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1 Introduction
Non-integer (arbitrary) order calculus has evolved into an interesting area of research for
mathematicians and modelers during the last few decades. It has been mainly due to the
varied applications of fractional differential equations in applied and technical sciences.
Fractional derivatives can take into account memory and hereditary properties of various
materials and processes in contrast to classical ones. In [], Mehaute found the fractional
derivatives a nearly perfect tool for describing the turbulent flow in a porous medium.
Nowadays, fractional-order differential and integral operators, which are nonlocal in na-
ture, appear in mathematical models of many real world phenomena such as synchroniza-
tion of chaotic systems [, ], anomalous diffusion [], disease models [–], ecological
models [], etc.

Anomalous diffusion phenomena exhibit features different from the classical ones, for
instance, the deviation of observed data in the saturated zone of an actual aquifer from
simulated results for the classical advection-diffusion equation was noticed by Adams and
Gelhar []. Some anomalous diffusion can be interpreted as slow diffusion, and it is char-
acterized by the long-tailed profile in spatial distribution of densities with the passage of
time. For more details, we refer the reader to the work presented in []. For anomalous dif-
fusion, a microscopic model was proposed by the continuous-time random walk with the
mean square displacement 〈u(t)〉 growing as tσ , where u(t), t >  is the probability density
function and σ is a positive constant. The anomalous diffusion subject to this condition
can be described by a macroscopic model which is known as fractional diffusion equation
[]. The case σ =  corresponds to the classical diffusion, and the transport phenomenon
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exhibits sub-diffusion for σ <  while super-diffusion is associated with σ > . Hatano and
Hatano [] used many column experiments on reactive flow in heterogeneous media to
determine the value of σ for suitable simulation of the anomalous diffusion. For more
details, see [].

Wide-spread application of fractional calculus has motivated many researchers to de-
velop the theoretical aspects of this branch of mathematical analysis. In particular, there
has been shown a great interest in the study of fractional-order boundary value problems
(FBVPs). The literature on FBVPs is now much enriched and contains a variety of interest-
ing results involving different kinds of boundary conditions. For theoretical development
of the topic, we refer the reader to the works [–] and the references cited therein.

In this survey, we will review some recent works on fractional-order anti-periodic
boundary value problems and discuss some new results.

2 Some definitions and examples
Let us now recall some basic definitions of fractional derivative [] and see how such
derivatives appear in the mathematical modeling of real world problems.

Definition . The fractional integral of order r with the lower limit zero for a function
f : [,∞) → R is defined as

Irf (t) =


�(r)

∫ t



f (s)
(t – s)–r ds, t > , r > ,

provided the right-hand side is point-wise defined on [,∞), where �(·) is the gamma
function, which is defined by �(r) =

∫ ∞
 tr–e–t dt.

Definition . The Riemann-Liouville fractional derivative of order r > , n –  < r < n,
n ∈ N , is defined as

Dr
+f (t) =


�(n – r)

(
d
dt

)n ∫ t


(t – s)n–r–f (s) ds,

where the function f (t) has an absolutely continuous derivative up to order (n – ).

Definition . The Caputo derivative of order r for a function f : [,∞) → R with f (t) ∈
Cn[,∞) is defined by

cDrf (t) =


�(n – r)

∫ t



f (n)(s)
(t – s)r+–n ds = In–rf (n)(t), t > , n –  < r < n.

In particular, for n = , we have

cDrf (t) =


�( – r)

∫ t


(t – s)–rf ′(s) ds, t > ,  < r < ,

which can be interpreted as the distribution of f ′ scaled by the factor (t–s)–r

�(–r) over the inter-
val [, t].

Next we present some examples of fractional differential equations.
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(a) Population model. Consider a population with a density function u(x, t) at a position
x ∈ Rd and time t > . We take account of births, deaths and migration with rate of growth
f (x, u), and let K(x, y) denote the fraction of population that will migrate from position x
to y within the time interval (t, t + �t). Expressing it in the mathematical form, we have

ut =
∫

Rd
K(x, y)

[
u(y, t) – u(x, t)

]
dy + f (x, u). (.)

