained that the solution u of the linear fractional differential equation with constant
coefficients

⎧
⎨

⎩

cDqu(t) + λu(t) = h(t), t ∈ [, ],  < q < ,

u() = u,
(.)

is given by

u(t) = Eq
(
–tqλ

)
u +

∫ t


(t – s)q–Eq,q

(
–(t – s)qλ

)
h(s) ds, t ∈ [, ],

where Eq and Eq,q are the so-called classical and generalized Mittag-Leffler functions.
More recently, Wang and Lin [] studied antiperiodic boundary value problems for

impulsive fractional differential equations with constant coefficients

⎧
⎪⎪⎨

⎪⎪⎩

cDqu(t) + λu(t) = f (t, u(t)), t ∈ J ′ = J \ {t, t, . . . , tm},  < q < ,

�u|t=tk = u(t+
k ) – u(t–

k ) = yk , k = , , . . . , m,

u() = –u(),

(.)

where λ > , yk ∈ R, cDq is the Caputo fractional derivative of order q ∈ (, ), f : J ×R → R,
J = [, ], and the fixed impulsive times tk satisfy  = t < t < · · · < tm < tm+ = . By means
of fixed point theorems, some sufficient conditions on the existence and uniqueness of
solutions for problem (.) are established under Lipschitz and nonlinear growth condi-
tions.

Motivated by the works mentioned and many known results, in this paper, we are con-
cerned with the existence and uniqueness of solutions for impulsive fractional integro-
differential equation of mixed type with constant coefficients and antiperiodic boundary
condition

⎧
⎪⎪⎨

⎪⎪⎩

cDqu(t) + λu(t) = f (t, u(t), Tu(t), Su(t)), t ∈ J ′ = J \ {t, t, . . . , tm},
�u|t=tk = Ik(u(tk)), k = , , . . . , m,

u() = –u(),

(.)
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where cDq is the Caputo fractional derivative of order q ∈ (, ), λ > ,  = t < t < · · · <
tm < tm+ = , f ∈ C(J ×R×R×R, R), J = [, ], R is the set of real numbers, �u|t=tk denotes
the jump of u(t) at t = tk , that is, �u|t=tk = u(t+

k ) – u(t–
k ), where u(t+

k ) and u(t–
k ) represent the

right and left limits of u(t) at t = tk , respectively, T and S are the linear operators defined
by

(Tu)(t) =
∫ t


k(t, s)u(s) ds and (Su)(t) =

∫ 


h(t, s)u(s) ds, t ∈ J ,

where k ∈ C(D, R), D = {(t, s) ∈ J × J : t ≥ s}, and h ∈ C(J × J , R).
At present, the concept of solutions for impulsive fractional differential equations has

been argued extensively. There are some ways to consider the notion of solution for im-
pulsive fractional differential equations; for example, see [–]. In this paper, we adopt
the formula of the solution in Lemma ., which comes from [].

This paper is arranged as follows. In Section , we present some definitions and pre-
liminary lemmas. In Section , we establish the existence and uniqueness of solutions for
the boundary value problem (.) by using the Banach contraction mapping principle and
Krasnoselskii fixed point theorem. Some illustrated examples are presented in Section .

2 Preliminaries and lemmas
Let J = [, t], J = (t, t], . . . , Jm– = (tm–, tm], Jm = (tm, ], and

PC(J , R) =
{

u : J → R : u ∈ C(Jk , R), k = , , , . . . , m,

u
(
t+
k
)

and u
(
t–
k
)

exist, k = , . . . , m, and u
(
t–
k
)

= u(tk)
}

.

Then PC(J , R) is a Banach space with the norm ‖u‖PC = sup{|u(t)| : t ∈ J}. For a measurable
function μ : J → R, define the norm

‖μ‖Lp(J) =

⎧
⎨

⎩

(
∫

J |μ(t)|p dt)

p ,  ≤ p < ∞,

infmes(J)={supt∈J\J |u(t)|}, p = ∞.

Then Lp(J , R) is the Banach space of Lebesgue-measurable functions μ : J → R with
‖μ‖Lp(J) < ∞.

