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Abstract
Consider the anisotropic parabolic equation with the variable exponent

ut =
N∑

i=1

(ai(x)|uxi |pi(x)–2uxi)xi ,

with ai(x), pi(x) ∈ C1(�), pi(x) > 1, ai(x) ≥ 0. If some of {ai(x)} are degenerate on the
boundary, a partial boundary value condition is imposed, the stability of weak
solutions can be proved based on the partial boundary value condition.
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1 Introduction
The equation

ut = div
(
a(x)|∇u|p(x)–∇u

)
, (x, t) ∈ QT , (.)

comes from the so-called electrorheological fluids theory (see [, ]), where � ⊂ R
N is a

bounded domain with smooth boundary ∂�, p(x) >  is a measurable function. If a(x) ≡ ,
there are many related papers to study equation (.) with the usual initial-boundary value
conditions

u(x, ) = u(x), x ∈ �, (.)

u(x, t) = , (x, t) ∈ ∂� × (, T), (.)

one can see [–] and the references therein.
If a(x) >  when x ∈ � but a(x)|x∈∂� = , then the stability of weak solutions can be

proved without the boundary value condition (.), provided that the diffusion coefficient
a(x) satisfies some other restrictions. One can see our previous works [–].
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In this paper, we will consider an anisotropic parabolic equation of the type

ut =
N∑

i=

(
ai(x)|uxi |pi(x)–uxi

)
xi

, (x, t) ∈ QT . (.)

We denote that

p+
i = max

x∈�

pi(x), p–
i = min

x∈�

pi(x)

for any i ∈ {, , . . . , N} and denote that

p = min
{

p–
 , p–

 , . . . , p–
N–, p–

N
}

, p > ,

p = max
{

p+
 , p+

 , . . . , p+
N–, p+

N
}

.

If ai(x) ≡ , the existence of a weak solution was proved in []. Also, one can refer to the
excellent papers [–].

Let I = {i, i, . . . , ik} ⊂ {, , . . . , N}, J = {j, j, . . . , jl} ⊂ {, , . . . , N}, k + l = N , I ∩ J = ∅.
Not only we assume that ai(x) ∈ C(�), and when x ∈ �, ai(x) > , but we also assume that

ai (x) ≥ c > , ai (x) ≥ c > , . . . , aik (x) ≥ ck > , x ∈ �, (.)

aj (x) = , aj (x) = , . . . , ajl (x) = , x ∈ ∂�. (.)

Besides the initial value condition (.), instead of the usual boundary value condition
(.), by assumptions (.)-(.), only a partial boundary value condition

u(x, t) = , (x, t) ∈ � × (, T) (.)

should be imposed. To see that, let us give a simple example to show what � is. Let N = ,
p(x) = p(x) ≡ p(x), the domain � be a square,

� =
{

(x, x) :  < x < ,  < x < 
}

.

Consider the equation

ut =
∂

∂x

(
a(x)|ux |p(x)–ux

)
+

∂

∂x

(|ux |p(x)–ux

)
. (.)

Then we conjecture that

� =
{

(x, x) :  < x < , x = 
} ∪ {

(x, x) :  < x < , x = 
}

. (.)

This conjecture was proved in [] recently.
However, in general, it is difficult to depict out the geometric character of �. We have

tried to depict out � by the Fichera function in [], but it seems not so successful. In this
short paper,

� =
{

x ∈ ∂� :
|(∏l

j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
	= 

}
,
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we will study the well-posedness of the equation basing on the partial boundary value
condition (.). Also, we denote that

� = ∂� \ �.

Definition . A function u(x, t) is said to be a weak solution of equation (.) with the
initial value condition (.) if

u ∈ L∞(QT ),
∂u
∂t

∈ L(QT ), ai(x)|uxi |pi(x) ∈ L(, T ; L(�)
)
, (.)

and for any function ϕ ∈ C
(QT ), ϕ ∈ L∞(QT ) and ϕxi ∈ L(, T ; W ,pi(x)

loc (�)) such that

∫∫

QT

[
∂u
∂t

(ϕϕ) +
N∑

i=

ai(x)|uxi |pi(x)–uxi (ϕϕ)xi

]
dx dt = . (.)