Assume that K ≥  and the range of migration is not too large. Choose

K(x, y) =

εd k

(
y – x

ε

)

with k ∈ L(Rd). There may be several cases for k, for instance, let k be compactly sup-
ported or at least have bounded third moment. Then, for (y – x)/ε = z, the integral on the
right-hand side of (.) takes the form


εd–

∫
Rd

k
(|z|)[u(x + εz) – u(x)

]
dz.

In case we select

k(x, y) =
∥∥∥∥y – x

ε

∥∥∥∥
–d–α

, ‖y – x‖ ≥ ε,

then the right-hand side of (.) takes the following form:

εα

∫
‖y–x‖≥ε

u(y) – u(x)
‖y – x‖d+α

dy,

which, on taking the limit ε → , yields the following form of (.):

∂tu = (–�)αu + f (x, u).

(b) Local fractional versions of the Korteweg-de Vries equation. Based on local fractional
conservation laws of mass, energy and momentum in fractal media, linear and nonlinear
local fractional versions of the Korteweg-de Vries equation describing fractal waves on
shallow water surfaces, derived in [], are respectively given by

∂αη

∂tα
+

∂αη

∂xα
+

∂αη

∂xα
= ,

∂αη

∂tα
– η

∂αη

∂xα
+

∂αη

∂xα
= .

(c) Polarographic equation []. Polarographic equation, examined by Wiener in [, ]
under the assumption that the derivative of non-integer order appearing in the equation
is in the sense of Hadamard, is

y/(x) – νxβy(x) = x–/, x > , –/ < β ≤ ,ν ∈R
+. (.)

For some recent works on Hadamard fractional differential equations, see the text [].
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3 Classical anti-periodic boundary conditions
In [], Ahmad and Nieto initiated the study of fractional-order boundary value problems
by considering the following problem:

⎧⎨
⎩

cDqu(t) = f (t, u(t)), t ∈ [, T],  < q ≤ ,

u() = –u(T), u′() = –u′(T),
(.)

where cDq denotes the Caputo fractional derivative of order q, f : [, T] × R → R and T
is a fixed positive constant.

Some existence results for problem (.) were obtained by transforming the problem
into an equivalent fixed point problem

u = �(u),

where � is given by

(�u)(t) =
∫ t



(t – s)q–

�(q)
f
(
s, u(s)

)
ds –




∫ T



(T – s)q–

�(q)
f
(
s, u(s)

)
ds

+



(T – t)
∫ T



(T – s)q–

�(q – )
f
(
s, u(s)

)
ds, t ∈ [, T].

Here we mention two results from [] which were proved by applying fixed point theo-
rems due to Altman and Schauder.

Theorem . Assume that there exist constants  ≤ κ < �(q+)
(+q) and M >  such that

|f (t, u)| ≤ κ
Tq |u| + M for all t ∈ [, T], u ∈ C[, T]. Then the anti-periodic boundary value

problem (.) has at least one solution on [, T].

Theorem . Suppose that f is of class C in the second variable and there exists a constant
 ≤ M < �(q+)

Tq(+q) such that |fu(t, u)| ≤ M for all t ∈ [, T], u ∈ C[, T]. Then problem (.)
has at least one solution on [, T].

Ahmad and Otero-Espinar [] considered the inclusions (multivalued) case of problem
(.) by replacing f : [, T]×R →Rwith F : [, T]×R → R\{∅} and proved the following
result by means of Bohnenblust-Karlin’s fixed point theorem for the resulting problem:

⎧⎨
⎩

cDqu(t) ∈ F(t, x(t)), t ∈ [, T],  < q ≤ ,

u() = –u(T), u′() = –u′(T).
(.)

