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Abstract
This paper is devoted to identifying an unknown source for a time-fractional diffusion
equation with variable coefficients in a general bounded domain. This is an ill-posed
problem. Firstly, we obtain a regularization solution by the Landweber iterative
regularization method. The convergence estimates between regularization solution
and exact solution are given under a priori and a posteriori regularization parameter
choice rules, respectively. The convergence estimates we obtain are optimal order for
any p in two parameter choice rules, i.e., it does not appear to be a saturating
phenomenon. Finally, the numerical examples in the one-dimensional and
two-dimensional cases show our method is feasible and effective.
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1 Introduction
Nowadays, the study of time-fractional diffusion equations has drawn attention from var-
ious disciplines of science and engineering, such as mechanical engineering [, ], vis-
coelasticity [], Lévy motion [], electron transport [], dissipation [], heat conduction
[–] and high-frequency financial data []. A number of experiments have shown that,
in the process of modeling real physical phenomena such as Brownian motion [], frac-
tional calculus and derivatives provide more accurate simulations than traditional calculus
with integer order derivatives. Fractional derivatives have also proved to be more flexible
in describing viscoelastic behavior. In particular, fractional models are believed to be more
realistic in describing anomalous diffusion in heterogeneous porous media.

In recent years, people gradually find that the fractional derivative in describing the
memory and genetic of material has a natural advantage. The slow diffusion can be char-
acterized by the long-tailed profile in the spatial distribution of densities as time passes
and continuous-time random walk has been applied to the underground environmental
problem. Thus fractional derivatives are applied to many science fields, especially in the
analytical [–] and numerical [–]. However, in practical problems, we need to re-
trieve the part boundary data or source term of the equation by measuring the data. This
leads to the inverse problem of the fractional diffusion equation. In this respect, some work
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has been published. In [], the authors studied the inverse problem for restoration of the
initial data of a solution, classical in time and with values in a space of periodic spatial dis-
tributions for a time-fractional diffusion equation and diffusion-wave equation. In [],
the authors considered the problem of identifying an unknown coefficient in a nonlin-
ear diffusion equation. In [], the authors considered the backward inverse problem for a
time-fractional diffusion equation. In [], Liu and Yamamoto used the quasi-reversibility
method to solve a backward problem for a time-fractional diffusion equation in the one-
dimensional case. In [], Murio used the mollification technique to solve source terms
identification for a time-fractional diffusion equation. In [], Wang solved a backward
problem for a time-fractional diffusion equation with variable coefficients in a general
bounded domain by the Tikhonov regularization method. In [], Zhang considered an
inverse source problem for a fractional diffusion equation.

In this paper, we consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
t u(x, t) – (Lu)(x, t) = f (x), x ∈ �, t ∈ (, T),  < α < ,

u(x, t) = , x ∈ ∂�, t ∈ (, T),

u(x, ) = , x ∈ �,

u(x, T) = g(x), x ∈ �,

(.)

where � is a bounded domain in R
d with sufficient smooth boundary ∂� and Dα

t is the
Caputo fractional derivative of order α defined by

Dα
t u(x, t) =

⎧
⎨

⎩


�(–α)

∫ t


uτ (x,τ )
(t–τ )α dτ ,  < α < ,

ut(x, t), α = .
(.)

–L is a symmetric uniformly elliptic operator and its expression is

Lu(x) =
d∑

i=

∂

∂xi

( d∑

j=

aij(x)
∂

∂xj
u(x)

)

+ c(x)u(x), x ∈ �, (.)

where the coefficient

aij = aji ∈ C(�) ( ≤ i, j ≤ d)

and, for any given constant c > , we have

c
d∑

i=

ξ 
i ≤

d∑

i,j=

aij(x)ξiξj, x ∈ �, ξ ∈R
d,

c(x) ≤ , c(x) ∈ c(�).

Denote the eigenvalues of –L by λn. We suppose λn (see []) satisfy

 < λ ≤ λ ≤ · · · ≤ λn ≤ · · · , lim
n→+∞λn = +∞ (.)

and the corresponding eigenfunction ϕn(x) ∈ H(�) ∩ H
(�).