The initial value condition (.) is satisfied in the sense of

lim
t→

∫

�

∣∣u(x, t) – u(x)
∣∣dx = . (.)

Besides, if the partial boundary value condition (.) is satisfied in the sense of the trace,
then we say that there is a weak solution of the initial-boundary value problem (.)-(.)-
(.).

In this paper, we first study the existence of the weak solution.

Theorem . If p > , ai(x) satisfies conditions (.), (.),

u ∈ L∞(�), uxi ∈ Lpi(x)(�), (.)

then there is a solution of equation (.) with the initial value (.). Moreover, if for every
 ≤ r ≤ l,

∫
�

a–/(pjr (x)–)
jr (x) dx < ∞, then the initial-boundary value problem (.)-(.)-

(.) has a solution.

Here, Lpi(x)(�) is the variable exponent space, its definition is given in Section .
Secondly, we will study the stability of weak solutions to the initial-boundary value prob-

lem (.)-(.)-(.).

Theorem . If u and v are two solutions of equation (.) with the same partial boundary
value condition (.) and with the initial values u(x), v(x), respectively, if l >  and for
every  ≤ r ≤ l,

n

(∫

�\�n

ajr (x)

∣∣∣∣∣

( l∏

s=

ajs (x)

)

xjr

∣∣∣∣∣

pjr (x)

dx

) 
p+

jr ≤ c, (.)

then
∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

�

∣∣u(x) – v(x)
∣∣dx. (.)

Here, �n = {x ∈ � :
∏l

s= ajs (x) > 
n }.



Zhan Boundary Value Problems  (2017) 2017:166 Page 4 of 14

If l =  in Theorem ., without loss of generality, we may assume that

a(x) = , x ∈ ∂�, (.)

while ai(x) >  for i > . Then we have the following.

Theorem . If (.) is true and ai(x) >  for i > , u and v are two solutions of equation
(.) with the same partial boundary value condition (.) and with the initial values u(x),
v(x), respectively, if for every i ≥ 

n
(∫

�n

∣∣axi (x)
∣∣pi(x) dx

) 
p+

i ≤ c (.)

and

n
(∫

�\�n

a(x)
∣∣ax (x)

∣∣p(x) dx
) 

p+
 ≤ c, (.)

then the stability of weak solutions (.) is true. Here, ax (x) = ∂a(x)
∂x

, axi (x) = ∂a(x)
∂xi

as
usual, �n = {x ∈ � : a(x) > 

n }.

At the end of the introduction, we would like to suggest that there are many papers
devoted to the anisotropic elliptic equations, for examples, one can see [–] and the
references therein. For example, Fu and Shan studied the problem of removable isolated
singularities for elliptic equations with variable exponents in []. They gave a sufficient
condition for removability of the isolated singular point for the equations in W ,p(x)(�).
Cencelj and Repovs̆ studied the perturbation by a critical term and a superlinear subcrit-
ical nonlinearity of a quasilinear elliptic equation containing a singular potential in [].
By means of variational arguments and a version of the concentration-compactness prin-
ciple in the singular case, they proved the existence of solutions for positive values of the
parameter under the principal eigenvalue of the associated singular eigenvalue problem.
Konaté and Ouaro studied nonlinear anisotropic problems with bounded Radon diffuse
measure and variable exponent in []. They proved the existence and uniqueness of an
entropy solution. By the way, the definition of weak solutions and the method used in []
are different from the ones in this paper. Moreover, only the case when the domain is the
n-dimensional unit cube is considered in [], and the diffusion coefficient ai(x) = ai(xi) is
restricted only dependent on the single variable xi.

2 The existence
We firstly give some basic concepts about the exponent variable spaces.

. Lp(x)(�) space.