Definition . ([]) The fractional integral of order α with lower limit zero for a function
f : [,∞) → R is defined as

Iαf (t) =


�(α)

∫ t


(t – s)α–f (s) ds,

provided that the right-hand side is pointwise defined on [, +∞).

Definition . ([]) The Caputo derivative of order α for a function f : [,∞) → R can
be written as

cDαf (t) =


�(n – α)

(
d
dt

)n ∫ t



f (s) –
∑n–

k=
sk

k! f
(k)()

(t – s)α+–n ds, t > , n = [α] + ,

where [α] denotes the integer part of α.
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Remark . ([]) If f ∈ Cn[, +∞), then

cDαf (t) =


�(n – α)

∫ t


(t – s)n–α–f (n)(s) ds = In–αf (n)(t), t > , n = [α] + ,

that is, Definition . is just the usual Caputo fractional derivative. In this paper, we con-
sider an impulsive problem, so Definition . is appropriate.

Definition . A function u ∈ PC(J , R) is said to be a solution of problem (.) if it satisfies
the equation cDqu(t) + λu(t) = f (t, u(t), Su(t), Tu(t)) a.e. on J ′ and the conditions �u|t=tk =
Ik(u(tk)), k = , . . . , m, and u() = –u().

Lemma . ([]) The nonnegative functions Eq and Eq,q given by

Eq(z) =
∞∑

k=

zk

�(qk + )
, Eq,q(z) =

∞∑

k=

zk

�(qk + q)
,

have the following properties:
() For any λ >  and t ∈ J ,

Eq
(
–tqλ

) ≤ , Eq,q
(
–tqλ

) ≤ 
�(q)

.

Moreover,

Eq() = , Eq,q() =


�(q)
.

() For any λ >  and t, t ∈ J ,

Eq
(
–t

qλ
) → Eq

(
–t

qλ
)

as t → t,

Eq,q
(
–t

qλ
) → Eq,q

(
–t

qλ
)

as t → t.

() For any λ >  and t, t ∈ J such that t ≤ t,

Eq
(
–t

qλ
) ≤ Eq

(
–t

qλ
)
, Eq,q

(
–t

qλ
) ≤ Eq,q

(
–t

qλ
)
.

Lemma . ([]) Let M be a closed, convex, and nonempty subset of a Banach space X,
and let A, B be operators such that:

() Ax + By ∈ M whenever x, y ∈ M.
() A is compact and continuous.
() B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.

Lemma . ([]) Let X be a Banach space, and let J = [, T]. Suppose that W ⊂ PC(J , X)
satisfies the following conditions:

() W is a uniformly bounded subset of PC(J , X).
() W is equicontinuous in (tk , tk+), k = , , . . . , m, where t = , tm+ = T .
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() Its t-sections W (t) = {u(t) : u ∈ W , t ∈ J \ {t, . . . , tm}}, W (t+
k ) = {u(t+

k ) : u ∈ W }, and
W (t–

k ) = {u(t–
k ) : u ∈ W } are relatively compact subsets of X .

Then W is a relatively compact subset of PC(J , X).

Lemma . ([]) Let h : J → R be a continuous function. The function u given by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Eq(–λ)Eq(–tqλ)
+Eq(–λ)

∑m
i=

yi
Eq(–tq

i λ)
+

∫ t
 (t – s)q–Eq,q(–(t – s)qλ)h(s) ds

– Eq(–tqλ)
+Eq(–λ)

∫ 
 ( – s)q–Eq,q(–( – s)qλ)h(s) ds, t ∈ J,

Eq(–tqλ)
+Eq(–λ) {

∑m
i=

yi
Eq(–tq

i λ)
–

∫ 
 ( – s)q–Eq,q(–( – s)qλ)h(s) ds}

– Eq(–tqλ)
∑m

j=k+
yj

Eq(–tq
j λ)

+
∫ t

 (t – s)q–Eq,q(–(t – s)qλ)h(s) ds, t ∈ Jk , k = , , . . . , m – ,
Eq(–tqλ)
+Eq(–λ) {

∑m
i=

yi
Eq(–tq

i λ)
–

∫ 
 ( – s)q–Eq,q(–( – s)qλ)h(s) ds}

+
∫ t

 (t – s)q–Eq,q(–(t – s)qλ)h(s) ds, t ∈ Jm,

is a unique solution of the impulsive problem

⎧
⎪⎪⎨

⎪⎪⎩

cDqu(t) + λu(t) = h(t), t ∈ J ′,

�u|t=tk = yk , k = , , . . . , m,

u() = –u().

