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Abstract
This paper is concerned with the solvability for fractional Sturm-Liouville boundary
value problems with p(t)-Laplacian operator at resonance using Mawhin’s
continuation theorem. Sufficient conditions for the existence of solutions have been
acquired, and they would extend the existing results. Furthermore, an example is
provided to illustrate the main result.
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1 Introduction
The last two decades have witnessed a wide application of fractional differential equations
in various fields of natural science and engineering technology (see [–]). Introduced by
Bagley and Torvik [], the famous fractional differential model is used to describe radial
vibration of a rigid plate connected to a massless spring immersing vertical in the ideal
fluid:

ay′′(t) + bD


t y(t) + cy(t) = f (t),

where a, b, c > , and the fractional derivative represents damping. With some theoreti-
cal discussions conducted regarding boundary value problem (BVP for short) of differen-
tial equations so far, valuable results have been obtained for BVP of fractional differential
equations (see [–]). For instance, Kosmatov [] studied the existence of solution for
the following BVP of fractional differential equations using coincidence degree theory:

⎧
⎨

⎩

Dαu(t) = f (t, u(t), u′(t)), a · e · t ∈ (, ),

Dα–
+ u() = , ηu(ξ ) = u(),

where Dα is a Caputo fractional derivative, and  < α ≤ .
It is generally known that the p-Laplacian equations normally derive from nonlinear

elastic mechanics and non-Newtonian fluid theory. However, in view of their significance
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in theory and practice, more and more attention is being paid to the existence of solutions
for fractional p-Laplacian BVP. Consequently, important results have been achieved in
this regard by some researchers (see [–]). Chen and Liu [] discussed the solvability
of the following anti-periodic BVP:

⎧
⎨

⎩

C
 Dβ

t φp(C
 Dα

t u) = f (t, u), t ∈ [, ],

u() = –u(), C
 Dα

t u() = –C
 Dα

t u(),

where  < α, β ≤ , φp(·) is a p-Laplacian operator defined by φp(s) = |s|p–s (s �= , p > ),
φp() = . With Schaefer’s fixed point theorem, the existence of solutions for BVP was
obtained.

Mahmudov and Unul [] studied the BVP

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dβ
+ϕp(Dα

+x(t)) = f (t, x(t), Dγ
+x(t)), t ∈ [, ],

x() + μx() = σ
∫ 

 g(s, x(s)) ds,

x′() + μx′() = σ
∫ 

 h(s, x(s)) ds,

Dα
+x() = , Dα

+x() = νDα
+x(η),

where  < α ≤ ,  < β , γ ≤ ,  < η < , ν,μi,σi >  (i = , ), Dα
+ is a Caputo fractional

derivative, ϕp(·) is a p-Laplacian operator, f , g , h are continuous functions. By construct-
ing the Green’s functions of BVP and by using the fixed point theory, the existence and
uniqueness of the solutions were obtained under suitable conditions.

As far as we are concerned, the p(t)-Laplacian operator is a non-standard growth op-
erator by nature, and it mainly derives from elasticity theory, nonlinear electrorheolog-
ical fluids and image restoration. A lot of research regarding BVP of fractional differen-
tial equations with p(t)-Laplacian operator have been quite limited so far (see [–]).
Specifically, Shen and Liu [] studied the existence of solutions for the following BVP with
p(t)-Laplacian operator at nonresonance and resonance by using Schaefer’s fixed point
theorem and Mawhin’s continuation theorem:

⎧
⎨

⎩

Dβ
+ϕp(t)(Dα

+x(t)) + f (t, x(t)) = , t ∈ (, ),

x() = , Dα–
+ x() = γ Iα–

+ x(η), Dα
+x() = ,

where dim Ker L = ,  < α ≤ ,  < β ≤ , γ > ,  < η < , ϕp(t)(·) is a p(t)-Laplacian opera-
tor, p(t) > , p(t) ∈ C[, ].