Yang et al. Boundary Value Problems  (2017) 2017:163 Page 3 of 19

The source function f (x) is unknown in problem (.). We use the additional condition
u(x, T) = g(x) to identify the unknown source f (x). In practice, measurable data g(x) are
never known exactly. We assume that the exact data g(x) and the measured data gδ(x)
satisfy

∥
∥g – gδ

∥
∥ ≤ δ, (.)

where ‖ · ‖ is the L(�) norm and δ >  is a noise level.
If α = , the equation of problem (.) is a standard heat conduction equation. There have

been published a lot of research results (see [–], etc.). In this paper, we only consider
 < α <  for identifying the unknown source of the time-fractional diffusion equation.
In [], Zhang used a truncation method to identify the unknown source for the time-
fractional diffusion equation, and in [], Wang simplified the Tikhonov regularization
method to solve it, but they consider an inverse source problem for the time-fractional
diffusion equation in a regular domain. In [], the author used the quasi-reversibility
method to solved problem (.). However, the error estimates from [, ] are not optimal
order, which will lead to a saturating phenomenon.

In this article, the Landweber iterative method is used to deal with the ill-posedness
problem (.) in a general region and convergence estimates are all obtained under a priori
and a posteriori choice regularization parameter rules. Moreover, convergence estimates
are all optimal order according to our method. The Landweber iteration method [],
proposed by Landweber, Friedman and Bialy, is a kind of iterative algorithm for solving
the operator equation Kx = y.

The structure of this paper is as follows. In Section , some basic lemmas and results are
given. In Section , the Landweber iterative regularization method and regularization so-
lution are given. In Section , the convergence estimates under the a priori and a posteriori
regularization parameter choice rules are given. In Section , numerical implementation
and numerical examples are given. In Section , some conclusions as regards this paper
are given.

2 Lemma and results
Definition . ([]) The Mittag-Leffler function is defined by

Eα,β (z) =
∞∑

k=

zk

�(αk + β)
, z ∈C, (.)

where α >  and β ∈R are arbitrary constants.

Lemma . ([]) For the Mittag-Leffler function, we have

Eα,β (z) = zEα,α+β (z) +


�(β)
. (.)

Lemma . ([]) Let λ > , that is,

∫ ∞


e–pttγ k+β–E(k)

γ ,β
(±atγ

)
dt =

k!pγ –β

(pγ ∓ a)k+ , Re(p) > |a| 
γ , (.)

where E(k)
γ ,β(y) := dk

dyk Eγ ,β(y).
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Lemma . implies that the Laplace transform of tγ k+β–E(k)
γ ,β(±atγ ) is k!pγ –β

(pγ ∓a)k+ .

Lemma . ([]) For  < α < , η > , we have  ≤ Eα,(–η) ≤  and Eα,(–η) is a com-
pletely monotonic function, i.e.,

(–)n dn

dηn Eα,(–η) ≥ , η ≥ . (.)

Lemma . Suppose λn are the eigenvalues of operator –L. If λn ≥ · · ·λ ≥ , then there
exists a positive constant C which depends on α, T , λ such that

C

λnTα
≤ Eα,+α

(
–λnTα

) ≤ 
λnTα

, (.)

where C(α, T ,λ) =  – Eα,(–λTα).

Proof From Lemma . and Lemma ., we easily get

Eα,+α

(
–λnTα

)
=

Eα,(–λnTα) – 
–λnTα

=
 – Eα,(–λnTα)

λnTα
≤ 

λnTα
. (.)

From Lemma ., we know Eα,(–λnTα) ≤ Eα,(–λTα) when λn ≥ λ, so

Eα,+α

(
–λnTα

)
=

 – Eα,(–λnTα)
λnTα

≥  – Eα,(–λTα)
λnTα

=
C

λnTα
, (.)

where C(α, T ,λ) =  – Eα,(–λTα). �

3 Regularization method
As in [, ], define

D
(
(–L)γ

)
=

{

ψ ∈ L(�) :
∞∑

n=

λγ
n

∣
∣(ψ ,ϕn)

∣
∣ < ∞

}

, (.)

where (·, ·) is the inner product in L(�) and D((–L)γ ) is a Hilbert space with the norm

‖ψ‖D((–L)γ ) =

( ∞∑

n=

λγ
n

∣
∣(ψ ,ϕn)

∣
∣

) 


. (.)