It follows from Lemma . that the solution of (.) can be expressed by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Eq(–λ)Eq(–tqλ)
+Eq(–λ)

∑m
i=

Ii(u(ti))
Eq(–tq

i λ)
+

∫ t
 (t – s)q–Eq,q(–(t – s)qλ)f (s, u(s), Tu(s), Su(s)) ds

– Eq(–tqλ)
+Eq(–λ)

∫ 
 ( – s)q–Eq,q(–( – s)qλ)f (s, u(s), Tu(s), Su(s)) ds, t ∈ J,

Eq(–tqλ)
+Eq(–λ) {

∑m
i=

Ii(u(ti))
Eq(–tq

i λ)
–

∫ 
 ( – s)q–Eq,q(–( – s)qλ)f (s, u(s), Tu(s), Su(s)) ds}

– Eq(–tqλ)
∑m

j=k+
Ij(u(tj))

Eq(–tq
j λ)

+
∫ t

 (t – s)q–Eq,q(–(t – s)qλ)f (s, u(s), Tu(s), Su(s)) ds,

t ∈ Jk , k = , , . . . , m – ,
Eq(–tqλ)
+Eq(–λ) {

∑m
i=

Ii(u(ti))
Eq(–tq

i λ)
–

∫ 
 ( – s)q–Eq,q(–( – s)qλ)f (s, u(s), Tu(s), Su(s)) ds}

+
∫ t

 (t – s)q–Eq,q(–(t – s)qλ)f (s, u(s), Tu(s), Su(s)) ds, t ∈ Jm.

3 Main results
Theorem . Assume that conditions (H)-(H) hold:

(H) There exist Li(t) ∈ C(J , (, +∞)) (i = , , ) such that

∣
∣f (t, u, v, w) – f (t, u, v, w)

∣
∣ ≤ L(t)|u – u| + L(t)|v – v| + L(t)|w – w|

for all t ∈ J and uj, vj, wj ∈ R, j = , .
(H) There exists a constant L >  such that

∣
∣Ik(u) – Ik(v)

∣
∣ ≤ L|u – v|, u, v ∈ R, k = , , . . . , m.
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(H)

χ =


| + Eq(–λ)|

( m∑

i=

L

|Eq(–tq
i λ)| +

(L + Lk + Lh)
�(q + )

)

< ,

where Lj = max{Lj(t) : t ∈ J}, j = , , , k = max{|k(t, s)| : (t, s) ∈ D}, and h = max{|h(t, s)| :
(t, s) ∈ J × J}.

Then the boundary value problem (.) has a unique solution.

Proof Let M = sup{|f (t, , , )| : t ∈ J}, M′ = max{|Ii()| : i = , , . . . , m}, and Br = {u ∈
PC(J , R) : ‖u‖PC ≤ r}, where

r ≥
∑m

i=
M′

|Eq(–tq
i λ)| + M

�(q+)

|+Eq(–λ)|
 – [

∑m
i=

L
|Eq(–tq

i λ)| + L+Lk+Lh
�(q+) ]

.

Define the operator F : Br → PC(J , R) by

Fu(t) =
Eq(–tqλ)

 + Eq(–λ)

{ m∑

i=

Ii(u(ti))
Eq(–tq

i λ)

–
∫ 


( – s)q–Eq,q

(
–( – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

}

– Eq
(
–tqλ

)
m∑

j=k+

Ij(u(tj))
Eq(–tq

j λ)

+
∫ t


(t – s)q–Eq,q

(
–(t – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds,

t ∈ Jk , k = , , , . . . , m.

