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Abstract
In this paper, we investigate a class of second-order p(t)-Laplacian systems with local
‘superquadratic’ potential. By using the generalized mountain pass theorem, we
obtain an existence result for nonconstant periodic solutions.
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1 Introduction
This paper is concerned with the existence of periodic solutions for the following p(t)-
Laplacian system:

⎧
⎨

⎩

(|u′(t)|p(t)–u′(t))′ + ∇F(t, u(t)) = , t ∈ [, T],

u() – u(T) = u′() – u′(T) = ,
()

where T > , u ∈ RN . F(t, u) and p(t) satisfy the following conditions:

(F) F : [, T] × RN → R is measurable and T-periodic in t for each u ∈ RN and con-
tinuously differentiable in u for a.e. t ∈ [, T], and there exist a ∈ C(R+, R+) and
b ∈ L([, T], R+) such that

∣
∣F(t, u)

∣
∣ ≤ a

(|u|)b(t), ∇∣
∣F(t, u)

∣
∣ ≤ a

(|u|)b(t)

for all u ∈ RN and a.e. t ∈ [, T].
(P) p(t) ∈ C([, T], R+), p(t) = p(t + T) and

 < p– := min p(t) ≤ p+ := max p(t) < +∞.

The p(t)-Laplacian system can be applied to describe the physical phenomena with
‘pointwise different properties’ which first arose from the nonlinear elasticity theory (see
[]).
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If p(t) = p is a constant, system () reduces to the p-Laplacian system

⎧
⎨

⎩

(|u′(t)|p–u′(t))′ + ∇F(t, u(t)) = , t ∈ [, T],

u() – u(T) = u′() – u′(T) = .
()

Especially, when p = , system () or () becomes the well-known second-order Hamilto-
nian system

⎧
⎨

⎩

u′′(t) + ∇F(t, u(t)) = , t ∈ [, T],

u() – u(T) = u′() – u′(T) = .
()

In , Rabinowitz [] published his pioneer paper on the existence of periodic solu-
tions for problem () under the following Ambrosetti-Rabinowitz superquadratic condi-
tion:

(AR) There exist μ >  and L∗ >  such that

 < μF(t, u) ≤ (∇F(t, u), u
)

for all |u| ≥ L∗ and a.e. t ∈ [, T].

From then on, many researchers have tried to replace the Ambrosetti-Rabinowitz (short-
ened AR) condition by other superquadratic conditions. Some new superquadratic condi-
tions under which there exist periodic solutions for problem () have been discovered in
literature, see, for example, the references [–]. In [], the authors obtained the following
existence theorem for () under the ‘local superquadratic conditions’.

Theorem A ([], Theorem .) Suppose that F(t, u) satisfies (F) and the following condi-
tions:

(V) F(t, u) ≥  for all t ∈ [, T] and u ∈ RN ;
(V) There are constants m >  and α ≤ m

T such that F(t, u) ≤ α for all u ∈ RN , |u| < m
and a.e. t ∈ [, T].

(V) There are constants μ > ,  ≤ γ < , G >  and the function d(t) ∈ L([, T], R+) such
that

μF(t, u) ≤ (∇F(t, u), u
)

+ d(t)|u|γ

for all u ∈ RN , |u| ≥ G and a.e. t ∈ [, T].
(V) There exist a constant M >  and a subset E of [, T] with meas(E) >  such that

(a) lim inf|u|→∞ F(t,u)
|u| >  uniformly for a.e. t ∈ E;

(b) d(t) ≤ M for a.e. t ∈ E.

Then problem () has at least one nonconstant T-periodic solution.

Recently, in [], the authors extended the above result of [] to system () and got the
following theorem for ().
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Theorem B ([], Theorem .) Suppose that F(t, u) satisfies (F), (V) and the following
conditions:

(H) lim inf|u|→
F(t,u)
|u|p =  uniformly for a.e. t ∈ [, T];

(H) There are constants μ > p, G >  and the function d(t) ∈ L([, T], R) such that

μF(t, u) –
(∇F(t, u), u

) ≤ d(t)|u|p

for all u ∈ RN , |u| ≥ G and a.e. t ∈ [, T], and

lim sup
|u|→∞

μF(t, u) – (∇F(t, u), u)
|u|p ≤ 

uniformly for a.e. t ∈ [, T];
(H) There exists a subset E of [, T] with meas(E) >  such that

lim inf|u|→∞
F(t, u)
|u|p > 

uniformly for a.e. t ∈ E.