Now using separation of variables and Lemma ., we get the solution of problem (.)
as follows:

u(x, t) =
∞∑

n=

(
f (x),ϕn(x)

)
tαEα,+α

(
–λntα

)
ϕn(x).

Denote fn = (f (x),ϕn(x)), gn = (g(x),ϕn(x)) and let t = T . Then

g(x) = u(x, T) =
∞∑

n=

fnTαEα,+α

(
–λnTα

)
ϕn(x) (.)
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and

gn = fnTαEα,+α

(
–λnTα

)
. (.)

Hence we obtain

fn =
gn

TαEα,+α(–λnTα)
(.)

and

f (x) =
∞∑

n=

fnϕn =
∞∑

n=


TαEα,+α(–λnTα)

gnϕn(x). (.)

Using Lemma ., we have

∣
∣TαEα,+α

(
–λnTα

)∣
∣ =

∣
∣
∣
∣
Eα,(–λnTα) – 

–λn

∣
∣
∣
∣ ≤ 

λn
. (.)

Consequently,

∣
∣
∣
∣


TαEα,+α(–λnTα)

∣
∣
∣
∣ ≥ λn. (.)

Small errors in the high-frequency components for gδ(x) will be amplified by


TαEα,+α (–λnTα ) , so problem (.) is ill-posed. We must use the regularization method to
solve it. We first impose the a priori bound for the exact solution f (x) as follows:

∥
∥f (x)

∥
∥

D((–L)
p
 )

≤ E, p > , (.)

where E is the positive constant.
A conditional stability estimate of the inverse source problem (.) is given below.

Theorem . ([]) If ‖f (x)‖
D((–L)

p
 )

≤ E, then

∥
∥f (x)

∥
∥ ≤ CE


p+

∥
∥g(x)

∥
∥

p
p+ , (.)

where C := C
– p

p+
 is a constant.

To find f (x), we need to solve the following integral equation:

(Kf )(x) :=
∫

�

k(x, ξ )f (ξ ) dξ = g(x). (.)

For k(x, ξ ) = k(ξ , x), K is a self-adjoint operator. From Theorem . of [], if f ∈ L(�),
then g ∈ H(�). Because H(�) compacts embedding L(�), we know K : L(�) → L(�)
is compact operator.
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For ϕn(x) being an orthonormal basis in L(�),

σn = TαEα,+α

(
–λnTα

)
, n = , , . . . (.)

are singular values of K and ϕn is the corresponding eigenvector.
Now, we use the Landweber iterative method to obtain the regularization solution for

(.). We rewrite the equation Kf = g in the form f = (I – aK∗K)f + aK∗g for some a > 
and give the following iterative form:

f (x) := , f m(x) =
(
I – aK∗K

)
f m–(x) + aK∗g(x), m = , , , . . . , (.)

where m is the iterative step number, which is also the selected regularization parameter.
a is called the relaxation factor and satisfies  < a < 

‖K‖ . For K is a self-adjoint operator,
we obtain

f m,δ(x) = a
m–∑

k=

(
I – aK)kKgδ(x). (.)

Using (.), we get

f m,δ(x) = Rmgδ(x) =
∞∑

n=

 – ( – aTαE
α,+α(–λnTα))m

TαEα,+α(–λnTα)
gδ

nϕn(x), (.)

where gδ
n = (gδ(x),ϕn(x)).

Because σn = TαEα,+α(–λnTα) are singular values of K and  < a < 
‖K‖ , we can easily

see  < aTαE
α,+α(–λnTα) < .

4 Error estimate under two parameter choice rules
In this section, we will give error estimates under the a priori choice rule and the a poste-
riori choice rule.

