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1 Introduction and main results
In this paper, we study the existence of weak solutions for the following (p, q)-Laplacian
system:

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = 
α+ Gu(x, u, v) in �,

–�qv = 
β+ Gv(x, u, v) in �,

u = v =  on ∂�,

()

where � is a bounded domain with smooth boundary in RN (N ≥ ),  < p, q < N , –�pu =
– div(|∇u|p–∇u) is the p-Laplacian operator, the nonlinearity G ∈ C(�̄ × R, R) has the
continuous derivatives Gs(x, s, t), Gt(x, s, t) with respect to s and t for any x ∈ �, and there
exist p < p < p∗, q < q < q∗, and c >  such that

∣
∣Gs(x, s, t)

∣
∣ ≤ c

(
 + |s|p– + |t|q(p–)/p

)
, ()

∣
∣Gt(x, s, t)

∣
∣ ≤ c

(
 + |s|p(q–)/q + |t|q–), ()

for any (x, s, t) ∈ � × R, where p∗ := Np
N–p is the critical Sobolev exponent of p, as is the

case for q∗.
Let W = W ,p

 (�) × W ,q
 (�) be the product space with the norm

∥
∥(u, v)

∥
∥ = ‖u‖p + ‖v‖q for any (u, v) ∈ W ,

where W ,p
 (�) is the usual Banach space with the norm ‖u‖p = (

∫

�
|∇u|p dx)/p for any

u ∈ W ,p
 (�). From Sobolev’s embedding theorem, the embedding W ,p

 (�) ↪→ Lθ (�) is
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continuous and compact for any θ ∈ (, p∗) and there is a constant C = C(N , θ ,�) >  such
that

‖u‖Lθ ≤ C‖u‖p ∀u ∈ W ,p
 (�), ()

where ‖ · ‖Lθ denotes the norm of Lθ (�). Throughout this paper, C always denotes an
embedding constant with relation to ().

In the past decades, many authors have considered the existence and multiplicity of weak
solutions for the elliptic equations and the elliptic systems by the variational method (see
[–] for the semilinear elliptic equations, [, ] for the semilinear elliptic systems, [–]
for p-Laplacian equations, [, ] for p-Laplacian systems, [–] for (p, q)-elliptic sys-
tems, and references therein). The well known mountain pass theorem, the saddle point
theorem, and the linking theorem by Rabinowitz (see []) are the three very important
abstract critical point theorems to study the existence of weak solutions for a class of semi-
linear elliptic equations and elliptic systems with variational structure. However, because
–�p is no longer a linear operator and W ,p

 (�) is a Banach space, the saddle point theo-
rem and the linking theorem fail for the p-Laplacian equations and p-Laplacian systems. In
, with the aid of the Z-cohomological index of Fadell and Rabinowitz, Degiovanni
and Lancelotti [] established new linking structures over cones, corresponding to the
saddle point theorem and the linking theorem by Rabinowitz, which have been widely ap-
plied to investigate the existence of weak solutions for p-Laplacian equations and systems,
where a set E of W ,p

 (�) is said to be a cone, if tu ∈ E for any u ∈ E and t > . The prob-
lem becomes more complicated for (p, q)-Laplacian systems, but there are many papers
to study the existence and multiplicity of nontrivial solutions for (p, q)-Laplacian systems
(see, for example, [, ] for the resonance case, [, ] for the superquadratic case, and
[] for the critical case). Especially, in [], under the asymptotic noncrossing conditions
and the nonquadraticity conditions, Costa proved that there was at least a weak solution
for the semilinear elliptic systems by using the saddle point theorem and they proved there
was at least a nontrivial solution for the semilinear elliptic systems under the crossing con-
dition by using the linking theorem. In [], with the aid of the mountain pass theorem,
Boccardo and Guedes De Figueiredo proved that there exists a nontrivial solution of sys-
tem () with α = β =  when the crossing condition happens at the first eigenvalue of some
kind of the eigenvalue problem with the weights. In [], Ou and Tang also proved that
there was a nontrivial solution of system () where the nonlinearity crossed two eigenval-
ues of the corresponding eigenvalue problem.

Inspired by [, , ], in this paper, we will extend the linking structures over cones to
the product space W = W ,p

 (�) × W ,q
 (�) and then study the existence of weak solutions

for system () under the asymptotic noncrossing condition and the crossing condition,
respectively.

We first recall the following nonlinear eigenvalue problem (the details can be found in
[]):

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = λ|u|p–u + λ|u|α–|v|β+u in �,

–�qv = λ|v|q–v + λ|u|α+|v|β–v in �,

u = v =  on ∂�,

()
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where α ≥ , β ≥  satisfy

α + 
p

+
β + 

q
= .