Then problem () has at least one nonconstant T-periodic solution.

On the other hand, the p(t)-Laplacian system has been studied by many authors in the
last two decades, see, for example, [–] and the references cited therein. In [], by us-
ing linking methods, the authors obtained an existence result under the AR condition as
follows.

Theorem C ([], Theorem .) Suppose that conditions (P) and (F) hold and F(t, u) sat-
isfies the following conditions:

(A) F(, ) =  and F(t, u) ≥  for all t ∈ [, T] and u ∈ RN ;
(A) There are constants μ > P+ and G >  such that

μF(t, u) ≤ (∇F(t, u), u
)

for all u ∈ RN , |u| ≥ G and a.e. t ∈ [, T];
(A) There exist ν > P+ and g ∈ C([, T], R) such that

lim sup
|u|→∞

F(t, u)
|u|ν ≤ ∣

∣g(t)
∣
∣.

Then problem () has at least one periodic solution.

Moreover, in [–], the authors studied a superlinear elliptic equation with p(x)-
Laplacian without the AR condition and obtained some existence results.

Motivated by the papers [, , , , ], we aim in this paper to study the existence of non-
constant periodic solutions of system () with local ‘superquadratic’ potential and without
the AR condition. We get an existence result which generalizes the above Theorem A and
Theorem B and extends Theorem C. That is the following theorem.
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Theorem  Suppose that conditions (P) and (F) hold and, in addition, F(t, u) satisfies the
following conditions:

(F) F(t, u) ≥  for all t ∈ [, T] and u ∈ RN ;
(F) lim inf|u|→

F(t,u)
|u|p+ =  uniformly for a.e. t ∈ [, T];

(F) There are constants μ > p+, G >  and the function d(t) ∈ L([, T], R) such that

μF(t, u) –
(∇F(t, u), u

) ≤ d(t)|u|p–

for all u ∈ RN , |u| ≥ G and a.e. t ∈ [, T], and

lim sup
|u|→∞

μF(t, u) – (∇F(t, u), u)
|u|p– ≤ 

uniformly for a.e. t ∈ [, T];
(F) There exists a subset � of [, T] with meas(�) >  such that

lim inf|u|→∞
F(t, u)
|u|p+ > 

uniformly for a.e. t ∈ �.

Then problem () has at least one nonconstant T-periodic solution.

Example Set p(t) = 
 + sin( π

T t – π
 ), then p(t) satisfies condition (P) and p– = 

 , p+ = 
 .

Let

ψ(t) =

⎧
⎨

⎩

sin( π
T t), t ∈ [, T

 ],

, t ∈ [ T
 , T],

φ(u) =

⎧
⎨

⎩

|u|, |u| ≤ , u ∈ RN ,

 |u| 

 , |u| > , u ∈ RN ,

F(t, u) = ψ(t)|u| + φ(u), t ∈ [, T], u ∈ RN .

It is clear that (F) and (F) hold. Let μ = , G = , then (F) holds. And take � = [ T
 , T

 ],
then (F) holds for t ∈ �. Therefore, F satisfies all the conditions of our Theorem . More-
over, it is easy to verify that the function F(t, u) does not satisfy the AR condition A in
Theorem C for t ∈ [ T

 , T].

2 Preliminaries
For the reader’s convenience, we first give some necessary background knowledge and
propositions concerning the generalized Lebesgue-Sobolev spaces. We can refer the
reader to [, –]. In the following, we use | · | to denote the Euclidean norm in RN .

Let p(t) satisfy condition (P) and define

Lp(t)([, T]; RN)
=

{

u ∈ L([, T]; RN)
:
∫ T


|u|p(t) dt < ∞

}

,
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with the norm

|u|Lp(t) = |u|p(t) = inf

{

λ >  :
∫ T



∣
∣
∣
∣
u
λ

∣
∣
∣
∣

p(t)

dt ≤ 
}

.

Define

C∞
T = C∞

T
(
R; RN)

=
{

u ∈ C∞(
R; RN)

: u is T-periodic
}

.