Theorem . Suppose that the following assumptions hold:

(A) Let F : [, T] ×R → BCC(R); (t, x) → f (t, x) be measurable with respect to t for each
x ∈ R, u.s.c. with respect to x for a.e. t ∈ [, T], and for each fixed x ∈ R, the set SF ,y :=
{f ∈ L([, T],R) : f (t) ∈ F(t, x) for a.e. t ∈ [, T]} is nonempty (BCC(R) denotes the
set of all nonempty bounded, closed and convex subsets of R);
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(A) For each r > , there exists a function mr ∈ L([, T],R+) such that ‖F(t, x)‖ = sup{|v| :
v(t) ∈ F(t, x)} ≤ mr(t) for each (t, x) ∈ [, T] ×R with |x| ≤ r, and

lim inf
r→+∞

(∫ T
 mr(t) dt

r

)
= γ < ∞.

Then the anti-periodic inclusion problem (.) has at least one solution on [, T] provided
that γ < �(q)/( + q)Tq–.

Alsaedi [] studied the following anti-periodic boundary value problem of integro-
differential equations of the form:

⎧⎨
⎩

cDqu(t) = f (t, u(t),
∫ t

 γ (t, s)u(s) ds), t ∈ [, T],  < q ≤ ,

u() = –u(T), u′() = –u′(T),
(.)

where γ : [, t] × [, T] → [,∞) is a given function.
In [], Benchohra et al. studied (.) with the nonlinearity of the form f (t, u(t), cDq–u(t))

and investigated the existence of solutions of the resulting problem by means of Banach’s
fixed point theorem and Schauder’s fixed point theorem.

Ahmad and Nieto [] studied an anti-periodic boundary value problem for impulsive
fractional differential equations:

⎧⎪⎪⎨
⎪⎪⎩

cDqx(t) = f (t, x(t)),  < q ≤ , t ∈ J = [, T] \ {t, t, . . . , tp},
�x(tk) = Ik(x(t–

k )), �x′(tk) = Jk(x(t–
k )), tk ∈ (, T), k = , , . . . , p,

x() = –x(T), x′() = –x′(T),

(.)

where cD is the Caputo fractional derivative, f : J × R → R is a continuous function,
J = [, T], Ik ,Jk : R → R, �x(tk) = x(t+

k ) – x(t–
k ) with x(t+

k ) = limh→+ x(tk + h), x(t–
k ) =

limh→– x(tk + h), k = , , . . . , p for  = t < t < t < · · · < tp < tp+ = T .
The following results were obtained for problem (.).

Theorem . Let f : [, T] × R → R be a jointly continuous function and Ik , Jk : R → R

be continuous functions. Assume that there exist positive constants L, L, L, M, M such
that

(A) ‖f (t, x) – f (t, y)‖ ≤ L‖x – y‖, ∀t ∈ [, T], x, y ∈R;
(A) ‖Ik(x)–Ik(y)‖ ≤ L‖x–y‖, ‖Jk(x)–Jk(y)‖ ≤ L‖x–y‖ with ‖Ik(x)‖ ≤ M, ‖Jk(x)‖ ≤

M, ∀x, y ∈ R, k = , , . . . , p.

Further LTq( (+p)
�(q+) + +p

�(q) ) + p
 (L + TL) <  with L ≤ 

 [Tq{ (+p)
�(q+) + +p

�(q) }]–. Then
the impulsive anti-periodic boundary value problem (.) has a unique solution on J .