Define the functionals φ,ϕ on W as follows:

φ(u, v) =
α + 

p

∫

�

|∇u|p dx +
β + 

q

∫

�

|∇v|q dx,

ϕ(u, v) =
α + 

p

∫

�

|u|p dx +
β + 

q

∫

�

|v|q dx +
∫

�

|u|α+|v|β+ dx.

Define the manifold

� =
{

(u, v) ∈ W : ϕ(u, v) = 
}

.

We can easily prove that φ(u, v),ϕ(u, v) are (p, q)-homogeneous, i.e.,

φ
(
t/pu, t/qv

)
= tφ(u, v), ϕ

(
t/pu, t/qv

)
= tϕ(u, v) for any t >  and (u, v) ∈ W ,

and � is a symmetric nonempty manifold in W . Denote by i the Z-cohomological index of
Fadell and Rabinowitz (see []) and A = {A ⊂ � : A is a compact symmetric set}. Define

�k =
{

A ∈A : i(A) ≥ k
}

.

The eigenvalues of problem () can be variationally characterized as follows:

λk = inf
A∈�k

sup
(u,v)∈A

φ(u, v),

where  < λ < λ ≤ · · · ≤ λk ≤ · · · , λk → ∞ as k → ∞. It is not clear whether the se-
quence {λk}k∈N contains all the eigenvalues of problem (), but we will refer to {λk}k∈N as
the variational eigenvalues of problem (). Since φ(u, v),ϕ(u, v) are (p, q)-homogeneous,
the eigenfunction space corresponding to λk

Eλk :=
{

(u, v) ∈ W : φ(u, v) = λkϕ(u, v)
}

is not the cone, but is a (p, q)-set, that is,

(
t


p u, t


q v

) ∈ Eλk for any t ≥  and (u, v) ∈ Eλk .

Let

F(s, t) :=
α + 

p
|s|p +

β + 
q

|t|q + |s|α+|t|β+ for any (s, t) ∈ R,

H(x, s, t) :=

p

Gs(x, s, t)s +

q

Gt(x, s, t)t – G(x, s, t) for any (x, s, t) ∈ � × R.

The main results of this paper are the following theorems.
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Theorem  Assume () and () and suppose λk < λk+ are two consecutive eigenvalues of
(). If the following conditions hold:

lim
|(s,t)|→∞

H(x, s, t) = +∞ uniformly for x ∈ �, ()

λk < lim inf
|(s,t)|→∞

G(x, s, t)
F(s, t)

≤ lim sup
|(s,t)|→∞

G(x, s, t)
F(s, t)

≤ λk+ uniformly for x ∈ �, ()

then system () has at least a weak solution.

Theorem  Assume () and () and suppose λk < λk+ are two consecutive eigenvalues of
(). If the nonlinearity G satisfies the following conditions:

lim
|(s,t)|→∞

H(x, s, t) = –∞ uniformly for x ∈ �, ()

λk ≤ lim inf
|(s,t)|→∞

G(x, s, t)
F(s, t)

≤ lim sup
|(s,t)|→∞

G(x, s, t)
F(s, t)

< λk+ uniformly for x ∈ �, ()

then system () has at least a weak solution.

Let μ = max{ p∗(p–)
p∗– , (q–)pq∗

q(q∗–) },ν = max{ q∗(q–)
q∗– , (p–)qp∗

p(p∗–) }. We assume

μ >

⎧
⎨

⎩

max{ (q–)p
q(p–) ,μ} if p ≤ q,

max{ p–
p– ,μ} if p < q,

ν >

⎧
⎨

⎩

max{ q–
p– ,ν} if p ≤ q,

max{ (p–)q
p(p–) ν} if p < q,

()

for the case p ≤ q, and

μ >

⎧
⎨

⎩

max{ (q–)p
q(q–) ,μ} if p ≤ q,

max{ p–
q– ,μ} if p < q,

ν >

⎧
⎨

⎩

max{ q–
q– ,ν} if p ≤ q,

max{ (p–)q
p(q–) ,ν} if p < q,

()

for the case p > q.