For u ∈ L([, T]; RN ), if there exists v ∈ L([, T]; RN ) satisfying

∫ T


vϕ dt = –

∫ T


uϕ′ dt, ∀ϕ ∈ C∞

T ,

then v is called the T-weak derivative of u and is denoted by u′. Define

W ,p(t)
T

(
[, T]; RN)

=
{

u ∈ Lp(t)([, T]; RN)
: u′ ∈ Lp(t)([, T]; RN)}

with the norm

‖u‖W ,p(t)
T

= ‖u‖ = |u|p(t) +
∣
∣u′∣∣

p(t).

For u ∈ W ,p(t)
T ([, T]; RN ), let

ū =

T

∫ T


x(s) ds, ũ(t) = u(t) – ū

and

W̃ ,p(t)
T

(
[, T]; RN)

=
{

x ∈ W ,p(t)
T

(
[, T]; RN)

:
∫ T


x(s) ds = 

}

,

then

W ,p(t)
T

(
[, T]; RN)

= W̃ ,p(t)
T

(
[, T]; RN) ⊕ RN .

In the following we use Lp(t), W ,p(t)
T , W̃ ,p(t)

T to denote Lp(t)([, T]; RN ), W ,p(t)
T ([, T]; RN ),

W̃ ,p(t)
T ([, T]; RN ), respectively.

Proposition  ([]) For u ∈ Lp(t), one has

() |u|p(t) < (= ; > ) ⇔
∫ T



∣
∣u(t)

∣
∣p(t) dt < (= ; > );

() |u|p(t) >  ⇒ |u|p–

p(t) ≤
∫ T



∣
∣u(t)

∣
∣p(t) dt ≤ |u|p+

p(t);

|u|p(t) <  ⇒ |u|p+

p(t) ≤
∫ T



∣
∣u(t)

∣
∣p(t) dt ≤ |u|p–

p(t);
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() |u|p(t) →  ⇔
∫ T



∣
∣u(t)

∣
∣p(t) dt → ;

|u|p(t) → ∞ ⇔
∫ T



∣
∣u(t)

∣
∣p(t) dt → ∞.

Proposition  ([]) The spaces Lp(t) and W ,p(t)
T are separable and reflexive Banach spaces

when p– > .

Proposition  ([]) There is a continuous embedding W ,p(t)
T ↪→ C([, T]; RN ); when p– > ,

it is a compact embedding.

Proposition  ([]) For every u ∈ W̃ ,p(t)
T , there is a constant C independent of u such that

‖u‖∞ ≤ C
∣
∣u′∣∣

p(t).

Proposition  ([]) Let u = ū + ũ ∈ W ,p(t)
T , then the norm |̃u′|p(t) is an equivalent norm on

W̃ ,p(t)
T and |ū| + |u′|p(t) is an equivalent norm on W ,p(t)

T .

To prove the main theorem of the paper, we need the following generalized mountain
pass theorem.

Lemma  ([]) Let E be a real Banach space with E = V ⊕ X, where V �=  is finite dimen-
sional. Suppose ϕ ∈ C(E, R) satisfies the (PS) condition, and

(a) There exist ρ,α >  such that ϕ|∂Bρ∩X ≥ α, where Bρ = {u ∈ E|‖u‖E ≤ ρ}, ∂Bρ

denotes the boundary of Bρ ;
(b) There exist e ∈ ∂B ∩ X and r > ρ such that if Q ≡ (B̄r ∩ V ) ⊕ {se| ≤ s ≤ r}, then

ϕ|∂Q ≤ α
 .

Then ϕ possesses a critical value c ≥ α which can be characterized as

c ≡ inf
h∈�

max
u∈Q

ϕ
(
h(u)

)
,

where � = {h ∈ C(Q̄, E)|h = id on ∂Q}, and id denotes the identity operator.

3 Proof of Theorem 1
Define a functional ϕ on W ,p(t)

T by

ϕ(u) =
∫ T




p(t)

∣
∣u′(t)

∣
∣p(t) dt –

∫ T


F
(
t, u(t)

)
dt

for each u ∈ W ,p(t)
T . It follows from assumption (F) that the functional ϕ is continuously

differentiable on W ,p(t)
T . Moreover, we have

〈
ϕ′(u), v

〉
=

∫ T



(∣
∣u′(t)

∣
∣p(t)–u′(t), v′(t)

)
dt –

∫ T



(∇F
(
t, u(t)

)
, v(t)

)
dt

for all u, v ∈ W ,p(t)
T . And it is well known (see []) that the problem of finding a T-periodic

solution of system () is equal to that of finding the critical of functional ϕ.
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We shall apply Lemma  to ϕ to prove Theorem .
For the convenience to verify the (PS) condition, we need the following lemma. The

proof can be found in [] or [].