• An a priori choice rule

Theorem . Let f (x), given by (.), be the exact solution of problem (.). Let f m,δ(x) be
the regularization solution. Let conditions (.) and (.) hold. If we choose regularization
parameter m = [b], where

b =
(

E
δ

) 
p+

, (.)

then we have the following error estimate:

∥
∥f m,δ(·) – f (·)∥∥ ≤ CE


p+ δ

p
p+ , (.)

where [b] denotes the largest integer less than or equal to b and C =
√

a+( p
aC


)

p
 is constant.
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Proof Using the triangle inequality, we have

∥
∥f m,δ(·) – f (·)∥∥ =

∥
∥
∥
∥
∥

∞∑

n=

 – ( – aTαE
α,+α(–λnTα))m

TαEα,+α(–λnTα)
gδ

nϕn(x)

–
∞∑

n=


TαEα,+α(–λnTα)

gnϕn(x)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

n=

 – ( – aTαE
α,+α(–λnTα))m

TαEα,+α(–λnTα)
gδ

nϕn(x)

–
∞∑

n=

 – ( – aTαE
α,+α(–λnTα))m

TαEα,+α(–λnTα)
gnϕn(x)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

n=

 – ( – aTαE
α,+α(–λnTα))m

TαEα,+α(–λnTα)
gnϕn(x)

–
∞∑

n=


TαEα,+α(–λnTα)

gnϕn(x)

∥
∥
∥
∥
∥

=
∥
∥f m,δ(·) – f m(·)∥∥ +

∥
∥f m(·) – f (·)∥∥.

Using conditions (.), we get

∥
∥f m,δ(·) – f m(·)∥∥ =

∞∑

n=

( – ( – aTαE
α,+α(–λnTα))m)

TαE
α,+α(–λnTα)

(
gδ

n – gn
)

≤ sup
n≥

(
A(n)

)
δ,

where A(n) := –(–aTαE
α,+α (–λnTα ))m

TαEα,+α (–λnTα ) .
Because  < x < , we have

x ≤ √
x (.)

and

( – x)h ≥  – hx (h > ). (.)

Using (.) and (.), we obtain

 –
(
 – aTαE

α,+α

(
–λnTα

))m ≤ √
amTαEα,+α

(
–λnTα

)
, (.)

i.e.,

A(n) ≤ √
am, (.)

so

∥
∥f m,δ(·) – f m(·)∥∥ ≤ √

amδ. (.)
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On the other hand, using (.), we get

∥
∥f m(·) – f (·)∥∥ =

∥
∥
∥
∥
∥

∞∑

n=

[ – ( – aTαE
α,+α(–λnTα))m] – 

TαEα,+α(–λnTα)
gnϕn(x)

∥
∥
∥
∥
∥



=
∞∑

n=

( – aTαE
α,+α(–λnTα))m

TαE
α,+α(–λnTα)

g
n

=
∞∑

n=

(
 – aTαE

α,+α

(
–λnTα

))m(λn)–p(f 
n (λn)p)

≤ sup
n≥

(
B(n)

)E,

where B(n) := ( – aTαE
α,+α(–λnTα))m(λn)– p

 .
Using Lemma ., we have

B(n) ≤
(

 –
aC


λ

n

)m

(λn)– p
 . (.)

Let

F(s) :=
(

 –
aC


s

)m

s– p
 , s := λn. (.)

Let s satisfy F ′(s) = . Then we easily get

s =
(

aC
 (m + p)

p

) 


, (.)

so

F(s) =
(

 –
p

m + p

)m(
aC

 (m + p)
p

)– p


≤
(

p
(m + )aC



) p


, (.)

i.e.,

F(s) ≤
(

p
aC



) p


(m + )– p
 . (.)

Thus we obtain

B(n) ≤
(

p
aC



) p


(m + )– p
 . (.)

Hence

∥
∥f m(·) – f (·)∥∥ ≤

(
p

aC


) p


(m + )– p
 E. (.)
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Combining (.) and (.), we choose m = [b] and we get

∥
∥f m,δ(·) – f (·)∥∥ ≤ CE


p+ δ

p
p+ , (.)

where C :=
√

a + ( p
aC


)

p
 . The theorem is proved. �

• An a posteriori selection rule
We construct regularization solution sequences f m,δ(x) by the Landweber iterative
method. Let r >  be a fixed constant. Stop the algorithm at the first occurrence of
m = m(δ) ∈ N with

∥
∥Kf m,δ(·) – gδ(·)∥∥ ≤ rδ, (.)

where ‖gδ‖ ≥ rδ.