Theorem  Assume that λk < λk+ are two consecutive eigenvalues of () and suppose the
nonlinearity G satisfies (), (), and the crossing conditions

G(x, s, t) ≥ λkF(s, t) ∀(x, s, t) ∈ �̄ × R, ()

lim sup
|(s,t)|→

G(x, s, t)
F(s, t)

≤ α < λk+ < β ≤ lim inf
|(s,t)|→∞

G(x, s, t)
F(s, t)

uniformly for x ∈ �, ()

where α,β are the two constants. If one of the following conditions holds:

lim inf
|(s,t)|→∞

H(x, s, t)
|s|μ + |t|ν ≥ a >  uniformly for x ∈ �, ()

or

lim sup
|(s,t)|→∞

H(x, s, t)
|s|μ + |t|ν ≤ –a <  uniformly for x ∈ �, ()
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where a is a positive constant and μ,ν satisfy () or (), then system () has at least a
nontrivial weak solution in W .

Remark The conditions (), (), (), and () are the generalizations of the nonquadratic-
ity conditions from the semilinear elliptic equation to the (p, q)-elliptic systems, () and ()
are the asymptotic noncrossing conditions, and () is the crossing condition, introduced
by Costa and Magalhaés in [] and used to study the existence of weak solutions for the
elliptic equations and the elliptic systems (see [, –] and the references therein).

Costa and Magalhaés [] have proved the existence of a weak solution for the semilinear
elliptic equation under the nonquadraticity conditions and the asymptotic noncrossing
conditions by using the saddle point theorem by Rabinowitz (see []) and the existence
of a nontrivial solution under the nonquadraticity conditions and the crossing condition
by using the linking theorem by Rabinowitz (see []). As for the quasilinear elliptic equa-
tion, by using an abstract critical point theory, El Amrouss and Moussaoui in [] proved
the same result with Theorem  with k = . Ou and Li in [] obtained the same result with
Theorem  by using the G-linking theorem, where the eigenvalues of –�p are defined
by the cogenus. In [] Yuan and Ou proved the same conclusions as in [] by using the
linking theorem over cones by Degiovanni and Lancelotti (see []), where the eigenval-
ues of –�p are defined by the Z-cohomological index. However, as for the (p, q)-elliptic
systems, because the functional φ(u, v), ϕ(u, v) are (p, q)-homogeneous, the eigenfunction
space corresponding to the eigenvalue λk (k ≥ ) of problem () is not a cone. Hence the
linking theorem over cones cannot be applied to prove our theorems and we must prove
a new linking theorem on the product space W ,p

 (�) × W ,q
 (�) (see Lemma ).

As is well known, Perera and Schechter in [, , ] also proved similar results with
Theorem  and Theorem  by using the notion of sandwich pairs, in [, ] for p-
Laplacian problems and in [] for p-Laplacian systems. However, our results are different
from Theorem . of []. Condition () is about the growth of G(x, s, t) when |(s, t)| → ∞,
while condition (.) of Theorem . in [] is a global condition, that is,

λkJ(x, u) – W (x) ≤ F(x, u) ≤ λk+J(x, u) + W (x) ∀(x, u) ∈ � × Rm

for some W (x) ∈ L(�). On the other hand, our conditions () and () are weaker than
conditions (i) and (ii) of Lemma . of [], which result in the (Ce)c condition and the
(PS)c condition, respectively.

2 Proofs of theorems
We define the functional J : W → R as follows:

J(u, v) =
α + 

p

∫

�

|∇u|p dx +
β + 

q

∫

�

|∇v|q dx –
∫

�

G(x, u, v) dx. ()

From () and (), by a standard argument, the functional J is well defined and J ∈ C(W , R).
From the variational point of view, a weak solution of system () corresponds to a critical
point of the functional J in W . Theorem  is parallel to Theorem , hence we will only
prove Theorem  and Theorem . In the following, we will introduce an abstract critical
point theorem, which is based on a compactness condition - the (PS) condition or the (Ce)
condition - and on a linking structure.
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Definition  Let X be a real Banach space. The functional I satisfies the (PS)c condition
at the level c ∈ R, if any sequence {un} ⊂ X such that I(un) → c, I ′(un) →  as n → ∞ has
a convergent subsequence. The functional I satisfies the (PS) condition if I satisfies the
(PS)c condition at any c ∈ R.

Definition  The functional I satisfies the (Ce)c condition at the level c ∈ R, if any se-
quence {un} ⊂ X such that I(un) → c, (+‖un‖)‖I ′(un)‖X∗ →  as n → ∞ has a convergent
subsequence. The functional I satisfies the (Ce) condition if I satisfies the (Ce)c condition
at any c ∈ R.

The (Ce) condition was introduced by Cerami [] and it is a weaker version of the (PS)
condition. Next, we will introduce the notions of the relative homotopical linking and the
relative cohomotopical linking.