Lemma  Let J(u) =
∫ T




p(t) |u′(t)|p(t) dt for u ∈ W ,p(t)
T . Then 〈J ′(u), v〉 =

∫ T
 |(|u′(t)|p(t)– ×

u′(t), v′(t)) dt for all u, v ∈ W ,p(t)
T . And J ′ is a mapping of type (S+), i.e., if un ⇀ u and

lim supn→∞〈J ′(un) – J ′(u), un – u〉 ≤ , then {un} has a convergent subsequence in W ,p(t)
T .

In the following lemma we will show that ϕ satisfies the (PS) condition.

Lemma  The functional ϕ satisfies the (PS) condition, i.e., for every sequence {un} ∈
W ,p(t)

T , {un} has a convergent subsequence if

{
ϕ(un)

}
is bounded and ϕ′(un) →  as n → ∞. ()

Proof First we prove that {un} is a bounded sequence in W ,p(t)
T . Otherwise, {un} would be

unbounded. Passing to a subsequence, we may assume that ‖un‖ → ∞. Let wn = un
‖un‖ , so

that ‖wn‖ = . By Proposition , also passing to a subsequence, we can suppose that

wn ⇀ w weakly in W ,p(t)
T ,

wn → w strongly in C
(
[, T]; RN)

as n → ∞. Moreover, we have

w̄n =

T

∫ T


wn(t) dt → 

T

∫ T


w(t) dt = w̄ ()

as n → ∞. By () there exists a constant C >  such that

∫ T



(
μ

p(t)
– 

)
∣
∣u′

n(t)
∣
∣p(t) dt

= μϕ(un) –
〈
ϕ′(un), un

〉
+

∫ T



(
μF

(
t, un(t)

)
–

(∇F
(
t, un(t)

)
, un(t)

))
dt

≤ C
(
 + ‖un‖

)
+

∫ T



(
μF

(
t, un(t)

)
–

(∇F
(
t, un(t)

)
, un(t)

))
dt.

Notice that ‖un‖ → ∞, we have

(
μ

p+ – 
)∫ T



∣
∣w′

n(t)
∣
∣p(t) dt =

(
μ

p+ – 
)∫ T



|u′
n(t)|p(t)

‖un‖p(t) dt

≤
∫ T



(
μ

p(t)
– 

) |u′
n(t)|p(t)

‖un‖p– dt.

So, we obtain
(

μ

p+ – 
)∫ T



∣
∣w′

n(t)
∣
∣p(t) dt

≤ C( + ‖un‖)
‖un‖p– +

∫ T



(μF(t, un(t)) – (∇F(t, un(t)), un(t)))
‖un‖p– dt. ()
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In view of (F) and (F), there exists � ⊂ [, T] with meas(�) =  such that

∣
∣F(t, u)

∣
∣ ≤ a

(|u|)b(t), ∇∣
∣F(t, u)

∣
∣ ≤ a

(|u|)b(t) ()

for all u ∈ RN and t ∈ [, T] \ � and

lim sup
|u|→∞

μF(t, u) – (∇F(t, u), u)
|u|p– ≤ 

uniformly for t ∈ [, T] \ �. This yields

lim sup
n→∞

μF(t, un(t)) – (∇F(t, un(t)), un(t))
‖un‖p– ≤  ()

for t ∈ [, T] \ �. Otherwise, there exist t ∈ [, T] \ � and a subsequence of un, still
denoted by un, such that

lim sup
n→∞

μF(t, un(t)) – (∇F(t, un(t)), un(t))
‖un‖p– > . ()

If {un(t)} is bounded, then there exists a positive constant C such that |un(t)| ≤ C for
all n ∈ N. By () we find

μF(t, un(t)) – (∇F(t, un(t)), un(t))
‖un‖p–

≤ (μ + C) max≤s≤C a(s)b(t)
‖un‖p– → 

as n → ∞, which contradicts (). So, there is a subsequence of un(t), still denoted by
un(t), such that |un(t)| → ∞ as n → ∞.

lim sup
n→∞

μF(t, un(t)) – (∇F(t, un(t)), un(t))
‖un‖p–

= lim sup
n→∞

μF(t, un(t)) – (∇F(t, un(t)), un(t))
|un(t)|p–

∣
∣wn(t)

∣
∣p–

= lim sup
n→∞

μF(t, un(t)) – (∇F(t, un(t)), un(t))
|un(t)|p– lim

n→∞
∣
∣wn(t)

∣
∣p–

≤ .