Lemma . Let ρ(m) = ‖Kf m,δ(·) – gδ(·)‖. Then we have the following conclusions:
(a) ρ(m) is a continuous function;
(b) limm→ ρ(m) = ‖gδ‖;
(c) limm→+∞ ρ(m) = ;
(d) ρ(m) is a strictly decreasing function, for any m ∈ (, +∞).

Lemma . shows that there exists a unique solution for inequality (.).

Lemma . Let (.) hold, so the regularization parameter m satisfies

m ≤
(

p + 
aC



)(
E

(r – )δ

) 
p+

. (.)

Proof From (.), we show the representation

Rmg =
∞∑

n=

 – ( – aTαE
α,+α(–λnTα))m

TαEα,+α(–λnTα)
gnϕn(x) (.)

for every g ∈ H(�), so

‖KRmg – g‖ =
∞∑

n=

(
 – aTαE

α,+α

(
–λnTα

))m∣
∣(g,ϕn)

∣
∣. (.)

Because | – aTαE
α,+α(–λnTα)| < , we obtain ‖KRm– – I‖ ≤ . Using (.), we obtain

‖KRm–g – g‖ ≥ ∥
∥KRm–gδ – gδ

∥
∥ –

∥
∥(KRm– – I)

(
g – gδ

)∥
∥

≥ rδ – ‖KRm– – I‖δ
≥ (r – )δ.
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On the other hand, using (.), we obtain

‖KRm–g – g‖ =

∥
∥
∥
∥
∥

∞∑

n=

(
 –

(
 – aTαE

α,+α

(
–λnTα

))m–)gnϕn –
∞∑

n=

gnϕn

∥
∥
∥
∥
∥

=
∞∑

n=

(
 – aTαE

α,+α

(
–λnTα

))m–∣∣(g,ϕn)
∣
∣

=
∞∑

n=

(
 – aTαE

α,+α

(
–λnTα

))m–

· TαEα,+α

(
–λnTα

)∣
∣(f ,ϕn)λ

p

n
∣
∣λ

– p


n

≤
∞∑

n=

(
 – aTαE

α,+α

(
–λnTα

))m–TαEα,+α

(
–λnTα

)
λ

– p


n E.

Let

C(n) :=
(
 – aTαE

α,+α

(
–λnTα

))m–TαEα,+α

(
–λnTα

)
(λn)– p

 , (.)

so

(r – )δ ≤ C(n)E. (.)

Using Lemma ., we have

C(n) ≤
(

 – a
C


λ

n

)m–

λ
– p

 –
n . (.)

Let

G(s) =
(

 – a
C


s

)m–

s– p
 –, s := λn. (.)

Suppose s∗ satisfies G′(s∗) = . Then we get

s∗ =
(

aC
 (m + p – )

p + 

) 


, (.)

so

G(s∗) =
(

 –
p + 

m + p – 

)m–(aC
 (m + p – )

p + 

)– p+


≤
(

p + 
maC



) p+


. (.)

Using (.) and (.), we get

(r – )δ ≤
(

p + 
aC



) p+


m– p+
 E. (.)
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Thus

m ≤
(

p + 
aC



)(
E

(r – )δ

) 
p+

. �

Theorem . Let f (x), given by (.), be the exact solution of problem (.). Let f m,δ(x)
be the regularization solution. The conditions (.) and (.) hold and the regularization
parameter is given by (.). Then we have the following error estimate:

∥
∥f m,δ(·) – f (·)∥∥ ≤ (

C(r + )
p

p+ + C
)
E


p+ δ

p
p+ , (.)

where C = ( p+
C


) 

 ( 
r– )


p+ .

Proof Using the triangle inequality, we obtain

∥
∥f m,δ(·) – f (·)∥∥ ≤ ∥

∥f m,δ(·) – f m(·)∥∥ +
∥
∥f m(·) – f (·)∥∥. (.)

Using (.) and Lemma ., we get

∥
∥f m,δ(·) – f m(·)∥∥ ≤ √

amδ ≤ CE


p+ δ
p

p+ , (.)

where C := ( p+
C


) 

 ( 
r– )


p+ .