First, we show that F(Br) ⊂ Br . For any u ∈ Br and t ∈ J , by Lemma . we have

∣
∣(Fu)(t)

∣
∣

≤ ∣
∣Eq

(
–tqλ

)∣
∣

∣
∣
∣
∣
∣


 + Eq(–λ)

{ m∑

i=

Ii(u(ti))
Eq(–tq

i λ)

–
∫ 


( – s)q–Eq,q

(
–( – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

}

–
m∑

j=k+

Ij(u(tj))
Eq(–tq

j λ)

∣
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t


(t – s)q–Eq,q

(
–(t – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

∣
∣
∣
∣

≤ 
| + Eq(–λ)|

{ m∑

i=

|Ii(u(ti))|
|Eq(–tq

i λ)| +


�(q)

∫ 


( – s)q–∣∣f

(
s, u(s), Tu(s), Su(s)

)∣
∣ds

}

+
m∑

i=

|Ii(u(ti))|
|Eq(–tq

i λ)| +


�(q)

∫ t


(t – s)q–∣∣f

(
s, u(s), Tu(s), Su(s)

)∣
∣ds

≤  + | + Eq(–λ)|
| + Eq(–λ)|

{ m∑

i=

|Ii(u(ti)) – Ii()| + M′

|Eq(–tq
i λ)|

}
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+


�(q)| + Eq(–λ)|
∫ 


( – s)q–∣∣f

(
s, u(s), Tu(s), Su(s)

)
– f (s, , , )

∣
∣ds

+


�(q)| + Eq(–λ)|
∫ 


( – s)q–∣∣f (s, , , )

∣
∣ds

+


�(q)

∫ t


(t – s)q–∣∣f

(
s, u(s), Tu(s), Su(s)

)
– f (s, , , )

∣
∣ds

+


�(q)

∫ t


(t – s)q–∣∣f (s, , , )

∣
∣ds

≤ 
| + Eq(–λ)|

m∑

i=

Lr + M′

|Eq(–tq
i λ)| +

M
�(q + )| + Eq(–λ)| +

M
�(q + )

+


�(q)| + Eq(–λ)|
∫ 


( – s)q–[L(s)

∣
∣u(s)

∣
∣ + L(s)

∣
∣Tu(s)

∣
∣ + L(s)

∣
∣Su(s)

∣
∣
]

ds

+


�(q)

∫ t


(t – s)q–[L(s)

∣
∣u(s)

∣
∣ + +L(s)

∣
∣Tu(s)

∣
∣ + L(s)

∣
∣Su(s)

∣
∣
]

ds

≤ 
| + Eq(–λ)|

{ m∑

i=

Lr + M′

|Eq(–tq
i λ)| +

M
�(q + )

}

+


�(q)| + Eq(–λ)|
∫ 


( – s)q–(Lr + Lkr + Lhr) ds

+


�(q)

∫ t


(t – s)q–(Lr + Lkr + Lhr) ds

≤ 
| + Eq(–λ)|

{ m∑

i=

M′

|Eq(–tq
i λ)| +

M
�(q + )

+

[ m∑

i=

L

|Eq(–tq
i λ)| +

L + Lk + Lh

�(q + )

]

r

}

≤ r.

Hence F(Br) ⊂ Br .
Next, we show that the operator F is a contraction mapping. For any t ∈ J and u, v ∈ Br ,

we obtain
∣
∣(Fu)(t) – (Fv)(t)

∣
∣

=

∣
∣
∣
∣
∣

Eq(–tqλ)
 + Eq(–λ)

{ m∑

i=

Ii(u(ti)) – Ii(v(ti))
Eq(–tq

i λ)

–
∫ 


( – s)q–Eq,q

(
–( – s)qλ

)(
f
(
s, u(s), Tu(s), Su(s)

)
– f

(
s, v(s), Tv(s), Sv(s)

))
ds

}

– Eq
(
–tqλ

)
m∑

j=k+

Ij(u(tj)) – Ij(v(tj))
Eq(–tq

j λ)

+
∫ t


(t – s)q–Eq,q

(
–(t – s)qλ

)(
f
(
s, u(s), Tu(s), Su(s)