Inspired by the above findings, this paper studies the BVP subjected to Sturm-Liouville
type integral boundary conditions for fractional differential equations with p(t)-Laplacian
operator:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDβ
+φp(t)(CDα

+x(t)) = f (t, x(t), x′(t)),

x() + bx′() = γ
∫ ξ

 x(t) dt,

x() – mx′() = σ
∫ η

 x(t) dt,
CDα

+x() = ,

(.)
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where  < β ≤ ,  < α ≤ , CDβ
+, CDα

+ are Caputo fractional derivatives, b, m, ξ ,η ∈ (, ),
σ > , γ > , f : [, ] × R

 → R is continuous. φp(t)(·) is the p(t)-Laplacian operator,
p(t) > , p(t) ∈ C[, ], and

γ ξ = , ση = , b =


ξ , m =  –



η, (.)

which leads to BVP (.) is resonant. It is also assumed that

C = (α + )
[
 – m(α + )

]
+ ξ (α + )(mα – ) + ηα(ξ – η) �= . (.)

It is worth noting that p(t) = p herein, meaning it could be the famous p-Laplacian op-
erator. Since the p(t)-Laplacian operator is a nonlinear operator, it is more difficult to
construct a projection operator. So our results serve as a further development for the
previous findings in this sense. Furthermore, we also observe that few scholars have ever
considered fractional Sturm-Liouville BVP with p(t)-Laplacian operator before. The ker-
nel space herein is extended to higher dimensions as well. To be specific, it is assumed that
dim Ker L =  in the article. In comparison with the case when dim Ker L = , the system is
more complex.

2 Preliminaries
To facilitate understanding, we would firstly make a brief introduction about the concepts
and lemmas regarding fractional derivatives and integrals in the article. For more details,
please refer to the references hereunder (see [–]).

Definition . ([]) Let X, Y be real Banach spaces and L : dom L ⊂ X → Y be a linear
map. If dim Ker L = codim Im L < +∞ and Im L is a closed subset in Y , then the map L is a
Fredholm operator with index zero. If there exist such continuous projections as P : X →
X and Q : Y → Y , which meet the conditions that Im P = Ker L and Ker Q = Im L, then
L|dom L∩Ker P : dom L ∩ Ker P → Im L is reversible. We denote the inverse map by KP , set
KP = L–

P and KP,Q = KP(I – Q). If � is an open bounded subset of X and dom L ∩ � �= ∅,
the map N is L-compact on � when QN : � → Y is bounded and KP(I – Q)N : � → X is
compact.

Theorem . ([]) Let L be a Fredholm operator of index zero and N be L-compact on �.
Assume that the following conditions are satisfied:

(a) Lx �= λNx for every (x,λ) ∈ [(dom L \ Ker L) ∩ ∂�] × (, ).
(a) Nx /∈ Im L for every x ∈ Ker L ∩ ∂�.
(a) deg(QN |Ker L,� ∩ Ker L, ) �= .

Then the equation Lx = Nx has at least one solution in dom L ∩ �.

Definition . ([]) The Riemann-Liouville fractional integral of order α (α > ) for the
function x : (, +∞) →R: is defined as

Iα
+x(t) =


�(α)

∫ t


(t – s)α–x(s) ds,

assume that the right-hand side integral is defined on (, +∞).
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Definition . ([]) The Caputo fractional integral of order α (α > ) for the function
x : (, +∞) →R: is defined as

CDα
+x(t) = In–α

+
dnx(t)

dtn =


�(n – α)

∫ t


(t – s)n–α–x(n)(s) ds,

where n = [α] + , provided that the right-hand side integral is defined on (, +∞).

Lemma . ([]) Let n –  < α ≤ n, if CDα
+x(t) ∈ C[, ], then

Iα
+

CDα
+x(t) = x(t) + c + ct + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , n = [α] + .

Lemma . ([]) Let n –  < α ≤ n, then the fractional differential CDα
+x(t) =  has the

following form:

x(t) = c + ct + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , n = [α] + .

Lemma . ([]) For any (t, x) ∈ [, ] ×R, ϕp(t)(x) = |x|p(t)–x is a homeomorphism from
R toR and strictly monotone increasing for any fixed t. Moreover, its inverse operator ϕ–

p(t)(·)
is defined by

⎧
⎨

⎩

ϕ–
p(t)(x) = |x| –p(t)

p(t)– x, x ∈R\{},
ϕ–

p(t)() = , x = ,

which is continuous and sends bounded sets into bounded sets.