For the second part of the right side of (.), we know

K
(
f m(·) – f (·)) =

∞∑

n=

–
(
 – aTαE

α,+α

(
–λnTα

))mgnϕn(x)

=
∞∑

n=

–
(
 – aTαE

α,+α

(
–λnTα

))m(
gn – gδ

n
)
ϕn(x)

+
∞∑

n=

–
(
 – aTαE

α,+α

(
–λnTα

))mgδ
nϕn(x).

Using (.) and (.), we have

∥
∥K

(
f m(·) – f (·))∥∥ ≤ (r + )δ. (.)

We also have

∥
∥f m(·) – f (·)∥∥

D((–L)
p
 )

=

( ∞∑

n=

–
(
 – aTαE

α,+α

(
–λnTα

))m

·
(

gn

TαEα,+α(–λnTα)

)

(λn)p

) 


≤
( ∞∑

n=

(λn)p
(

gn

TαEα,+α(–λnTα)

)
) 



≤ E.
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Using Theorem ., we have

∥
∥f m(·) – f (·)∥∥ ≤ C(r + )

p
p+ E


p+ δ

p
p+ . (.)

Therefore

∥
∥f m,δ(·) – f (·)∥∥ ≤ (

C(r + )
p

p+ + C
)
E


p+ δ

p
p+ . (.)

�

5 Numerical implementation and numerical examples
In this section, we will use several numerical examples to show effectiveness of the
Landweber iterative method.

5.1 One-dimensional case
Since the exact solution of problem (.) is difficult to give, we get the data function g(x)
by solving the following direct problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
t u(x, t) – (Lu)(x, t) = f (x),  < t < T ,  < x < ,

u(x, ) = ,  ≤ x ≤ ,

u(, t) = ,  ≤ t ≤ T ,

u(, t) = ,  ≤ t ≤ T .

(.)

When the source function f (x) is given, we use the finite difference method to obtain data
function g(x).

The time and space step size of the grid are �t = T
N and �x = 

M , respectively. tn = n�t,
n = , , , . . . , N , indicates grid points on time interval [, T] and xi = i�x, i = , , , . . . , M,
is the grid point of space interval [, ]. The value of each grid point is denoted by un

i =
u(xi, tn).

The following time-fractional differential is given in [, ]:

Dα
t u(xi, tn) ≈ (�t)–α

�( – α)

n–∑

j=

bj
(
un–j

i – un–j–
i

)
, (.)

where i = , . . . , M – , n = , . . . , N and bj = (j + )–α – j–α .
The spatial derivative difference scheme is given as follows []:

Lu(xi, tn) ≈ 
(�x)

(
ai+ 


un

i+ – (ai+ 


+ ai– 


)un
i + ai– 


un

i–
)

+ c(xi)un
i , (.)

where ai+ 


= a(xi+ 


), xi+ 


= xi+xi+
 .

For the inverse problem, we need to obtain a matrix K such that Kf = uN
i . In order to

obtain it, we use the same method as in [], that is,

K  = A,

Kn = A – h
n–∑

j=

(bj+ – bj)Kn–j+, n = , . . . , N ,

K = KN ,
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where h := (�t)–α

�(–α) ,

A(M+)×(M+) =

⎛

⎜
⎝


Â–

(M–)×(M–)


⎞

⎟
⎠

and

Â(M–)×(M–) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d – 
(�x) a 



– 
(�x) a 


d – 

(�x) a 


. . . . . . . . .
– 

(�x) aM– 


dM–

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where di = 
(�x) (ai+ 


+ ai– 


) – c(xi) + h, i = , . . . , M – . Then we obtain the regularization

solution by

f = a
m–∑

k=

(
I – aKT K

)kKT gδ . (.)

Noise data are generated by adding random perturbation, i.e.,

gδ = g + ε
(
rand

(
size(g)

))
.

The relative error level and absolute error level are computed by

er =
√∑

(f – f μ,δ)
√∑

(f )
and ea =

√


(M + )
∑(

f – f μ,δ
). (.)