)
– f

(
s, v(s), Tv(s), Sv(s)

))
ds

∣
∣
∣
∣
∣

≤
(


 + |Eq(–λ)| + 

) m∑

i=

L|u(ti) – v(ti)|
|Eq(–tq

i λ)| +


�(q)| + Eq(–λ)|
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·
∫ 


( – s)q–

{

L(s)
∣
∣u(s) – v(s)

∣
∣ + L(s)

∫ s



∣
∣k(s, τ )

∣
∣
∣
∣u(τ ) – v(τ )

∣
∣dτ

+ L(s)
∫ 



∣
∣h(s, τ )

∣
∣
∣
∣u(τ ) – v(τ )

∣
∣dτ

}

ds +


�(q)

∫ t


(t – s)q–

{

L(s)
∣
∣u(s) – v(s)

∣
∣

+ L(s)
∫ s



∣
∣k(s, τ )

∣
∣
∣
∣u(τ ) – v(τ )

∣
∣dτ + L(s)

∫ 



∣
∣h(s, τ )

∣
∣
∣
∣u(τ ) – v(τ )

∣
∣dτ

}

ds

≤ 
| + Eq(–λ)|

m∑

i=

L‖u – v‖PC

|Eq(–tq
i λ)| +


�(q)| + Eq(–λ)|

·
∫ 


( – s)q–(L‖u – v‖PC + Lk‖u – v‖PC + Lh‖u – v‖PC

)
ds

+


�(q)

∫ t


(t – s)q–(L‖u – v‖PC + Lk‖u – v‖PC + Lh‖u – v‖PC

)
ds

≤ 
| + Eq(–λ)|

( m∑

i=

L

|Eq(–tq
i λ)| +

(L + Lk + Lh)
�(q + )

)

‖u – v‖PC

= χ‖u – v‖PC .

Thus ‖Fu – Fv‖PC ≤ χ‖u – v‖PC . Then from the Banach contraction mapping principle it
follows that problem (.) has a unique solution. This completes the proof. �

Theorem . Assume that condition (H) and the following conditions (H)-(H) hold:

(H) There exist a function μ ∈ L 
σ (J , (, +∞)) ( < σ < q < ) and a nondecreasing function

ω ∈ C([,∞), (, +∞)) such that

∣
∣f

(
t, u(t), Tu(t), Su(t)

)∣
∣ ≤ μ(t)ω

(‖u‖PC
)
, u ∈ PC(J , R), t ∈ J .

(H)


| + Eq(–λ)|

( ‖μ‖
L


σ (J)

�(q)( q–σ

–σ
)–σ

lim inf
r→+∞

ω(r)
r

+
m∑

i=

L

|Eq(–tq
i λ)|

)

< .

Then the boundary value problem (.) has at least one solution.

Proof For r > , the set Br = {u ∈ PC(J , R) : ‖u‖PC ≤ r} is a bounded closed convex set in
PC(J , R). Define the operators P and Q on Br as

(Pu)(t) =
∫ t


(t – s)q–Eq,q

(
–(t – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

–
Eq(–tqλ)

 + Eq(–λ)

∫ 


( – s)q–Eq,q

(
–( – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds,

(Qu)(t) =
Eq(–tqλ)

 + Eq(–λ)

m∑

i=

Ii(u(ti))
Eq(–tq

i λ)
– Eq

(
–tqλ

)
m∑

j=k+

Ij(u(tj))
Eq(–tq

j λ)
.
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By (H) and the Hölder inequality, for any u ∈ Br , we have
∫ t



∣
∣(t – s)q–f

(
s, u(s), Tu(s), Su(s)

)∣
∣ds

≤
∫ t



∣
∣(t – s)q–μ(s)ω(r)

∣
∣ds

≤
(∫ t


(t – s)

q–
–σ ds

)–σ (∫ t



(
ω(r)μ(s)

) 
σ ds

)σ

≤ tq–σ

( q–σ

–σ
)–σ

ω(r)‖μ‖
L


σ (J)

≤
‖μ‖

L

σ (J)

( q–σ

–σ
)–σ

ω(r).