Lp(x)(�) =
{

u : u is a measurable real-valued function,

∫

�

∣∣u(x)
∣∣p(x) dx < ∞

}
.
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The space Lp(x)(�) is equipped with the following Luxemburg norm:

|u|Lp(x) (�) = inf

{
λ >  :

∫

�

∣∣∣∣
u(x)
λ

∣∣∣∣
p(x)

dx ≤ 
}

.

The space (Lp(x)(�), | · |Lp(x)(�)) is a separable, uniformly convex Banach space.
. W ,p(x)(�) space.

W ,p(x)(�) =
{

u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)
}

,

endowed with the following norm:

|u|W ,p(x) = |u|Lp(x)(�) + |∇u|Lp(x)(�), ∀u ∈ W ,p(x)(�).

We use W ,p(x)
 (�) to denote the closure of C∞

 (�) in W ,p(x).

Lemma . ([–]) The spaces (Lp(x)(�), | · |Lp(x)(�)), (W ,p(x)(�), | · |W ,p(x)(�)) and
W ,p(x)

 (�) are reflexive Banach spaces.

Lemma . ([]) If, for any given i ∈ {, , . . . , N},
∫
�

a
– 

pi(x)–
i (x) dx < ∞, then

∫

�

|uxi |dx ≤ c. (.)

By this lemma, one can see that if ai(x) satisfies (.), (.) and if for every  ≤ r ≤ l,∫
�

a
–/(pjr (x)–)
jr (x) dx < ∞, then (.) is satisfied. Thus, we can define the trace of u on the

boundary ∂�.

Proof of Theorem . Consider the partially regularized equation

ut =
N∑

i=

(
ai(x)|uxi |pi(x)–uxi

)
xi

+ ε�u, (x, t) ∈ QT (.)

with the initial boundary conditions

u(x, ) = uε(x), x ∈ �, (.)

u(x, t) = , (x, t) ∈ ∂� × (, T). (.)

Here, we let uε(x) ∈ C∞
 (�) and strongly convergent to u(x) in W ,p

 (�).
Since ai(x) satisfies (.) and (.), similar to the proof of the usual evolutionary p-

Laplacian equation, we can prove that there is a solution uε ∈ L(, T ; W ,p
 (�)) of the

initial-boundary value problem (.)-(.), which satisfies

‖uε‖L∞(QT ) ≤ c, ‖uεt‖L(QT ) ≤ c. (.)
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Multiplying (.) by uε and integrating it over QT , we have




∫

�

u
ε dx +

n∑

i=

∫∫

QT

ai(x)|uεxi |pi(x) dx dt + ε

∫∫

QT

|∇uε| dx dt

=



∫

�

u
(x) dx, (.)

then

ε

∫∫

QT

|∇uε| dx ≤ c (.)

and

N∑

i=

∫∫

QT

ai(x)|uεxi |pi(x) dx dt ≤ c. (.)

Hence, by (.), (.), (.), there exists a function u and an n-dimensional vector
−→
ζ =

(ζ, . . . , ζn) satisfying that
−→
ζ = (ζ, . . . , ζn)

u ∈ L∞(QT ),
∂u
∂t

∈ L(QT ), ζi ∈ L(, T ; L
pi(x)

pi(x)– (�)
)
,

and uε → u a.e. ∈ QT ,

uε ⇀ u, weakly star in L∞(QT ),

uε → u, in L(, T ; Lr
loc(�)

)
,

∂uε

∂t
⇀

∂u
∂t

in L(QT ),

ε∇uε ⇀ , in L(QT ),

ai(x)|uεxi |pi(x)–uεxi ⇀ ζi in L(, T ; L
pi(x)

pi(x)– (�)
)
.

Here, r < Np
N–p .