Since Mawhin’s continuation theorem is applicable to linear operators, the following
lemma needs to be introduced in this paper.

Lemma . BVP (.) is equivalent to the following problem:

⎧
⎨

⎩

Dα
+x(t) = φ–

p(t)(I
β
+f (t, x(t), x′(t))), t ∈ (, ),

x() + bx′() = γ
∫ ξ

 x(t) dt, x() – mx′() = σ
∫ η

 x(t) dt.
(.)

Proof On the one hand, by Definition ., we have

φp(t)
(
Dα

+x(t)
)

= Iβ
+f

(
t, x(t), x′(t)

)
+ c, c ∈ R.

Based on the boundary condition CDα
+x() = , we get c = . Thus,

φp(t)
(
Dα

+x(t)
)

= Iβ
+f

(
t, x(t), x′(t)

)
,

Dα
+x(t) = φ–

p(t)
(
Iβ

+f
(
t, x(t), x′(t)

))
.
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On the other hand, if Dα
+x(t) = φ–

p(t)(I
β
+f (t, x(t), x′(t))), for t = , we have Dα

+x() = .
Multiplying both sides of the equation by the operator φp(t) and Dβ

+, we get

Dβ
+φp(t)

(
Dα

+x(t)
)

= f
(
t, x(t), x′(t)

)
.

The proof is complete. �

3 Main result
Let X = C[, ], Y = C[, ] with the norm ‖x‖X = maxt∈[,]{‖x‖∞,‖x′‖∞}, ‖y‖Y = ‖y‖∞,
where ‖x‖∞ = maxt∈[,] |x(t)|. By Lemma ., BVP (.) is equivalent to the following prob-
lems:

⎧
⎨

⎩

Dα
+x(t) = φ–

p(t)(I
β
+f (t, x(t), x′(t))), t ∈ (, ),

x() + bx′() = γ
∫ ξ

 x(t) dt, x() – mx′() = σ
∫ η

 x(t) dt.
(.)

Define the operator L : dom L ⊂ X → Y by

Lx = Dα
+x(t), (.)

where

dom L =
{

x ∈ X
∣
∣
∣Dα

+x(t) ∈ Y , x() + bx′() = γ

∫ ξ


x(t) dt,

x() – mx′() = σ

∫ η


x(t) dt

}

.

Let N : X → Y as the Nemytskii operator

Nx(t) = φ–
p(t)

(
Iβ

+f
(
t, x(t), x′(t)

))
, ∀t ∈ [, ].

Then BVP (.) is equivalent to the following operator equation:

Lx = Nx, x ∈ dom L.

For convenience, define the operators T, T, Q, Q : Y → Y :

Ty =
∫ ξ


(ξ – s)αy(s) ds,

Ty = α

∫ 


( – s)α–y(s) ds – mα(α – )

∫ 


( – s)α–y(s) ds – σ

∫ η


(η – s)αy(s) ds,

Qy =

�

(
�Ty(t) – �Ty(t)

)
,

Qy =

�

(
–�Ty(t) + �Ty(t)

)
,

where

� =
ξα+

α + 
, � =  – mα –

ηα

α + 
, � =

ξα+

(α + )(α + )
,
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� =


α + 
– m –

ηα+

(α + )(α + )
,

� =

∣
∣
∣
∣
∣

� �

� �

∣
∣
∣
∣
∣

=
ξα+

(α + )(α + )
{

(α + )
[
 – m(α + )

]
+ ξ (α + )(mα – ) + ηα(ξ – η)

}

=
ξα+

(α + )(α + )
C.

The following theorem is the main result of this paper.

Theorem . Assume that the following conditions hold.

(H) If the function f : [, ] ×R
 →R is continuous, and there exist nonnegative functions

a, b, c ∈ C[, ] such that

∣
∣f (t, u, v)

∣
∣ ≤ a(t) + b(t)|u|θ– + c(t)|v|θ–, ∀t ∈ [, ], (u, v) ∈R

,  < θ ≤ PL,

where a = ‖a‖∞, b = ‖b‖∞, c = ‖c‖∞, PL = mint∈[,] p(t).
(H) There exists a constant B >  such that for u ∈R, if |u| > B, one has either

u · TNu >  or u · TNu < .