Definition  (see []) Let X be a metric space and S ⊂ P and B ⊂ A be four subsets of X.
We say that (P, S) links (A, B), if S∩A = B∩P = Ø and for every deformation η : P× [, ] →
X\B with η(S × [, ]) ∩ A = Ø we have η(P × {}) ∩ A �= Ø.

Definition  (see []) Let X be a metric space and S ⊂ P and B ⊂ A be four subsets
of X. Let m be a nonnegative integer and K be a field. We say that (P, S) links (A, B)
cohomologically in dimension m over K, if S ∩ A = B ∩ P = Ø and the restriction ho-
momorphism Hm(X\B, X\A,K) → Hm(P, S,K) is not identically zero, where H∗ denotes
Alexander-Spanier cohomology (see []).

Following from [], if (P, S) links (A, B) cohomologically, then (P, S) links (A, B).

Theorem A (see []) Let X be a Banach space and f ∈ C(X, R). Let A, B, P, S be four subsets
of X with S ⊂ P and B ⊂ A such that (P, S) links (A, B) and

sup
S

f ≤ inf
A

f , sup
P

f ≤ inf
B

f ,

where we agree that sup ø = –∞, inf ø = +∞. Define

c = inf
η∈N

sup f
(
η
(
P × {})),

where N is the set of deformations η : P × [, ] → X\B with η(S × [, ]) ∩ A = ø. Then we
have

inf
A

f ≤ c ≤ sup
P

f .

Moreover, if f satisfies the (PS)c condition or the (Ce)c condition, then c is a critical value
of f .

In the following, we will introduce the examples of the relative cohomological linking
on the product space W = W ,p

 (�) × W ,q
 (�) which are used to prove our theorems. The

main ideas come from [].
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For λk < λk+(k ≥ ), let

C�,– =
{

(u, v) ∈ � : φ(u, v) ≤ λk
}

, C�,+ =
{

(u, v) ∈ � : φ(u, v) ≥ λk+
}

,

C– =
{

(u, v) ∈ W : φ(u, v) ≤ λkϕ(u, v)
}

, C+ =
{

(u, v) ∈ W : φ(u, v) ≥ λk+ϕ(u, v)
}

.

It is easy to see that C�,–, C�,+, C–, C+ are the symmetric subsets such that C– ∩ C+ =
{(, )} and C–, C+ are the (p, q)-sets. From Theorem . of [] and Theorem . of
[], we have the following conclusion.

Lemma  Let λk < λk+ for some k ≥ . Then

i(C�,–) = i(C�,+) = k,

i
(
C–\{(, )

})
= i

({
(u, v) ∈ W : φ(u, v) < λk+ϕ(u, v)

})
= i(W \ C+) = k.

Moreover, (W , C–\{(, )}) links C+ cohomologically in dimension k = i (C–\{(, )}) over
Z.

For the sake of convenience of the reader, we introduce the following the so-called five
lemma (see []).

Lemma  (Five lemma) Given a commutative diagram of Abelian groups and homomor-
phisms

G
α−→ G

α−→ G
α−→ G

α−→ G

↓ ↓ ↓ ↓ ↓
H

β−→ H
β−→ H

β−→ H
β−→ H

in which each row is exact and γi : Gi → Hi are isomorphisms (i = , , , ), γ : G → H

is an isomorphism.

Lemma  For r– > , let

D– =
{

(u, v) ∈ C– : φ(u, v) ≤ r–
}

, S– =
{

(u, v) ∈ C– : φ(u, v) = r–
}

.

Then (D–, S–) links C+ cohomologically in dimension k = i(C–\{(, )}) over Z. Moreover,
for some (e, e) ∈ W\C–, let r– > r+ >  and

Q =
{

(u + te, v + te) : (u, v) ∈ C–, t ≥ ,φ(u + te, v + te) ≤ r–
}

,

H =
{

(u + te, v + te) : (u, v) ∈ C–, t ≥ ,φ(u + te, v + te) = r–
}

,

D+ =
{

(u, v) ∈ C+ : φ(u, v) ≤ r+
}

, S+ =
{

(u, v) ∈ C+ : φ(u, v) = r+
}

.

Then (Q, D– ∪ H) links S+ cohomologically in dimension k = i(C–\{(, )}) +  over Z.

Proof For the sake of convenience, we will miss the coefficient field Z.
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(a) Since S–, C–\{(, )}, D–, and W are homotopy equivalences, from Lemma , the
restriction homomorphism

Hk(W , C–\{(, )
}) → Hk(D–, S–)

is an isomorphism. Following from Lemma , (D–, S–) links C+ cohomologically in
dimension k = i(C–\{(, )}).

(b) Let

E+ =
{

(u, v) ∈ C+ : φ(u, v) ≥ r+
}

.