Now, similar to the general evolutionary p-Laplacian equation, we are able to prove that
(the details are omitted here)

lim
t→

∫

�

∣∣u(x, t) – u(x)
∣∣dx = 

and

N∑

i=

∫∫

QT

ai(x)|uxi |pi(x)–uxiϕxi dx dt =
N∑

i=

∫∫

QT

ζi(x)ϕxi dx dt (.)

for any function ϕ ∈ C
(QT ). By a process of the limit [], we can show that (.) is also

true for any ϕ = ϕϕ, where ϕ ∈ C
(QT ), ϕ ∈ L∞ and ϕxi ∈ L(, T ; W ,pi(x)

loc (�)). Then
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u satisfies equation (.) with the initial value (.) in the sense of Definition .. At last,
according to Lemma ., the partial boundary value condition (.) is satisfied in the sense
of trace. Theorem . is proved. �

3 The stability
Lemma . ([–])

(i) p(x)-Hölder’s inequality. Let q(x) and q(x) be real functions with 
q(x) + 

q(x) = 
and q(x) > . Then the conjugate space of Lq(x)(�) is Lq(x)(�). And, for any
u ∈ Lq(x)(�) and v ∈ Lq(x)(�), we have

∣∣∣∣
∫

�

uv dx
∣∣∣∣ ≤ |u|Lq(x)(�)|v|Lq(x)(�) .

(ii)
|u|Lp(x)(�) = , then

∫

�

|u|p(x) dx = ,

|u|Lp(x) (�) > , then |u|p–

Lp(x) ≤
∫

�

|u|p(x) dx ≤ |u|p+

Lp(x) ,

|u|Lp(x) (�) < , then |u|p+

Lp(x) ≤
∫

�

|u|p(x) dx ≤ |u|p–

Lp(x) .

Now, we will prove Theorem .. For any given positive integer n, let gn(s) be an odd
function, and

gn(s) =

⎧
⎨

⎩
, s > 

n ,

nse–ns ,  ≤ s ≤ 
n .

Clearly,

lim
n→

gn(s) = sign(s), s ∈ (–∞, +∞). (.)

Proof of Theorem . Let u and v be two weak solutions of equation (.) with the initial
values u(x, ), v(x, ), respectively.

Let �n = {x ∈ � :
∏l

r= ajr (x) > 
n }, and

φn(x) =

⎧
⎨

⎩
, if x ∈ �n,

n
∏l

r= ajr (x), if x ∈ � \ �n.
(.)

Obviously, φnxi = n(
∏l

r= ajr (x))xi when x ∈ � \ �n, in other places, it is identical to zero.
We can choose ϕ = χ[τ ,s]φn, ϕ = gn(u – v), ϕ = χ[τ ,s]φngn(u – v) as the test function, then

∫ s

τ

∫

�

φngn(u – v)
∂(u – v)

∂t
dx dt

+
N∑

i=

∫ s

τ

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
(uxi – vxi )g

′
n(u – v)φn(x) dx dt

+
k∑

r=

∫ s

τ

∫

�

air (x)
(|uxir |pir (x)–uxir – |vxir |pir (x)–vxir

)
gn(u – v)φnxir dx dt
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+
l∑

r=l

∫ s

τ

∫

�

ajr (x)
(|uxjr |pjr (x)–uxjr – |vxjr |pjr (x)–vxjr

)
gn(u – v)φnxjr dx dt

= . (.)

In the first place, as usual, we have
∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
(uxi – vxi )g

′
n(u – v)φn(x) dx ≥ , (.)

and since ut ∈ L(QT ), using the Lebesgue dominated theorem, we have

lim
η→

∫ s

τ

∫

�

φn(x)gn(u – v)
∂(u – v)

∂t
dx dt

=
∫

�

|u – v|(x, s) dx –
∫

�

|u – v|(x, τ ) dx. (.)

In the second place, we deal with the third term on the left-hand side of (.). For sim-
plicity, in what follows, we denote

∏l
r= ajr (x) as

∏l
j= aj(x),

∣∣∣∣
∫

�

air (x)
(|uxir |pir (x)–uxir – |vxir |pir (x)–vxir

)
gn(u – v)φnxir dx

∣∣∣∣

=
∣∣∣∣
∫

�\�n

air (x)
(|uxir |pir (x)–uxir – |vxir |pir (x)–vxir

)
gn(u – v)φnxir dx

∣∣∣∣

≤
∫

�\�n

air (x)
(|uxir |pir (x)– + |vxir |pir (x)–)∣∣gn(u – v)φnxir

∣∣dx

≤
∫

�\�n

[
nair (x)

l∏

j=

aj(x)