(H) There exists a constant D >  such that for v ∈R, if |v| > D, one has either

v · TNu >  or v · TNu < .

Then BVP (.) has at least one solution provided that

θ–(b(α + )θ– + cα
θ–)

�(β + )(�(α + ))θ– <



. (.)

In order to prove the above theorem, it is necessary to introduce more relevant lemmas,
as shown hereunder.

Lemma . Let L be defined by (.), then

Ker L =
{

x ∈ X|x(t) = c + ct, c, c ∈R,∀t ∈ [, ]
}

, (.)

Im L = {y ∈ Y |Ty = Ty = }. (.)

Proof By Lemma ., Dα
+x(t) =  has a solution, i.e.,

x(t) = c + ct, c, c ∈R.

From (.), we can obtain (.).
Next, we prove Im L = {y ∈ Y |Ty = Ty = }.



Xue et al. Boundary Value Problems  (2017) 2017:169 Page 7 of 14

If y ∈ Im L, there exists x ∈ dom L such that y = Lx ∈ Y . By (.) ,we get

x(t) =


�(α)

∫ t


(t – s)α–y(s) ds + c + ct.

In view of the conditions of (.), we have

∫ ξ


(ξ – s)αy(s) ds = ,

α

∫ 


( – s)α–y(s) ds – mα(α – )

∫ 


( – s)α–y(s) ds – σ

∫ η


(η – s)αy(s) ds = ,

i.e., Ty = Ty = . On the other hand, if Ty = Ty =  for y ∈ Y , let x(t) = Iα
+y(t), then

x ∈ dom L and Dα
+x(t) = y(t). Thus, y ∈ Im L. �

Lemma . Let L be defined by (.), then L is a Fredholm operator of index zero. The
linear projection operators P : X → X and Q : Y → Y can be defined as follows:

Px(t) = x() + x′()t, ∀t ∈ [, ],

Qy(t) = Qy + Qy · t, ∀t ∈ [, ].

In addition, KP : Im L → dom L ∩ Ker P is defined as

KPy(t) =


�(α)

∫ t


(t – s)α–y(s) ds, ∀t ∈ [, ].

Proof Clearly, Im P = Ker L and Px = Px. By x = (x – Px) + Px, we obtain x = Ker P + Ker L.
After a simple calculation, we get Ker L ∩ Ker P = {}. Thus, we have

x = Ker L ⊕ Ker P.

The next step is to prove Ker Q = Im L. It is clear that Im L ⊂ Ker Q. On the other hand,
if y ∈ Ker Q ⊂ Y , then Qy = Qy = , i.e.,

⎧
⎨

⎩


�

(�Ty – �Ty) = ,

�

(–�Ty + �Ty) = .

By (.), we have � �= . Hence, Ty = Ty = . Thus we get y ∈ Im L and Ker Q ⊂ Im L. For
y ∈ Y , we get

Q
 y =


�

(
�T(Qy) – �T(Qy)

)
=


�

(�� – ��)Qy = Qy,

Q(Qy) =

�

(
–�T(Qy) + �T(Qy)

)
=


�

(–�� + ��)Qy = ,

Q(Qy · t) =

�

(
�T(Qy · t) – �T(Qy · t)

)
=


�

(�� – ��)Qy = ,

Q(Qy · t) =

�

(
–�T(Qy · t) + �T(Qy · t)

)
=


�

(–�� + ��)Qy = Qy.



Xue et al. Boundary Value Problems  (2017) 2017:169 Page 8 of 14

Therefore, we have

Qy = Q(Qy + Qy · t) + Q(Qy + Qy · t)t = Qy + Qy · t = Qy.

If y ∈ Y , let y = (y – Qy) + Qy, where y – Qy ∈ Ker Q = Im L, Qy ∈ Im Q. It follows from
Ker Q = Im L and Qy = Qy that Im Q ∩ Im L = {}. Then we get Y = Im L ⊕ Im Q. Thus,

dim Ker L = dim Im Q = codim Im L = .