This contradicts (). Thus, () holds. From () and () we obtain

lim sup
n→∞

(
μ

p+ – 
)∫ T



∣
∣w′

n(t)
∣
∣p(t) dt ≤ .

Since μ > p+, we get

lim
n→∞

(
μ

p+ – 
)∫ T



∣
∣w′

n(t)
∣
∣p(t) dt = . ()
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Combining with (), this yields

wn → w̄ as n → ∞,

which means that

w = w̄ and T |w̄| = ‖w‖ = .

Then we have

un(t) → ∞ as n → ∞

uniformly for a.e. t ∈ [, T]. And we get from (F), (F) and Fatou’s lemma that

lim inf
n→∞

∫ T



F(t, un(t))
‖un‖p+ dt

≥
∫ T


lim inf

n→∞
F(t, un(t))
‖un‖p+ dt

=
∫ T


lim inf

n→∞
F(t, un(t))
|un(t)|p+

∣
∣wn(t)

∣
∣p+

dt

≥
∫

�

lim inf
n→∞

F(t, un(t))
|un(t)|p+ |w|p+

dt > . ()

On the other hand, we have

∫ T



F(t, un(t))
‖un‖p+ dt =

∫ T




p(t)

|u′
n(t)|p(t)

‖un‖p+ dt –
ϕ(un)
‖un‖p+

≤ 
p–

∫ T



∣
∣
∣
∣
u′

n(t)
‖un‖

∣
∣
∣
∣

p(t)

dt –
ϕ(un)
‖un‖p+

=


p–

∫ T



∣
∣w′

n(t)
∣
∣p(t) dt –

ϕ(un)
‖un‖p+ .

Therefore, combining () and (), we obtain that

lim inf
n→∞

∫ T



F(t, un(t))
‖un‖p+ dt ≤ ,

which contradicts (). Hence, {un} is a bounded sequence in W ,p(t)
T .

By Proposition  and Proposition , {un} has a subsequence, again denoted by {un}, such
that

un ⇀ u weakly in W ,p(t)
T ,

un → u strongly in C
(
[, T]; RN)

.
()

Now, we will show that {un} has a subsequence convergent strongly to u in W ,p(t)
T . From

Lemma  it suffices to prove that lim supn→∞〈J ′(un) – J ′(u), un – u〉 ≤ .
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It follows from Proposition  that max≤t≤T |un(t)| ≤ C‖un‖, which implies

∣
∣un(t)

∣
∣ ≤ C for all t ∈ [, T]. ()

From (), () and (F), we get

∣
∣
∣
∣

∫ T



(∇F
(
t, un(t)

)
, un(t) – u(t)

)
dt

∣
∣
∣
∣

≤
∫ T



∣
∣∇F

(
t, un(t)

)∣
∣
∣
∣un(t) – u(t)

∣
∣dt

≤ ‖un – u‖∞
∫ T


a
(∣
∣un(t)

∣
∣
)
b(t) dt

≤ C‖un – u‖∞
∫ T


b(t) dt.

Thus, from (), we obtain

∣
∣
∣
∣

∫ T



(∇F
(
t, un(t)

)
, un(t) – u(t)

)
dt

∣
∣
∣
∣ → . ()

By () and (), we have

〈
ϕ′(un), un – u

〉 → . ()

Then it follows from () and () that

〈
J ′(un), un – u

〉
=

∫ T



(∣
∣u′

n(t)
∣
∣p(t)–u′

n(t), u′
n(t) – u′(t)

)
dt

=
〈
ϕ′(un), un – u

〉
+

∫ T



(∇F
(
t, un(t)

)
, un(t) – u(t)

)
dt

→  as n → ∞. ()

Moreover, since J ′(u) ∈ (W ,p(t)
T )∗, we get 〈ϕ′(u), un – u〉 → , which combined with ()

implies that

lim
n→∞

〈
J ′(un) – J ′(u), un – u

〉 ≤ .