Similarly, we have

∫ 



∣
∣( – s)q–f

(
s, u(s), Tu(s), Su(s)

)∣
∣ds ≤

‖μ‖
L


σ (J)

( q–σ

–σ
)–σ

ω(r).

Next, we show that there exists r >  with Pu + Qv ∈ Br for u, v ∈ Br . If this were
not true, then, for each r > , there would exist ur , vr ∈ Br and tr ∈ J such that |(Pur)(tr) +
(Qvr)(tr)| > r. Assumption (H) implies |Ii(u(ti))| ≤ |Ii(u(ti)) – Ii()| + |Ii()| ≤ Lr + M′.
Hence

r <
∣
∣(Pur)(tr) + (Qvr)(tr)

∣
∣

≤
‖μ‖

L

σ (J)

�(q)| + Eq(–λ)|( q–σ

–σ
)–σ

ω(r)

+
‖μ‖

L

σ (J)

�(q)( q–σ

–σ
)–σ

ω(r) +


| + Eq(–λ)|
m∑

i=

Lr + M′

|Eq(–tiqλ)| +
m∑

i=

Lr + M′

|Eq(–tiqλ)|

=

( ‖μ‖
L


σ (J)

�(q)( q–σ

–σ
)–σ

ω(r) +
m∑

i=

Lr + M′

|Eq(–tiqλ)|

)(

 +


| + Eq(–λ)|
)

≤ 
| + Eq(–λ)|

( ‖μ‖
L


σ (J)

�(q)( q–σ

–σ
)–σ

ω(r) +
m∑

i=

Lr + M′

|Eq(–tiqλ)|

)

.

Dividing both sides by r and taking the lower limit as r → +∞, we obtain

 ≤ 
| + Eq(–λ)|

( ‖μ‖
L


σ (J)

�(q)( q–σ

–σ
)–σ

lim inf
r→∞

ω(r)
r

+
m∑

i=

L

|Eq(–tq
i λ)|

)

,

which contradicts condition (H). Thus, there exists r >  such that Pu + Qv ∈ Br for all
u, v ∈ Br .

For all t ∈ J and u, v ∈ Br , we get

∣
∣(Qu)(t) – (Qv)(t)

∣
∣

≤ |Eq(–tqλ)|
| + Eq(–λ)|

m∑

i=

|Ii(u(ti)) – Ii(v(ti))|
|Eq

(
–tq

i λ
)|
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+
∣
∣Eq

(
–tqλ

)∣
∣

m∑

i=

|Ii(u(ti)) – Ii(v(ti))|
|Eq(–tq

i λ)|

≤
m∑

i=

|Ii(u(ti)) – Ii(v(ti))|
|Eq(–tq

i λ)|
(

 +


| + Eq(–λ)|
)

≤ 
| + Eq(–λ)|

m∑

i=

L|u(ti) – v(ti)|
|Eq(–tq

i λ)|

≤ 
| + Eq(–λ)|

m∑

i=

L‖u – v‖PC

|Eq(–tq
i λ)| .

Let χ ′ = 
|+Eq(–λ)|

∑m
i=

L
|Eq(–tq

i λ)| . From (H) we have  < χ ′ <  and ‖Qu – Qv‖PC ≤ χ ′‖u –
v‖PC , so Q is a contraction mapping.

The continuity of f implies that the operator P is continuous. We now prove that P is a
compact operator. Following the procedure used in the first part of Theorem ., it follows
that P(Br) is uniformly bounded on PC(J , R). We now show that P(Br) is equicontinuous
on Jk (k = , . . . , m). Let 
 = J × Br × TBr × SBr and f = sup(t,u,Tu,Su)∈
 |f (t, u, Tu, Su)|. Then,
for any tk < τ < τ ≤ tk+, we have

∣
∣(Pu)(τ) – (Pu)(τ)

∣
∣

≤
∣
∣
∣
∣

∫ τ


(τ – s)q–Eq,q

(
–(τ – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

–
∫ τ


(τ – s)q–Eq,q

(
–(τ – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣
Eq(–τ

qλ) – Eq(–τ
qλ)