It implies that L is a Fredholm operator of index zero.
The last step is to prove that KP is the inverse operator of L|dom L∩Ker P . In fact, for y ∈ Im L,

we have

LKPy = Dα
+Iα

+y = y. (.)

Additionally, for x ∈ dom L ∩ Ker P, we have x() = x′() =  and KPLx(t) = Iα
+Dα

+x(t) =
x(t) + c + ct. With the boundary condition x() = x′() = , we get

KPLx = x. (.)

Combining (.) with (.), we obtain KP = (L|dom L∩Ker P)–. The proof is complete. �

Theorem . is proved by the following three steps.
Step . Let

� =
{

x ∈ dom L \ Ker L|Lx = λNx,λ ∈ (, )
}

.

For any x ∈ �, x /∈ Ker L, we have Nx ∈ Im L = Ker Q, then QNx = . By (.), we get

TNx =
∫ ξ


(ξ – s)αφ–

p(s)
(
Iβ

+f
(
s, x(s), x′(s)

))
ds = ,

TNx = α

∫ 


( – s)α–φ–

p(s)
(
Iβ

+f
(
s, x(s), x′(s)

))
ds

– mα(α – )
∫ 


( – s)α–φ–

p(s)
(
Iβ

+f
(
s, x(s), x′(s)

))
ds

– σ

∫ η


(η – s)αφ–

p(s)
(
Iβ

+f
(
s, x(s), x′(s)

))
ds = .

From (H) and (H), there exist two constants ε, ε ∈ (, ) such that |x(ε)| ≤ B and
|x′(ε)| ≤ D. Furthermore, by x(t) = Iα

+Dα
+x(t) + c + ct, we get

x′(t) = Iα–
+ Dα

+x(t) + c =


�(α – )

∫ t


(t – s)α–Dα

+x(s) ds + c.

Let t = ε, then

x′(ε) =


�(α – )

∫ ε


(ε – s)α–Dα

+x(s) ds + c.
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Since |x′(ε)| ≤ D, we have

|c| ≤
∣
∣x′(ε)

∣
∣ +


�(α – )

∫ ε


(ε – s)α–∣∣Dα

+x(s)
∣
∣ds

≤ D +
εα–


�(α)

∥
∥Dα

+x
∥
∥∞

≤ D +


�(α)
∥
∥Dα

+x
∥
∥∞.

Then

∥
∥x′∥∥∞ ≤ 

�(α – )

∫ t


(t – s)α–∣∣Dα

+x(s)
∣
∣ds + |c|

≤ tα–

�(α)
∥
∥Dα

+x
∥
∥∞ + D +


�(α)

∥
∥Dα

+x
∥
∥∞

≤ 
�(α)

∥
∥Dα

+x
∥
∥∞ + D.

Let t = ε, then

x(ε) =


�(α)

∫ ε


(ε – s)α–Dα

+x(s) ds + c + cε.

From |x(ε)| ≤ B, we have

|c| ≤
∣
∣x(ε)

∣
∣ +


�(α)

∫ ε


(ε – s)α–∣∣Dα

+x(s)
∣
∣ds + |c|

≤ B +
εα


�(α + )

∥
∥Dα

+x
∥
∥∞ + D +


�(α)

∥
∥Dα

+x
∥
∥∞

≤ B + D +
 + α

�(α + )
∥
∥Dα

+x
∥
∥∞.

Then

‖x‖∞ ≤ 
�(α)

∫ t


(t – s)α–∣∣Dα

+x(s)
∣
∣ds + |c| + |c|

≤ tα

�(α + )
∥
∥Dα

+x
∥
∥∞ + B + D +


�(α)

∥
∥Dα

+x
∥
∥∞ +

 + α

�(α + )
∥
∥Dα

+x
∥
∥∞

≤ B + D +
(α + )
�(α + )

∥
∥Dα

+x
∥
∥∞.