Theorem . Let (A) and (A) assumed in Theorem . hold with p
 (L + TL) < 

and ‖f (t, x)‖ ≤ μ(t), ∀(t, x) ∈ [, T] ×R, where μ ∈ C([, T],R+). Then the boundary value
problem (.) has at least one solution on [, T].
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The inclusions case of problem (.) was discussed in [].
In [], by applying the contraction mapping principle and Krasnoselskii’s fixed point

theorem, the author proved the existence and uniqueness results for the following anti-
periodic fractional boundary value problem:

⎧⎨
⎩

cDqx(t) = f (t, x(t)), t ∈ [, T], T > ,  < q ≤ ,

x() = –x(T), x′() = –x′(T), x′′() = –x′′(T),
(.)

where cDq denotes the Caputo fractional derivative of order q.
Later, Cernea [] considered the inclusion case of problem (.) and obtained several

results for convex and non-convex values of the multivalued map by applying nonlin-
ear alternative of Leray-Schauder type, the Bressan-Colombo selection theorem for lower
semicontinuous set-valued maps with decomposable values and the Covitz and Nadler
set-valued contraction principle.

Wang et al. [] obtained some existence and uniqueness results for problem (.) with
impulsive conditions given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cDαu(t) = f (t, u(t)),  < α ≤ , t ∈ J ′,

�u(tk) = Qk(u(tk)), �u′(tk) = Ik(u(tk)),

�u′′(tk) = I∗
k (u(tk)), k = , , . . . , p,

u() = –u(), u′() = –u′(), u′′() = –u′′(),

where cD is the Caputo fractional derivative, f ∈ C(J ×R,R), Qk , Ik , I∗
k ∈ C(R,R), J = [, ],

 = t < t < t < · · · < tp < tp+ = , J ′ = J \ {t, t, . . . , tp}, �u(tk) = u(t+
k ) – u(t–

k ) with u(t+
k ) and

u(t–
k ) denoting the right and the left limit of u(t) at t = tk , k = , , . . . , p, respectively, and

�u′(tk) and �u′′(tk) have a similar meaning for u′(t) and u′′(t), respectively.
In [], Agarwal and Ahmad developed the existence theory for the following anti-

periodic boundary value problems of fractional differential equations and inclusions of
order α ∈ (, ]:

⎧⎪⎪⎨
⎪⎪⎩

cDqx(t) = f (t, x(t)), t ∈ [, T], T > ,  < q ≤ ,

x() = –x(T), x′() = –x′(T),

x′′() = –x′′(T), x′′′() = –x′′′(T),

(.)

where cDq denotes the Caputo fractional derivative of order q, f is a given continuous
function and

⎧⎪⎪⎨
⎪⎪⎩

cDqx(t) ∈ F(t, x(t)), t ∈ [, T], T > ,  < q ≤ ,

x() = –x(T), x′() = –x′(T),

x′′() = –x′′(T), x′′′() = –x′′′(T).

(.)

In (.), F : [, T] ×R →P(R) is a multivalued map, P(R) is the family of all subsets of R.
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In order to transform problem (.) into an equivalent fixed point problem, an operator
G : C([, T],R) → C([, T],R) was defined as

(Gx)(t) =
∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds –




∫ T



(T – s)q–

�(q)
f
(
s, x(s)

)
ds

+
(T – t)



∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds

+
t(T – t)



∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds

+
(tT – t – T)



∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds, t ∈ [, T]. (.)

The following results were obtained for problems (.) and (.).

Theorem . Assume that there exists a positive constant L such that |f (t, x)| ≤ L for
t ∈ [, T], x ∈ R. Then problem (.) has at least one solution.

Theorem . Let f : [, T] ×R →R and limx→
f (t,x)

x = . Then problem (.) has at least
one solution.

Theorem . Let f : [, T] ×R → R be a continuous function satisfying the following as-
sumptions:

(B) |f (t, x) – f (t, y)| ≤ L|x – y|, ∀t ∈ [, T], x, y ∈R;
(B) ‖f (t, x)‖ ≤ μ(t), ∀(t, x) ∈ [, ] ×R, and μ ∈ C([, T],R+).

Then the anti-periodic boundary value problem (.) has at least one solution on [, T] if

LTq

�(q + )

(
 +

q(q + )


)
< .