5.2 Two-dimensional case
Let � = (, l) × (, l) be a rectangle domain. Consider the following time-fractional dif-
fusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂α
t u = uxx + uyy + f (x, y), (x, y) ∈ �, t ∈ (, T),

u(x, y, ) = , (x, y) ∈ �,

u(, y, t) = u(l, y, t) = u(x, , t) = u(x, l, t) = , t ∈ [, T].

(.)

Let xi = i�x, i = , , . . . , M; yj = j�y, j = , , . . . , M; tn = n�t, n = , , . . . , N , where �x =
l

M
, �y = l

M
and �t = T

N are space and time steps, respectively. The approximate values
of each grid point u are denoted by un

i,j ≈ u(xi, yj, tn). Thus, we use initial and boundary
conditions of equation (.) to get u

i,j = , un
,j = un

M,j = , un
i, = un

i,M
= .

Let the integer order derivative difference scheme be given as follows:

∂u(xi, yj, tn+)
∂x ≈ un+

i+,j – un+
i,j + un+

i–,j

(�x) ,

∂u(xi, yj, tn+)
∂y ≈ un+

i,j+ – un+
i,j + un+

i,j–

(�y) .
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It is easy to obtain the numerical solution of u(x, y, T) = g(x, y) by the scheme

h
n–∑

k=

bk
(
un–k

i,j – un–k–
i

)
= px

(
un

i+,j – un
i,j + un

i–,j
)

+ py
(
un

i,j+ – un
i,j + un

i,j–
)

+ fi,j, (.)

where px = 
(�x) , py = 

(�y) and h and bk are defined in the one-dimensional case.
Denote Un = (un

,, . . . , un
M–,, un

,, . . . , un
M–,, . . . , un

,M–, . . . , un
M–,M–) and f = (f,, . . . ,

fM–,, f,, . . . , fM–,, . . . , f,M–, . . . , fM–,M–). Then we obtain the following iterative
scheme:

A∗U = f ,

A∗Un = f + h
(
ωUn– + ωUn– + · · · + ωn–U) (n = , , . . . , N),

(.)

where ωi = bi– – bi and

A∗ =

⎛

⎜
⎜
⎜
⎜
⎝

A∗
, –pyI

–pyI A∗
, –pyI

–pyI
. . . –pyI

–pyI A∗
M–,M–

⎞

⎟
⎟
⎟
⎟
⎠

∈R
(M–)(M–)×(M–)(M–),

A∗
i,i =

⎛

⎜
⎜
⎜
⎜
⎝

h + px + py –px

–px h + px + py –px

–px
. . . –px

–px h + px + py

⎞

⎟
⎟
⎟
⎟
⎠

∈R
(M–)

,

where I is the unit matrix with order (M – ) × (M – ).
For the inverse problem, we can obtain a matrix K such that Kf = uN

i,j by

K =
(
A∗)–,

Kn = K + hK
n–∑

i=

ωiKn–i, n = , . . . , N ,

K = KN .

We take gδ as noise data by adding a random perturbation, i.e.,

gδ(·, ·) = g(·, ·) + ε · rand
(
size(g)

)
.

Then we obtain the regularization solution in the two-dimensional case by

f = a
m–∑

k=

(
I – aKTK

)kKT g(·, ·)δ . (.)

For practical problems, the a priori bound is very difficult to obtain. We only give numer-
ical effectiveness under the a posteriori regularization parameter choice rule. The iterative
steps are given to solve (.) with r = ..
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Figure 1 The comparison of numerical effects between the exact solution and its regularized solution
for Example 1.

In the one-dimensional computational procedure, we choose T = . Let � = (, ), a(x) =
x +  and c(x) = –(x + ). We use the algorithm in [] to compute the Mittag-Leffler
function. In discrete format, we compute the direct problem with M = , N =  and
we choose M = , N =  for solving the inverse problem.

Example  Take the smooth function f (x) = xα( – x)α sin(πx).

Example  We take the piecewise smooth function

f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

,  ≤ x ≤ 
 ,

(x – 
 ), 

 < x ≤ 
 ,

–(x – 
 ), 

 < x ≤ 
 ,

, 
 < x ≤ .

(.)