Hence, from Lemma , {un} has a subsequence convergent strongly to u in W ,p(t)
T . The

proof of the lemma is completed. �

The following result establishes the generalized mountain pass geometry for the func-
tional ϕ(u).

Lemma  Let W ,p(t)
T = RN ⊕ W̃ ,p(t)

T , Br = {u ∈ W ,p(t)
T |‖u‖ ≤ r}, Sr = W̃ ,p(t)

T ∩ ∂Br . Then
there exist ρ >  and α >  such that

inf
u∈Sρ

ϕ(u) > α.
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And there exist r > , r > ρ and e ∈ W̃ ,p(t)
T such that

sup
u∈∂Q

ϕ(u) ≤ ,

where Q = {u + se|u ∈ RN ∩ Br , s ∈ [, r]}.

Proof Firstly, we show that there exists ρ >  such that infu∈Sρ ϕ(u) > . Let C be the
constant in Proposition . By condition (F), we know that for any positive constant
ε < min{C, 

p+TCp+ }, there exists δ ∈ (, ε) such that

∣
∣F(t, u)

∣
∣ ≤ ε|u|p+

()

for all |u| ≤ δ and a.e. t ∈ [, T]. Let  < ρ ≤ δ
C and by Proposition  set Sρ = {u ∈

W̃ ,p(t)
T ||u′|p(t) = ρ}. By Proposition , we get |u(t)| ≤ C|u′|p(t) = Cρ = δ. Since ρ < , then it

follows from Proposition  and () that

ϕ(u) =
∫ T




p(t)

∣
∣u′(t)

∣
∣p(t) dt –

∫ T


F
(
t, u(t)

)
dt

≥ 
p+

∫ T



∣
∣u′(t)

∣
∣p(t) dt – ε

∫ T



∣
∣u(t)

∣
∣p+

dt

≥ 
p+

∣
∣u′∣∣p+

p(t) – εTCp+ ∣
∣u′∣∣p+

p(t)

=
(


p+ – εTCp+

)

ρp+
= α > .

Secondly, we prove that there exist r > , r > ρ and e ∈ W̃ ,p(t)
T such that supu∈∂Q ϕ(u) ≤

. By (F) and (F) there exist constants C > max{, G} , η >  and a subset of �, still
denoted by �, with |�| = meas(�) >  such that

μF(t, u) –
(∇F(t, u), u

) ≤ η|u|p–
()

and

F(t, u) >
η

μ – p– |u|p+
()

for all |u| ≥ C and t ∈ �. For u ∈ RN \ {} and t ∈ �, let f (s) = F(t, su) for all s ≥ C
|u| . We

deduce from () that

f ′(s) =

s
(∇F(t, su), su

)

≥ μ

s
F(t, su) – ηsp––|u|p–

=
μ

s
f (s) – ηsp––|u|p–

,

which yields

g(s) = f ′(s) –
μ

s
f (s) + ηsp––|u|p– ≥  ()
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for all s ≥ C
|u| . From () we have

f (s) =
(∫ s

C|u|

g(r) – ηrp––|u|p–

rμ
dr +

( |u|
C

)μ

f
(

C

|u|
))

sμ ()

for all s ≥ C
|u| . It follows from () and () that

f (s) ≥
(( |u|

C

)μ

f
(

C

|u|
)

+
η|u|p–

(μ – p–)sμ–p– –
η|u|μ

(μ – p–)Cμ–p–



)

sμ

≥
(

F
(

t,
C

|u|u
)

–
ηCp–


μ – p–

)( |u|
C

)μ

sμ.