Since W\E+ is homeomorphic with a star shaped subset of W with respect to the
origin, H∗(W , W\E+) is trivial. From the exact sequence of triple
(W , W\E+, W\C+), the restriction homomorphism

Hk(W , W\C+) → Hk(W\E+, W\C+)

is an isomorphism. Hence, it follows from (a) that the restriction homomorphism

Hk(W\E+, W\C+) → Hk(D–, S–) ()

is not identically zero.
On the other hand, since E+ ∩ (W\S+) is a closed subset of W\S+ contained in the

open set W\D+, we have the excision isomorphism Hk(W\S+, W\D+) → Hk(W\E+,
W\C+). Following from (), (D–, S–) links (D+, S+) cohomologically in dimension k =
i(C–\{(, )}). Consider the diagram

Hk(W , W\D+) −→ Hk(W\S+, W\D+) −→ Hk+(W , W\S+)
↓ ↓ ↓

Hk(Q, H) −→ Hk(D– ∪ H , H) −→ Hk+(Q, D– ∪ H)
↓

Hk(D–, S–)

where vertical rows are restriction homomorphisms and horizontal rows come from exact
sequences of the triples (W , W\S+, W\D+) and (Q, D– ∪ H , H). The restriction homomor-
phism

Hk(W\S+, W\D+) → Hk(D– ∪ H , H)

does the same. Let (e, e) /∈ C–, (ũ, ṽ) = (( – t)u + te, ( – t)v + te) and define a contraction
ψ : H × [, ] → H by

ψ(u, v, t) =
((

r–

φ(ũ, ṽ)

)/p

ũ,
(

r–

φ(ũ, ṽ)

)/q

ṽ
)

.

Since Q is also contractible in itself, Hk(Q, H) is trivial. Consequently, from the exactness
of the second row, the map

Hk(D– ∪ H , H) → Hk+(Q, D– ∪ H)
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is injective. Therefore, from the commutativity of the right square, the restriction homo-
morphism Hk+(W , W\S+) → Hk+(Q, D– ∪ H) is not identically zero. �

Proof of Theorem 
() The functional J satisfies the (Ce) condition. Let (un, vn) be a (Ce) sequence for the

functional J , i.e., there is a positive constant M such that

∣
∣J(un, vn)

∣
∣ ≤ M and

∥
∥J ′(un, vn)

∥
∥
(
 + ‖un‖p + ‖vn‖q

) →  as n → ∞. ()

Since the nonlinearity G satisfies the subcritical growth conditions () and (), if
(un, vn) is bounded in W , by a standard argument, it follows that (un, vn) converges
strongly in W . Hence we only prove that (un, vn) is bounded in W . Arguing by
contradiction, we assume ‖(un, vn)‖ = ‖un‖p + ‖vn‖q → ∞ as n → ∞. Let
Kn := ‖un‖p

p + ‖vn‖q
q and it is easy to see that Kn → ∞ as n → ∞. Let

ūn = un \ K /p
n , v̄n = vn \ K /q

n . Then (ūn, v̄n) is bounded in W , i.e.,

‖ūn‖p
p + ‖v̄n‖q

q =  for all n.

We can choose a subsequence of (un, vn) if necessary, also denoted by (un, vn), and
there exists (ū, v̄) ∈ W such that

(ūn, v̄n) ⇀ (ū, v̄) weakly in W , ()

(ūn, v̄n) → (ū, v̄) strongly in Lθ (�) × Lθ (�), ()
(
ūn(x), v̄n(x)

) → (
ū(x), v̄(x)

)
for a.e. x ∈ �, ()

where θ ∈ (, p∗), θ ∈ (, q∗). Following from (), there is a constant M >  such
that

M ≥ lim inf
n→∞ J(un, vn) –

〈

J ′(un, vn),
(


p

un,

q

vn

)〉

= lim inf
n→∞

∫

�

(

p

Gs(x, un, vn)un +

q

Gt(x, un, vn)vn – G(x, un, vn)
)

dx

= lim inf
n→∞

∫

�

H(x, un, vn) dx. ()

In view of the right side of () and the continuity of G, for any ε > , there is
M := M(ε) >  such that

∣
∣G(x, s, t)

∣
∣ ≤ (λk+ + ε)F(s, t) + M ∀(x, s, t) ∈ �̄ × R.