Furthermore, by Lx = λNx, we have

Dα
+x(t) = λφ–

p(t)
(
Iβ

+f
(
t, x(t), x′(t)

))
,

φp(t)
(
Dα

+x(t)
)

= φp(t)
(
λφ–

p(t)
(
Iβ

+f
(
t, x(t), x′(t)

)))

= φp(t)(λ)Iβ
+f

(
t, x(t), x′(t)

)

= λp(t)–Iβ
+f

(
t, x(t), x′(t)

)
.
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Combining (H) and λ ∈ (, ), we have

∣
∣Dα

+x(t)
∣
∣p(t)– ≤ 

�(β)

∫ t


(t – s)β–∣∣f

(
t, x(t), x′(t)

)∣
∣ds

≤ 
�(β + )

(
a + b‖x‖θ–

∞ + c
∥
∥x′∥∥θ–

∞
)

≤ 
�(β + )

[

a + b

(

B + D +
(α + )
�(α + )

∥
∥Dα

+x
∥
∥∞

)θ–

+ c

(


�(α)
∥
∥Dα

+x
∥
∥∞ + D

)θ–]

.

According to (|a| + |b|)p ≤ p(|a|p + |b|p), p > , we get

∣
∣Dα

+x(t)
∣
∣p(t)– ≤ A + A

∥
∥Dα

+x
∥
∥θ–

∞ ,

where

A =
a + b(B + D)θ– + c(D)θ–

�(β + )
, A =

b( (α+)
�(α+) )

θ–
+ c( 

�(α) )θ–

�(β + )
.

Hence, we have

∥
∥Dα

+x
∥
∥∞ ≤ 


p(t)–

(
A


p(t)–
 + A


p(t)–


∥
∥Dα

+x
∥
∥

θ–
p(t)–
∞

)
.

It follows from θ–
p(t)– ∈ (, ] and xk ≤ x + , x > , k ∈ (, ] that

∥
∥Dα

+x
∥
∥∞ ≤ (A)


p(t)– + (A)


p(t)–

(∥
∥Dα

+x
∥
∥∞ + 

)
.

By (.), there exists a constant M >  such that ‖Dα
+x‖∞ ≤ M. Thus,

‖x‖∞ ≤ B + D +
(α + )
�(α + )

M := M,
∥
∥x′∥∥∞ ≤ D +


�(α)

M := M,

this proves that � is bounded.
Step . Let

� = {x|x ∈ Ker L, Nx ∈ Im L}.

If x(t) ∈ �, then x(t) = c + ct, c, c ∈R and Nx ∈ Im L. Thus, we have TNx = TNx = .
When it is combined with (H), we get |x′(t)| = |c| ≤ D. According to (H), there exists
ε ∈ (, ) such that |x(ε)| = |c + cε| ≤ B. It is clear that |c| ≤ B + D. So ‖x‖∞ ≤ B+D :=
M. Thus, � is bounded.

Step . Let

� =
{

x ∈ Ker L,λJx + ( – λ)QNx = ,λ ∈ [, ]
}

,
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where J : Ker L → Im Q is a homeomorphism mapping:

J(c + ct) =

�

(�c – �c) +

�

(–�c + �c)t, c, c ∈ R.

Let x ∈ �, then x(t) = c + ct, c, c ∈R and λJ(c + ct) + ( – λ)QN(c + ct) = , i.e.,

λJ(c + ct) + ( – λ)
[
QN(c + ct) + QN(c + ct)t

]
= .

Then

λ(�c – �c) + ( – λ)
[
�TN(c + ct) – �TN(c + ct)

]
= ,

λ(–�c + �c) + ( – λ)
[
–�TN(c + ct) + �TN(c + ct)

]
= .

Thus,

λc + ( – λ)TN(c + ct) = , (.)

λc + ( – λ)TN(c + ct) = . (.)

According to (.) and the first part of (H), we have |c| ≤ B. Otherwise, if |c| > B, by the
first part of (H), we have

λc
 + ( – λ)cTN(c + ct) > ,

which is contradictory to (.). Similarly, by (.) and the first part of (H), we have
|c| ≤ D. Otherwise, if |c| > D, by the first part of (H), we have

λc
 + ( – λ)cTN(c + ct) > ,

which is contradictory to (.). Hence, � is bounded.
Let

� =
{

x ∈ X,‖x‖∞ < max{M, M} + 
}

.