Theorem . Assume that f : [, T] × R → R is a continuous function satisfying the as-
sumption (B) with

L ≤ �(q + )

Tq( + q(q+)
 )

.

Then the anti-periodic boundary value problem (.) has a unique solution.

Theorem . Let f : [, T] ×R →R. Assume that there exist constants  ≤ κ < 
δ
, where

δ =
Tq

�(q + )

(



+
q(q + )



)
,

and M >  such that |f (t, x)| ≤ κ|x| + M for all t ∈ [, T], x ∈ R. Then the boundary value
problem (.) has at least one solution.

Theorem . Assume that

(H) F : [, T] ×R →P(R) is L-Carathéodory and has convex values;
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(H) there exist a continuous nondecreasing function ψ : [,∞) → (,∞) and a function
p ∈ C([, T],R+) such that

∥∥F(t, x)
∥∥
P := sup

{|y| : y ∈ F(t, x)
} ≤ p(t)ψ

(‖x‖∞
)

for each (t, x) ∈ [, T] ×R;

(H) there exists a number M >  such that

M
γψ(M)‖p‖ > , (.)

where

γ =
Tq( + q(q+)

 )
�(q + )

.

Then the boundary value problem (.) has at least one solution on [, T].

Theorem . Assume that the following conditions hold:

(H) F : [, T] × R → Pcp(R) is such that F(·, x) : [, T] → Pcp(R) is measurable for each
x ∈R.

(H) Hd(F(t, x), F(t, x̄)) ≤ m(t)|x – x̄| for almost all t ∈ [, T] and x, x̄ ∈ R with m ∈
C([, T],R+) and d(, F(t, )) ≤ m(t) for almost all t ∈ [, T].

Then the boundary value problem (.) has at least one solution on [, T] if

Tq( + q(q+)
 )

�(q + )
< .

Alsaedi et al. [] found further insight into the characteristics of fractional-order anti-
periodic boundary value problems by extending problem (.) to the order α ∈ (, ].

In [], the authors studied a boundary value problem of fractional differential inclu-
sions with anti-periodic type integral boundary conditions given by

⎧⎨
⎩

cDqx(t)x(t) ∈ F(t, x(t)),  < t < T ,  < q ≤ ,

x(j)() – λjx(j)(T) = μj
∫ T

 gj(s, x(s)) ds, j = , , ,
(.)

where cDq denotes the Caputo derivative of fractional order q, x(j)(·) denotes jth deriva-
tive of x(·) with x()(·) = x(·), F : [, T] × R → P(R) is a multivalued map, P(R) is the
family of all subsets of R, gj : [, T] ×R →R are given continuous functions and λj,μj ∈R

(λj �= ). The existence of solutions for problem (.) was investigated for convex as well as
nonconvex valued maps by using nonlinear alternative of Leray-Schauder type and a fixed
point theorem for contraction multivalued maps due to Covitz and Nadler, respectively.

In [], Agarwal et al. introduced nonlocal (parametric type) anti-periodic conditions
involving a nonlocal intermediate point  < a < T and the right end point (t = T ). This
consideration led to a new kind of anti-periodic conditions: x(a) = –x(T), x′(a) = –x′(T).
With these conditions, the following anti-periodic boundary value problem was studied:

⎧⎨
⎩

cDqx(t) = f (t, x(t)), t ∈ [, T], T > ,  < q ≤ ,

x(a) = –x(T), x′(a) = –x′(T),  < a < T ,
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where cDq denotes the Caputo fractional derivative of order q and f : [, T] × R → R is
a given function. Observe that the interval [, T] can be replaced with an interval of the
form (–∞, T] with a in it. This means that the anti-periodic phenomena can start from
an arbitrary point in (–∞, T).

3.1 An interesting analogy
Here we describe the relationship between the Green’s functions of lower- and higher-
order anti-periodic fractional BVPs. Note that the underbraced term in the Green’s func-
tion of an anti-periodic fractional BVP indicates the additional term to the Green’s func-
tion of the immediate lower-order anti-periodic fractional BVP.