Hence, from () and the Young inequality, we obtain

min

{
α + 

p
,
β + 

q

}
(‖un‖p

p + ‖vn‖q
q
)

≤ α + 
p

‖un‖p
p +

β + 
q

‖vn‖q
q
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≤ J(un, vn) +
∫

�

G(x, un, vn) dx

≤ M + (λk+ + ε)
∫

�

(
α + 

p
|un|p +

β + 
q

|vn|q + |un|α+|vn|β|+
)

dx

≤ M + M(λk+ + ε)
(‖un‖p

Lp + ‖vn‖q
Lq

)
,

where M = M + M|�|, M =  max{ α+
p , β+

q }. Dividing the above inequality by Kn

and letting n → ∞, it follows from () and () that

min

{
α + 

p
,
β + 

q

}

≤ M(λk+ + ε)
(‖ū‖p

Lp + ‖v̄‖q
Lq

)
.

Therefore, there exists a subset �̃ of � with positive measure, such that ū(x) �=  or
v̄(x) �=  for all x ∈ �̃. From the definitions of ūn and v̄n, we have |(un(x), vn(x))| → ∞
as n → ∞ for any x ∈ �̃. From (), there exists a positive constant M such that

H(x, s, t) ≥ M for any (x, s, t) ∈ �̄ × R.

From Fatou’s lemma, (), and the above inequality, we have

lim inf
n→∞

∫

�

H(x, un, vn) dx ≥
∫

�̃

lim inf
n→∞ H(x, un, vn) dx + M|� \ �̃| = +∞,

which is a contradiction to (). Therefore, we have proved that (un, vn) is bounded
in W .

() There is a positive constant r– such that

sup
(u,v)∈S–

J(u, v) < inf
(u,v)∈C+

J(u, v) and sup
(u,v)∈D–

J(u, v) < +∞,

where D– = {(u, v) ∈ C– : φ(u, v) ≤ r–}, S– = {(u, v) ∈ C– : φ(u, v) = r–}, C+ = {(u, v) ∈
W : φ(u, v) ≥ λk+ϕ(u, v)}. From the left side of () and the continuity of G, for any
ε > , there exists M = M(ε) >  such that

G(x, s, t) ≥ (λk + ε)F(s, t) – M for any (x, s, t) ∈ �̄ × R.

Hence, for any (u, v) ∈ C–, we obtain

J(u, v) ≤ α + 
p

∫

�

|∇u|p dx +
β + 

q

∫

�

|∇v|q dx

– (λk + ε)
∫

�

F(u, v) dx + M|�|

≤ –
ε

λk

(
α + 

p
‖u‖p

p +
β + 

q
‖v‖q

q

)

+ M|�|. ()

On the other hand, define

L(x, s, t) = G(x, s, t) – λk+F(s, t).
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By a simple calculation, we have

H(x, s, t) =

p

Gs(x, s, t)s +

q

Gt(x, s, t)t – G(x, s, t)

=

p

Ls(x, s, t)s +

q

Lt(x, s, t)t – L(x, s, t).

From (), for any M > , there exists a positive constant L such that

H(x, s, t) =

p

Gs(x, s, t)s +

q

Gt(x, s, t)t – G(x, s, t) ≥ M, ()

for any x ∈ � and |(s, t)| ≥ L. Moreover, for any (s̃, t̃) ∈ R with |(s̃, t̃)| = , from the
right side of (), we have

lim sup
τ→+∞

L(x, τ

p s̃, τ


q t̃)

τ
≤  uniformly for x ∈ �. ()

Hence, for τ ≥ L, we have

d
dτ

(
L(x, τ


p s̃, τ


q t̃)

τ

)

=

τ 

(

p

Ls
(
x, τ


p s̃, τ


q t̃

)
τ


p s̃ +


q

Lt
(
x, τ


p s̃, τ


q t̃

)
τ


q t̃ – L

(
x, τ


p s̃, τ


q t̃

)
)

≥ M

τ  .

Integrating the above inequality over the interval [T, T] ⊂ [L, +∞), we obtain

L(x, T

p

 s̃, T

q

 t̃)
T

–
L(x, T


p

 s̃, T

q

 t̃)
T

≥ M

(


T
–


T

)

.

Letting T → +∞, from (), we obtain

L
(
x, τ


p s̃, τ


q t̃

) ≤ –
M


for any x ∈ � and τ > L.

Therefore, it follows that

lim
τ→+∞ L

(
x, τ


p s̃, τ


q t̃

)
= –∞ uniformly for any x ∈ �.