 + Eq(–λ)

∫ 


( – s)q–Eq,q

(
–( – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ τ


(τ – s)q–Eq,q

(
–(τ – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

–
∫ τ


(τ – s)q–Eq,q

(
–(τ – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

+
∫ τ


(τ – s)q–Eq,q

(
–(τ – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

–
∫ τ


(τ – s)q–Eq,q

(
–(τ – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

–
∫ τ

τ

(τ – s)q–Eq,q
(
–(τ – s)qλ

)
f
(
s, u(s), Tu(s), Su(s)

)
ds

∣
∣
∣
∣

+
|Eq(–τ

qλ) – Eq(–τ
qλ)|

�(q)| + Eq(–λ)|
∫ 


( – s)q–∣∣f

(
s, u(s), Tu(s), Su(s)

)∣
∣ds

≤
∫ τ



∣
∣(τ – s)q– – (τ – s)q–∣∣

∣
∣Eq,q

(
–(τ – s)qλ

)∣
∣f ds

+
∫ τ


(τ – s)q–∣∣Eq,q

(
–(τ – s)qλ

)
– Eq,q

(
–(τ – s)qλ

)∣
∣f ds

+
f

�(q)

∣
∣
∣
∣

∫ τ

τ

(τ – s)q– ds
∣
∣
∣
∣ +

|Eq(–τ
qλ) – Eq(–τ

qλ)|f
�(q + )| + Eq(–λ)|

≤ f
�(q)

∣
∣
∣
∣

∫ τ



(
(τ – s)q– – (τ – s)q–)ds

∣
∣
∣
∣ +

(τ – τ)qf
�(q + )

+
|Eq(–τ

qλ) – Eq(–τ
qλ)|f

�(q + )| + Eq(–λ)|
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+ f
∫ τ


(τ – s)q–∣∣Eq,q

(
–(τ – s)qλ

)
– Eq,q

(
–(τ – s)qλ

)∣
∣ds

≤ (τ – τ)q + τ
q
 – τ

q


�(q + )
f +

(τ – τ)qf
�(q + )

+
|Eq(–τ

qλ) – Eq(–τ
qλ)|f

�(q + )| + Eq(–λ)|

+ f
∫ τ


(τ – s)q–∣∣Eq,q

(
–(τ – s)qλ

)
– Eq,q

(
–(τ – s)qλ

)∣
∣ds.

By Lemma .() we know that Eq,q(–tqλ) is continuous on t ∈ J , and thus Eq,q(–tqλ) is
uniformly continuous on t ∈ J . Hence, for any ε > , there is a sufficiently small δ >  such
that, for t, t ∈ J with |t – t| < δ, we have

∣
∣Eq,q

(
–tq

 λ
)

– Eq,q
(
–tq

λ
)∣
∣ <

ε

τ
q

–q


.

Let σ = –q
(–q) and σ = –q

q . Then σ > , σ > , and 
σ

+ 
σ

= . By the Hölder inequality
we have

∫ τ


(τ – s)q–∣∣Eq,q

(
–(τ – s)qλ

)
– Eq,q

(
–(τ – s)qλ

)∣
∣ds

≤
[∫ τ


(τ – s)(q–) –q

(–q) ds
] (–q)

–q

·
[∫ τ



(
Eq,q

(
–(τ – s)qλ

)
– Eq,q

(
–(τ – s)qλ

)) –q
q ds

] q
–q

≤
[

τ
q


 – (τ – τ)
q


q


] (–q)
–q ·

[∫ τ



(
ε

τ
q

–q


) –q
q

ds
] q

–q

=
[

τ
q


 – (τ – τ)
q


q

] (–q)
–q · ε,

so
∫ τ

 (τ – s)q–|Eq,q(–(τ – s)qλ) – Eq,q(–(τ – s)qλ)|ds tends to zero as τ → τ. Therefore,
|(Pu)(τ) – (Pu)(τ)| tends to zero as τ → τ. This yields that P is equicontinuous on the
interval Jk .