] pir (x)–
pir (x) (|uxir |pir (x)– + |vxir |pir (x)–)

· (air (x)
) 

pir (x)

∣∣∣∣gn(u – v)
n


pir (x) [

∏l
j= aj(x)]xir

[
∏l

j= aj(x)]
pir (x)–

pir (x)

∣∣∣∣dx

≤
(∫

�\�n

n
l∏

j=

aj(x)air (x)
(|uxir |pir (x) + |vxir |pir (x))dx

) 
q

ir

·
(∫

�\�n

nair (x)
∣∣gn(u – v)

∣∣pir (x) |(
∏l

j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
dx

) 
p

ir

≤ c
(∫

�\�n

air (x)
(|uxir |pir (x) + |vxir |pir (x))dx

) 
q

ir

·
(

n
∫

�\�n

∣∣gn(u – v)
∣∣pir (x) |(

∏l
j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
dx

) 
p

ir . (.)

Here, p
ir = p+

ir or p–
ir according to (ii) of Lemma .. qjr (x) = pjr (x)

pjr (x)– , q
ir has a similar sense.

If we denote that

�n =
{

x ∈ � \ �n : dist(x,�) > dist(x,�)
}

,
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�n =
{

x ∈ � \ �n : dist(x,�) ≤ dist(x,�)
}

,

then

n
∫

�\�n

∣∣gn(u – v)
∣∣pir (x) |(

∏l
j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
dx

≤ n
∫

�n

∣∣gn(u – v)
∣∣pir (x) |(

∏l
j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
dx

+ n
∫

�n

∣∣gn(u – v)
∣∣pir (x) |(

∏l
j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
dx. (.)

Since

u = v = , x ∈ �,

by the definition of the trace, we have

lim
n→∞ n

∫

�n

∣∣gn(u – v)
∣∣pir (x) |(

∏l
j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
dx

=
∫

�

sign(u – v)
|(∏l

j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
d� = . (.)

Moreover, since

|(∏l
j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
= , x ∈ �,

lim
n→∞ n

∫

�n

∣∣gn(u – v)
∣∣pir (x) |(

∏l
j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
dx

≤ lim
n→∞ n

∫

�n

|(∏l
j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
dx

=
∫

�

|(∏l
j= aj(x))xir |pir (x)

[
∏l

j= aj(x)]pir (x)–
d� = .

(.)

By (.)-(.), we conclude that

lim
n→

∣∣∣∣
∫

�

air (x)
(|uxir |pir (x)–uxir – |vxir |pir (x)–vxir

)
gn(u – v)φnxir dx

∣∣∣∣ = . (.)

In the third place, we deal with the last term on the left-hand side of (.)

∣∣∣∣
∫

�

ajr (x)
(|uxjr |pjr (x)–uxjr – |vxjr |pjr (x)–vxjr

)
gn(u – v)φnxjr dx

∣∣∣∣

=
∣∣∣∣
∫

�\�n

ajr (x)
(|uxjr |pjr (x)–uxjr – |vxjr |pjr (x)–vxjr

)
gn(u – v)φnxjr dx

∣∣∣∣
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≤
∫

�\�n

ajr (x)
(|uxjr |pjr (x)– + |vxjr |pjr (x)–)

( l∏

j=

aj(x)

)

xjr

gn(u – v)|dx

≤ c
(∫

�\�n

ajr (x)|uxjr |pjr (x) + |vxjr |pjr (x) dx
) 

q+
jr

× n

(∫

�\�n

ajr (x)

∣∣∣∣∣

( l∏

j=

aj(x)

)

xi

∣∣∣∣∣

pjr (x)

dx

) 
p+

jr
. (.)

Here, qjr (x) = pjr (x)
pjr (x)– , q+

jr = maxx∈� qjr (x).
By assumption (.)

n

(∫

�\�n

ajr (x)

∣∣∣∣∣

( l∏

j=

aj(x)

)

xjr

∣∣∣∣∣

pjr (x)

dx

) 
p+

jr ≤ c.