Combining this with () yields

F(t, u) = f () ≥
(

F
(

t,
C

|u|u
)

–
ηCp–


μ – p–

)( |u|
C

)μ

≥
(

ηCp+–μ


μ – p– –

ηCp––μ


μ – p–

)

|u|μ

≥ C|u|μ

for all |u| ≥ C and t ∈ �, where C = η

μ–p– ( 
Cμ–p+


– 

Cμ–p–


) > . So, notice that F(t, u) ≥ ,
we get

F(t, u) ≥ C
(|u|μ – Cμ


)

= C|u|μ – C ()

for all u ∈ RN and t ∈ �.
Choose e(t) ∈ W̃ ,p(t)

T with ‖e(t)‖ =  such that e(t) =  for all t ∈ [, t]\�. Therefore, one
has

∫

�

e(t) dt =
∫ T


e(t) dt –

∫

[,t]\�
e(t) dt = ,

which implies that

∫

�

(
u, e(t)

)
dt =

∫ T



(
u, e(t)

)
dt –

∫

[,t]\�

(
u, e(t)

)
dt =  ()

for all u ∈ RN . Let W ,p(t)
T = RN ⊕span{e(t)}. Since dim(W ,p(t)

T ) < ∞, all the norms are equiv-
alent. For any v = u + se(t) ∈ W ,p(t)

T , there exists a positive constant K such that

‖v‖Lμ(�) ≥ K‖v‖L(�). ()
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Denoting E =
∫ T

 |e′(t)|p(t) dt, E =
∫

�
|e(t)| dt, by (), (), () and (F), we get

ϕ(u + se) =
∫ T




p(t)

∣
∣se′(t)

∣
∣p(t) dt –

∫ T


F
(
t, u + se(t)

)
dt

≤ 
p–

∫ T



∣
∣se′(t)

∣
∣p(t) dt –

∫

�

F
(
t, u + se(t)

)
dt

≤ 
p–

∫ T



∣
∣se′(t)

∣
∣p(t) dt – C

∫

�

∣
∣u + se(t)

∣
∣μ dt + C|�|

≤ 
p–

∫ T



∣
∣se′(t)

∣
∣p(t) dt – CKμ

(∫

�

∣
∣u + se(t)

∣
∣ dt

)μ


+ C|�|

=


p–

∫ T



∣
∣se′(t)

∣
∣p(t) dt – CKμ

(∫

�

(|u| + s∣∣e(t)
∣
∣)dt

)μ


+ C|�|

≤ 
p–

∫ T



∣
∣se′(t)

∣
∣p(t) dt – CKμ|u|μ|�|μ

 – CKμsμ|E|μ
 + C|�|.

Therefore, when s > , we have

ϕ(u + se) ≤ E

p– sp+
– CKμ|E|μ

 sμ + C|�|.

Since μ > p+, there exists r > max{,ρ} such that

ϕ(u + se) ≤  for all u ∈ RN and s = r. ()

Moreover, for all u ∈ RN and  ≤ s ≤ r, we have

ϕ(u + se) ≤ Erp+


p– – CKμ|u|μ|�|μ

 + C|�|.

This deduces that

ϕ(u + se) ≤  when |u|μ ≥ Erp+

 + C|�|p–

CKμ|�|μ
 p–

.

Let u ∈ RN , |u| ≥ , from Proposition , we know that

|u|μT =
∫ T


|u|μ dt ≥

∫ T


|u|p(t) dt ≥ |u|p–

p(t).

So, let r satisfy

rp–

 ≥ max

{

,
Erp+

 + C|�|p–

CKμ|�|μ
 p–

T
}

,

then, when u ∈ RN , ‖u‖ = |u|p(t) = r, we obtain

ϕ(u + se) ≤  for all s ∈ [, r]. ()
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On the other hand, if s = , by (F), we get

ϕ(u + se) = –
∫ T


F(t, u) dt ≤  for all u ∈ RN . ()

Setting Q = {u + se|u ∈ RN ∩ Br , s ∈ [, r]}, by (),() and (), we have

sup
u∈∂Q

ϕ(u) ≤ . ()

The proof of Lemma  is completed. �

Proof of Theorem  By Lemma  and Lemma , applying Lemma , then ϕ possesses a
critical point u(t) whose critical value c satisfies c ≥ α > . By F, we can see that u(t)
is nonconstant. Hence, problem () has at least one nonconstant T-periodic solution in
W,p(t)

T . �

4 Conclusions
In this work, we have established an existence result for nonconstant periodic solutions of
a class of second-order systems with p(t)-Laplacian. For p(x) is a constant p, it is easy to
see that the conditions and conclusion in Theorem  are the same as those in Theorem .
in []. Thus Theorem  generalizes Theorem . in [] and Theorem . in []. Further-
more, obviously, conditions (F) and (F) of Theorem  are weaker than (A) and (A) of
Theorem . in []. Therefore, Theorem  extends Theorem . in [].
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