Combining the above arguments and the PC-type Arzelà-Ascoli theorem (Lemma . in
the case X = R), we conclude that P : Br → Br is compact and completely continuous. Then
it follows from Lemma . that problem (.) has at least one solution. This completes the
proof. �

4 Examples
In this section, we give two examples to illustrate our main results.

Example . Consider the following impulsive fractional integro-differential equation
with antiperiodic boundary condition:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cD 
 u(t) + u(t) = u(t)+

(et+) + 
t+

∫ t


u(s)
e(t+)s ds

+ √
t+

∫ 


u(s)
(+t+s) ds, t ∈ [, ] \ { 

 },
�u|t= 


= |u( 

 )|
+|u( 

 )| ,

u() = –u(),

(.)
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Let

f (t, u, v, w) =
u + 

(et + )
+

v
t + 

+
w√
t + 

, Ik(u) =
|u|

 + |u| ,

(Tu)(t) =
∫ t


e–(t+)su(s) ds, (Su)(t) =

∫ 



u(s)
( + t + s) ds.

By direct computation, k = max{ 
e(t+)s :  ≤ s ≤ t ≤ } =  and h = max{ 

(+t+s) :  ≤ s, t ≤
} = 

 . For u, u, v, v,ω,ω ∈ R and t ∈ J , we have

∣
∣f (t, u, v, w) – f (t, u, v, w)

∣
∣

≤ 
(et + )

|u – u| +


t + 
|v – v| +

√
t + 

|w – w|,
∣
∣Ik(u) – Ik(u)

∣
∣ ≤ 


|u – u|.

Let

L(t) =


(et + )
, L(t) =


t + 

,

L(t) =
√

t + 
, L =




.

It is easy to see that L = 
 , L = 

 , L = 
 , E 


(–) =

+ π–√
π

+
√

π+(π–) ≈ ., E 


(–( 
 ) 

 ) ≈ .,
�( 

 ) = 

√

π ≈ .,

χ =


| + E 


(–)|
(

L

|E 


(–( 
 ) 

 )|
+

(L + Lk + Lh)
�( 

 )

)

≈ 
 + .

( 


.
+


 + 

 + 
 × 


.

)

< .

Then by Theorem . problem (.) has a unique solution.

Example . Consider the following impulsive antiperiodic problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cD 
 u(t) + u(t) = (

√t+
 + 

 √t+
) |u(t)|

+|u(t)| +
√t+
et sin(

∫ t
 sin(t – s)u(s) ds)

+ 
 √t+

cos(
∫ 


u(s)
+ts ds), t ∈ [, ] \ { 

 },
�u|t= 


= |u( 

 )|
+|u( 

 )| ,

u() = –u(),

(.)

where

f (t, u, v, w) =
( √t + 


+


 √t + 

) |u|
 + |u| +

√t + 
et sin v +


 √t + 

cos w.
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By computation we obtain

∣
∣f (t, u, Tu, Su)

∣
∣ ≤

√t + 


+


 √t + 
+

√t + 


‖u‖PC +


 √t + 
‖u‖PC

=
( √t + 


+


 √t + 

)
(‖u‖PC + 

)
.

Let μ(t) =
√t+
 + 

 √t+
, σ = 

 , and ω(r) = r + . Then lim infr→∞ ω(r)
r =  and L = 

 . Thus,

{ 


E 


(–( 
 ) 

 )
+

[
∫ 

 (
√t+
 + 

 √t+
) dt] 



�( 
 )(


 – 


– 


)– 



}


 + E 


(–)
≈ . < .

By Theorem . problem (.) has at least one solution.

5 Conclusion
In this paper, we are concerned with the existence and uniqueness of solutions for impul-
sive fractional integro-differential equation of mixed type with constant coefficient and
antiperiodic boundary condition. The paper has several new features. First, we consider
the impulsive fractional integro-differential equation of mixed type, that is, the nonlinear
f involves linear operators T and S. The second new feature is that we studied antiperiodic
boundary value problems with constant coefficients. Our results are based on the Banach
contraction mapping principle and the Krasnoselskii fixed point theorem.
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