Then

lim
n→∞

∣∣∣∣
∫

�

ajr (x)
(|uxjr |pjr (x)–uxjr – |vxjr |pjr (x)–vxjr

)
gn(u – v)φnxjr dx

∣∣∣∣ = . (.)

Now, let n → ∞ in (.). Then

∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

�

∣∣u(x, τ ) – v(x, τ )
∣∣dx, (.)

by the arbitrariness of τ , we have

∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

�

∣∣u(x) – v(x)
∣∣dx. �

4 The case of l = 1

Proof of Theorem . Let u and v be two weak solutions of equation (.) with the initial
values u(x, ), v(x, ), respectively. Since a(x) satisfies (.) and for i ≥ , ai(x) > , x ∈ �,
we can let �n = {x ∈ � : a(x) > 

n } and

φn(x) =

⎧
⎨

⎩
, if x ∈ �n,

na(x), if x ∈ � \ �n.
(.)

Obviously, φnxi = naxi when x ∈ � \ �n, in other places, it is identical to zero.
We can choose χ[τ ,s]φngn(u – v) as the test function, then

∫ s

τ

∫

�

φngn(u – v)
∂(u – v)

∂t
dx dt

+
N∑

i=

∫ s

τ

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
(uxi – vxi )g

′
n(u – v)φn(x) dx dt

+
∫ s

τ

∫

�

a(x)
(|ux |p(x)–ux – |vx |p(x)–vx

)
gn(u – v)φnx dx dt
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+
N∑

i=

∫ s

τ

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
gn(u – v)φnxi dx dt

= . (.)

Certainly, we have

∫

�

ai(x)
(|uxi |pi(x)–uxi – |vxi |pi(x)–vxi

)
(uxi – vxi )g

′
n(u – v)φn(x) dx ≥  (.)

and

lim
η→

∫ s

τ

∫

�

φn(x)φngn(u – v)
∂(u – v)

∂t
dx dt

=
∫

�

|u – v|(x, s) dx –
∫

�

|u – v|(x, τ ) dx. (.)

Now, we deal with the third term on the left-hand side of (.).

∣∣∣∣
∫

�

a(x)
(|ux |p(x)–ux – |vx |p(x)–vx

)
gn(u – v)φnx dx

∣∣∣∣

=
∣∣∣∣
∫

�\�n

a(x)
(|ux |p(x)–ux – |vx |p(x)–vx

)
gn(u – v)φnx dx

∣∣∣∣

≤
∫

�\�n

a(x)
(|ux |p(x)– + |vx |p(x)–)∣∣gn(u – v)φnx

∣∣dx

≤ n
∫

�\�n

a(x)
(|ux |p(x)– + |vx |p(x)–)∣∣gn(u – v)(ax (x)

∣∣dx

≤ cn
(∫

�\�n

a(x)
(|ux |p(x) + |vx |p(x))dx

) 
q+



×
(∫

�\�n

a(x)
∣∣gn(u – v)

∣∣p(x)∣∣ax (x)
∣∣p(x) dx

) 
p+



≤ cn
– 

p+


– 
q+



(
n

∫

�\�n

a(x)
(|ux |p(x) + |vx |p(x))dx

) 
q+



×
(∫

�\�n

∣∣gn(u – v)
∣∣p(x)∣∣ax (x)

∣∣p(x) dx
) 

p+
 . (.)