As indicated by Lemma ., L is a Fredholm operator of index zero. Based on the Arzela-
Ascoli theorem, we obtain that N is L-compact on �. Then, by Step  and Step , we get

(a) Lx �= λNx, (x,λ) ∈ [(dom L\Ker L) ∩ ∂�] × (, ).
(a) Nx /∈ Im L, x ∈ Ker L ∩ ∂�.

Let

H(x,λ) = λJ(x) + ( – λ)QNx.

According to Step , we have H(x,λ) �=  for x ∈ Ker L ∩ ∂�, then

deg(QN |Ker L,� ∩ Ker L, ) = deg
(
H(·, ),� ∩ Ker L, 

)

= deg
(
H(·, ),� ∩ Ker L, 

)

= deg(I,� ∩ Ker L, ) �= .



Xue et al. Boundary Value Problems  (2017) 2017:169 Page 12 of 14

Condition (a) of Theorem . is thus met. Through Theorem ., we get that Lx = Nx has
at least one fixed point in dom L ∩ �. Hence, BVP (.) has at least one solution.

Remark . The proof process would be similar to that of Step  if the second inequality
of both (H) and (H), or the first of (H) and the second of (H), or the first of (H) and
the second of (H) hold. It is hence omitted herein.

Corollary . Assume that the conditions of Theorem . hold. If η ≤ ξ , BVP (.) has at
least one solution.

Proof Here we just need to verify the condition C �= .
By (.), we have

C = (α + )
[
 – m(α + )

]
+ ξ (α + )(mα – ) + ηα(ξ – η)

= (α + ) + (α + )
(

ξα – α –  –


ξαη +



αη + η – ξ

)

+ ηα(ξ – η)

= (α + ) – α + (α + )
(

ξα – α –  –


ξαη +



αη + η – ξ

)

+ ηα(ξ – η)

= (α + )
[

α(ξ – )
(

 –


η

)

+ (η – ξ )
]

+
[
ηα(ξ – η) – α

]
.

Obviously, by  < α ≤  and  < η ≤ ξ < , we obtain C < . The proof is complete. �

4 Example
Example . Consider the following BVP:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CD


+φ(t+)(CD



+x(t)) = 

 + 
 sin(x(t)) + 

 sin(x′(t)), t ∈ (, ),

x() + 
 x′() = 

∫ 


 x(t) dt,

x() – 
 x′() = 

∫ 


 x(t) dt,
CDα

+x() = ,

where p(t) = t + , α = 
 , β = 

 , θ = , f (t, x(t), x′(t)) = 
 + 

 sin(x(t)) + 
 sin(x′(t)), a =


 , b = 

 , c = 
 , b = 

 , ξ = 
 , η = 

 , m = 
 , γ = , σ = , PL = . It is easy to verify

that (.) and (.) hold. Let B = , D = , C = – 
 < , if x(t) > , x′(t) > , then

f (t, x(t), x′(t)) > . Clearly, (H) of Theorem . holds. By (.), we get

θ–(b(α + )θ– + cα
θ–)

�(β + )(�(α + ))θ– =


�( 
 )�( 

 )
<




,

Nx(t) = φ–
p(t)

(
Iβ

+f
(
t, x(t), x′(t)

))
= φ–

(t+)
(
I




+f
(
t, x(t), x′(t)

))
> .

So, (H) of Theorem . holds. Furthermore, by the definition of Ty, we have

TNu(t) = α

∫ 


( – s)α–Nu(s) ds – mα(α – )

∫ 


( – s)α–Nu(s) ds

– σ

∫ η


(η – s)αNu(s) ds
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= Nu(s)
(

 – mα –
σηα+

α + 

)

= Nu(s)
(

–



–



√



)

< .

Thus, (H) of Theorem . holds. Hence, there exists at least one solution.

5 Conclusions
The solvability for fractional Sturm-Liouville BVP with p(t)-Laplacian operator is dis-
cussed in the article by using Mawhin’s continuation theorem, and the existence of so-
lutions has been obtained (see Theorem .). The kernel space is expanded to higher di-
mensions on condition that dim Ker L = , and the system is more complex in comparison
with the case when dim Ker L = . Moreover, when p(t) = p, the p(t)-Laplacian operator
will evolve into the famous p-Laplacian operator. Therefore, our results would develop
previous findings to some extent.
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