Figure  shows the comparisons between the exact solution and its regularized so-
lution for various noise levels ε = ., ., . in the case of α = ., ., .. The
iterative step m = ,, ,, ,, for α = ., in the case of α = ., m =
,, ,, , and m = ,, ,, ,, for α = ..

Example  Consider the following discontinuous function:

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

,  ≤ x ≤ .,

, . < x ≤ .,

, . < x ≤ .,

–, . < x ≤ .,

, . < x ≤ .

(.)

Figure  shows the comparison between the exact solution and its regularized so-
lution for various noise levels ε = ., ., . in the case of α = ., ., .. The
iterative step m = ,, ,, , for α = ., in the case of α = ., m =
,, ,, ,, and m = ,, ,, ,, for α = ..

Figure  shows the comparison between the exact solution and its regularized solu-
tion for various noise levels ε = ., ., . in the case of α = ., ., .. The it-
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Figure 2 The comparison of numerical effects between the exact solution and its regularized solution
for Example 2.

Figure 3 The comparison of numerical effects between the exact solution and its regularized solution
for Example 3.

erative step m = ,, ,,, ,, for α = ., in the case of α = ., m =
,, ,,, ,, and m = ,, ,,, ,, for α = ..

In Figures -, we see that the smaller ε and α, the better the regularized solution is.
Moreover, we see that the a posteriori parameter choice also works well.

Example  Take source function f (x, y) = xy.

In Example , we take T = ., M = M = , N =  and l = l = . Figure  shows
the comparison between the exact solution and its regularized solution for various noise
levels ε = ., . in the case of α = .. The iterative step m = , for ε = .,
m = ,, when the error level ε = ..

Example  Take source function f (x, y) = sin(x) sin(y) + sin(x) sin(y).

In Example , we take T = , M = M = , N =  and l = l = π . Figure  shows the
comparison between the exact solution and its regularized solution for various noise levels
ε = ., . in the case of α = .. The iterative step m =  for ε = ., m =  when
error level ε = ..

In Figure  and Figure , we see that the numerical results are in good agreement with
the exact shape. We see that the smaller ε, the better the computed approximation is.
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Figure 4 The comparison of numerical effects between the exact solution and its regularized solution
for Example 4.

Figure 5 The comparison of numerical effects between the exact solution and its regularized solution
for Example 5.

6 Conclusion
In this paper, we consider an inverse problem for identifying an unknown source for a
time-fractional diffusion equation with variable coefficients defined in a general domain.
This problem is ill-posed, i.e., the solution (if it exists) does not depend continuous on the
data. The Landweber regularization is first used to solve this problem. Moreover, under
two regularization parameter choice rules, we obtain Hölder type error estimates. Espe-
cially, the a posteriori regularization parameter choice is selected. In [], the authors used
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two regularization methods to identify the spatial variable source for the time-fraction
diffusion equation. In [], the authors used quasi-reversibility regularization methods
to identify the spatial variable source for the time-fraction diffusion equation. From [],
under the a priori regularization parameter choice rule, the authors found the orders of
error estimate convergence are O(δ

p
p+ ) ( < p ≤ ) and O(δ 

 ) (p > ) and under the a
posteriori regularization parameter choice rule, the authors found the orders of error es-
timate convergence are O(δ

p
p+ ) ( < p ≤ ) and O(δ 

 ) (p > ). In [], under the a priori
and a posteriori regularization parameter choice rules, the authors found the orders of
error estimate convergence are O(δ

p
p+ ) ( < p ≤ ) and O(δ 

 ) (p > ), but in our paper,
under the a priori and a posteriori regularization parameter choice rules, we found the
order of error estimate convergence is O(δ

p
p+ ). Comparing references [, ], under the

a posteriori regularization parameter choice, as p > , the authors found the error esti-
mate convergence is O(δ 

 ) (p > ), which is a saturating phenomenon, i.e., if we add the
smoothness of the solution, the error estimate order does not improve. In our method,
the error estimate convergence is O(δ

p
p+ ), which does not appear to be a saturating phe-

nomenon. Finally, three numerical results show that the Landweber iterative method is
very effective for this kind of ill-posed problems.
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