If we denote that

dn = sup
x∈�\�n

dist(x, ∂�) (.)

and

�n =
{

x ∈ � \ �n : dist(x,�) > dn
}

, �n = (� \ �n) \ �n,
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then

n

(∫

�\�n

air (x)
∣∣gn(u – v)

∣∣pir (x)

∣∣∣∣∣

( l∏

j=

aj(x)

)

xir

∣∣∣∣∣

pir (x)

dx

) 
p+

ir

≤ n

(∫

�n

air (x)
∣∣gn(u – v)

∣∣pir (x)

∣∣∣∣∣

( l∏

j=

aj(x)

)

xir

∣∣∣∣∣

pir (x)

dx

) 
p+

ir

+ n

(∫

�n

air (x)
∣∣gn(u – v)

∣∣pir (x)

∣∣∣∣∣

( l∏

j=

aj(x)

)

xir

∣∣∣∣∣

pir (x)

dx

) 
p+

ir

≤ cn
(∫

�n

∣∣gn(u – v)
∣∣pir (x) dx

) 
p+

ir

+ n

(∫

�n

air (x)

∣∣∣∣∣

( l∏

j=

aj(x)

)

xir

∣∣∣∣∣

pir (x)

dx

) 
p+

ir
. (.)

By the definition of the trace, we have

lim
n→∞ n

∫

�n

∣∣gn(u – v)
∣∣pir dx = . (.)

Moreover, since ai(x) ∈ C(�) and l > , by (.), we always have

( l∏

j=

aj(x)

)

xir

∣∣∣∣∣
∂�

= . (.)

Thus, by the fact that ai(x) ∈ C(�), we get

lim
n→∞ n

(∫

�n

air (x)

∣∣∣∣∣

( l∏

j=

aj(x)

)

xir

∣∣∣∣∣

pir

dx

) 
p+

ir

≤ c max
x∈�

∣∣∣∣∣

( l∏

j=

aj(x)

)

xir

∣∣∣∣∣ = . (.)

By (.)-(.), we conclude that

lim
n→

∣∣∣∣
∫

�

air (x)
(|uxir |pir (x)–uxir – |vxir |pir (x)–vxir

)
gn(u – v)φnxir dx

∣∣∣∣ = . (.)

In the third place, we deal with the last term on the left-hand side of (.)

∣∣∣∣
∫

�

ajr (x)
(|uxjr |pjr (x)–uxjr – |vxjr |pjr (x)–vxjr

)
gn(u – v)φnxjr dx

∣∣∣∣

=
∣∣∣∣
∫

�\�n

ajr (x)
(|uxjr |pjr (x)–uxjr – |vxjr |pjr (x)–vxjr

)
gn(u – v)φnxjr dx

∣∣∣∣
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≤
∫

�\�n

ajr (x)
(|uxjr |pjr (x)– + |vxjr |pjr (x)–)

( l∏

j=

aj(x)

)

xjr

gn(u – v)|dx

≤ c
(∫

�\�n

ajr (x)
(|uxjr |pjr (x) + |vxjr |pjr (x))dx

) 
q+

jr

× n

(∫

�\�n

ajr (x)

∣∣∣∣∣

( l∏

j=

aj(x)

)

xi

∣∣∣∣∣

pjr (x)

dx

) 
p+

jr
. (.)

Here, qjr (x) = pjr (x)
pjr (x)– , q+

jr = maxx∈� qjr (x).
By assumption (.),

n

(∫

�\�n

ajr (x)

∣∣∣∣∣

( l∏

j=

aj(x)

)

xjr

∣∣∣∣∣

pjr (x)

dx

) 
p+

jr ≤ c.

Then

lim
n→∞

∣∣∣∣
∫

�

ajr (x)
(|uxjr |pjr (x)–uxjr – |vxjr |pjr (x)–vxjr

)
gn(u – v)φnxjr dx

∣∣∣∣ = . (.)

Now, let n → ∞ in (.). Then
∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

�

∣∣u(x, τ ) – v(x, τ )
∣∣dx, (.)

by the arbitrariness of τ , we have
∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

�

∣∣u(x) – v(x)
∣∣dx. �

5 Conclusion
The anisotropic parabolic equation is considered in this paper. If in some directions the
diffusion coefficients are degenerate on the boundary, while in other directions they are
not degenerate, how to give a suitable partial boundary value condition to match the equa-
tion was studied by the author in []. If a partial boundary value condition is imposed,
only when the domain is an N-dimensional cube, the stability of weak solutions is proved
[]. This short paper solves the problem when the domain is a usual bounded domain,
gives a complete supplement of the paper [].
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