Picking τ > , it follows from the above expression that, for any (u, v) ∈ C�,+,

J
(
τ


p u, τ


q v

)

=
τ (α + )

p

∫

�

|∇u|p dx +
τ (β + )

q

∫

�

|∇v|q dx –
∫

�

G
(
x, τ


p u, τ


q v

)
dx

=
τ (α + )

p

∫

�

|∇u|p dx +
τ (β + )

q

∫

�

|∇v|q dx – λk+τ

∫

�

F(u, v) dx
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–
∫

�

(
G

(
x, τ


p u, τ


q v

)
– λk+τF(u, v)

)
dx

≥ –
∫

�

L
(
x, τ


p u, τ


p v

)
dx

→ +∞,

as τ → +∞. From () and the above inequality, for fixed ε > , there exists a
positive constant r– such that

max
(u,v)∈S–

J(u, v) < inf
(u,v)∈C+

J(u, v),

which together with Theorem A and Lemma  implies that the functional J has a
critical point. It follows that Theorem  is proved.

�

Proof of Theorem 
() The functional J satisfies the (PS) condition. Without loss of generality, we consider

the case (). Let (un, vn) be a (PS) sequence of the functional J , that is,

J(un, vn) → c ∈ R and J ′(un, vn) →  as n → ∞. ()

Similar to Theorem , we only prove that (un, vn) is bounded in W . First of all, from
(), there is a positive constant M such that

H(x, s, t) ≥ a
(|s|μ + |t|ν) – M ∀(x, s, t) ∈ � × R.

Hence, it follows that

J(un, vn) –
〈

J ′(un, vn),
(


p

un,

q

vn

)〉

=
∫

�

H(x, un, vn) dx

≥ a
∫

�

(|un|μ + |vn|ν
)

dx – M|�|.

Combining () and the above inequality, we obtain

∫

�
(|un|μ dx + |vn|ν) dx
‖un‖p + ‖vn‖q

→  as n → ∞. ()

From the Hölder inequality, (), (), and (), we have

〈
J ′(un, vn), (un, vn)

〉

= (α + )‖un‖p
p + (β + )‖vn‖q

q –
∫

�

(
Gs(x, un, vn)un + Gt(x, un, vn)vn

)
dx

≥ (α + )‖un‖p
p + (β + )‖vn‖q

q –
∣
∣
∣
∣

∫

�

Gs(x, un, vn) · un dx
∣
∣
∣
∣

–
∣
∣
∣
∣

∫

�

Gt(x, un, vn) · vn dx
∣
∣
∣
∣
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≥ (α + )‖un‖p
p + (β + )‖vn‖q

q – c

∫

�

(|un| + |un|p–|un| + |un||vn|
(p–)q

p
)

dx

– c

∫

�

(|vn| + |vn|q–|vn| + |vn||un|
(q–)p

q
)

dx

≥ (α + )‖un‖p
p + (β + )‖vn‖q

q – c‖un‖L

– c

(∫

�

|un|(p–)· μ
p– dx

) p–
μ

·
(∫

�

|un|
μ

μ+–p dx
)μ+–p

μ

– c

(∫

�

|vn|
(p–)q

p
· pν

(p–)q dx
) (p–)q

pν

·
(∫

�

|un|
pν

pν+(–p)q dx
) pν+(–p)q

pν

– c‖vn‖L – c

(∫

�

|vn|(q–)· ν
q– dx

) q–
ν

·
(∫

�

|vn|
ν

ν+–q dx
) ν+–q

ν

– c

(∫

�

|un|
(q–)p

q
· qμ

(q–)p dx
) (q–)p

qμ

·
(∫

�

|vn|
qμ

qμ+(–q)p dx
) qμ+(–q)p

qμ

≥ (α + )‖un‖p
p + (β + )‖vn‖q

q – cC
(‖un‖p + ‖vn‖q

)

– cC‖un‖p
(‖un‖p–

Lμ + ‖vn‖
(p–)q

p
Lν

)

– cC‖vn‖q
(‖un‖

(q–)p
q

Lμ + ‖vn‖q–
Lν

)
, ()

for all n. Here we consider the case p < q and p ≤ q. The other cases can be proved
similarly. By a simple computation, we have

p –  <
(q – )p

q
,

(p – )q

p
< q – ,

and we assume that

‖un‖p–
Lμ < ‖un‖

(q–)p
q

Lμ , ‖vn‖
(p–)q

p
Lν < ‖vn‖q–

Lν .

Then in view of μ > (q–)p
q


p– and (), we have

‖un‖p‖un‖p–
Lμ + ‖vn‖q‖un‖

(q–)p
q

Lμ

‖un‖p
p + ‖vn‖q

q

≤ p–

p–
(‖un‖p + ‖vn‖q)‖un‖

(q–)p
q

Lμ

‖un‖p
p + ‖vn‖p

q

= p– ‖un‖
(q–)p

q
Lμ

(‖un‖p + ‖vn‖q)p–

→  as n → ∞. ()



Lv and Ou Boundary Value Problems  (2017) 2017:168 Page 14 of 16

Similarly, we have

‖un‖p‖vn‖
(p–)q

p
Lν + ‖vn‖q‖vn‖q–

Lν

‖un‖p
p + ‖vn‖q

q
→  as n → ∞.

Hence, following from (), (), and the above limit, we see that {(un, vn)} is
bounded in W .

() For some (e, e) ∈ W \ C–, there are two positive constants r– > r+ such that

sup
(u,v)∈D–∪H

J(u, v) < inf
(u,v)∈S+

J(u, v)

and

sup
(u,v)∈Q

J(u, v) < +∞,

where Q = {(u + te, v + te) : (u, v) ∈ C–, t ≥ ,φ(u + te, v + te) ≤ r–},
D– ∪ H = {(u, v) ∈ C– : φ(u, v) ≤ r–} ∪ {(u + te, v + te) : (u, v) ∈ C–, t >
,φ(u + te, v + te) = r–}, S+ = {(u, v) ∈ C+ : φ(u, v) = r+}.

From () and (), for any (u, v) ∈ C–, we obtain

J(u, v) ≤ α + 
p

∫

�

|∇u|p dx +
β + 

q

∫

�

|∇v|q dx – λk

∫

�

F(u, v) dx ≤ . ()

Picking a constant β̂ such that λk+ < β̂ < β, it follows from the right side of ()
that there exists a positive constant M such that

G(x, s, t) ≥ β̂F(s, t) – M, ∀(x, s, t) ∈ � × R.

Letting (e, e) ∈ W\C–, it follows from () and the above inequality that, for all
(u, v) ∈ {(u + te, v + te) : (u, v) ∈ C–, t > },

J(u, v) ≤ α + 
p

‖u‖p
p +

β + 
q

‖u‖q
q – β̂

∫

�

F(u, v) dx + M|�|

≤ λk+ – β̂

λk+

(
α + 

p
‖u‖p

p +
β + 

q
‖u‖q

q

)

+ M|�|,

which together with () shows there is r– >  such that

J(u, v) ≤ ,

for any (u, v) ∈ D– ∪ H = {(u, v) ∈ C– : φ(u, v) ≤ r–} ∪ {(u + te, v + te) : (u, v) ∈
C–, t > ,φ(u + te, v + te) = r–}.

On the other hand, choosing a constant α̂ such that α < α̂ < λk+, it follows from
the left side of () that there is δ >  such that

G(x, s, t) ≤ α̂F(s, t), ∀x ∈ �,
∣
∣(s, t)

∣
∣ ≤ δ. ()
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From (), (), and the Young inequality, for any (s, t) ∈ R, we have

∣
∣G(x, s, t)

∣
∣ =

∣
∣
∣
∣

∫ 



(
Gs(x, rs, rt)s + Gt(x, rs, rt)t

)
dr

∣
∣
∣
∣

≤
∫ 



(∣
∣Gs(x, rs, rt)

∣
∣|s| + Gt(x, rs, rt)||t|)dr

≤ c

∫ 



(|s| + |s|p rp– + |rt| q(p–)
p |s|

+ |t| + |t|q rq– + |rs| p(q–)
q |t|)dr

≤ c

(

|s| + |t| +

p

|s|p +

q

|t|q

+
p

p + q(p – )
|t| q(p–)

p |s| +
q

p(q – ) + q
|s| p(q–)

q |t|
)

≤ M
(|s| + |t| + |s|p + |t|q

)
,

where M is a positive constant independent of (s, t). From () and the above
inequality, there is a positive constant M such that

G(x, s, t) ≤ α̂F(s, t) + M
(|s|p + |t|q

)
for all (x, s, t) ∈ � × R.

Hence, from the above inequality, for any (u, v) ∈ C+, we have

J(u, v) ≥ α + 
p

‖u‖p
p +

β + 
q

‖v‖q
q – α̂

∫

�

F(u, v) dx – M
(‖u‖p

Lp + ‖v‖q
Lq

)

≥ λk+ – α̂

λk+

(
α + 

p
‖u‖p

p +
β + 

q
‖u‖q

q

)

– CM
(‖u‖p

p + ‖v‖q
q

)
.

In view of λk+ > α̂ and p < p, q < q, there is a positive constant r– > r+ >  such that

J(u, v) > 

for any (u, v) ∈ S+ = {(u, v) ∈ C+ : φ(u, v) = r+}.
Finally, from Theorem A and Lemma , Theorem  is proved. �
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