(a) The Green’s function for the problem

⎧⎨
⎩

cDqx(t) = f(t),  < q ≤ , t ∈ [, T],

x() = –x(T)

is

G(t, s, q) =

⎧⎨
⎩

(t–s)q–

�(q) – (T–s)q–

�(q) , s ≤ t,

– (T–s)q–

�(q) , t ≤ s.

(b) The Green’s function for the problem

⎧⎨
⎩

cDqx(t) = f(t),  < q ≤ , t ∈ [, T],

x() = –x(T), x′() = –x′(T)

is

G(t, s, q) =

⎧⎪⎪⎨
⎪⎪⎩

(t–s)q–

�(q) – (T–s)q–

�(q) + 
 (–t + T) (T–s)q–

�(q–)︸ ︷︷ ︸, s ≤ t,

– (T–s)q–

�(q) + 
 (–t + T) (T–s)q–

�(q–)︸ ︷︷ ︸, t ≤ s.
(.)

(c) The Green’s function for the problem

⎧⎨
⎩

cDqx(t) = f(t),  < q ≤ , t ∈ [, T],

x() = –x(T), x′() = –x′(T), x′′() = –x′′(T)

is

G(t, s, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t–s)q–

�(q) – (T–s)q–

�(q) + 
 (–t + T) (T–s)q–

�(q–)

+ 
 (–t + Tt) (T–s)q–

�(q–)︸ ︷︷ ︸, s ≤ t,

– (T–s)q–

�(q) + 
 (–t + T) (T–s)q–

�(q–)

+ 
 (–t + Tt) (T–s)q–

�(q–)︸ ︷︷ ︸, t ≤ s.
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(d) The Green’s function for the problem

⎧⎨
⎩

cDqx(t) = f(t),  < q ≤ , t ∈ [, T],

x() = –x(T), x′() = –x′(T), x′′() = –x′′(T), x′′′() = –x′′′(T)

is

G(t, s, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t–s)q–

�(q) – (T–s)q–

�(q) + 
 (–t + T) (T–s)q–

�(q–)

+ 
 (–t + Tt) (T–s)q–

�(q–) + 
 (–t + Tt – T) (T–s)q–

�(q–)︸ ︷︷ ︸,

s ≤ t,

– (T–s)q–

�(q) + 
 (–t + T) (T–s)q–

�(q–)

+ 
 (–t + Tt) (T–s)q–

�(q–) + 
 (–t + Tt – T) (T–s)q–

�(q–)︸ ︷︷ ︸,

t ≤ s.

(e) For the anti-periodic boundary value problem of fractional differential equations of
order q ∈ (, ],

⎧⎪⎪⎨
⎪⎪⎩

cDqx(t) = f(t),  < q ≤ , t ∈ [, T],

x() = –x(T), x′() = –x′(T), x′′() = –x′′(T), x′′′() = –x′′′(T),

x()() = –x()(T),

the Green’s function is

G(t, s, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t–s)q–

�(q) – (T–s)q–

�(q) + 
 (–t + T) (T–s)q–

�(q–)

+ 
 (–t + Tt) (T–s)q–

�(q–) + 
 (–t + Tt – T) (T–s)q–

�(q–)

+ 
 (–t + Tt – Tt) (T–s)q–

�(q–)︸ ︷︷ ︸, s ≤ t

– (T–s)q–

�(q) + 
 (–t + T) (T–s)q–

�(q–)

+ 
 (–t + Tt) (T–s)q–

�(q–) + 
 (–t + Tt – T) (T–s)q–

�(q–)

+ 
 (–t + Tt – Tt) (T–s)q–

�(q–)︸ ︷︷ ︸, t ≤ s.

(.)

3.2 Further generalization of classical anti-periodic problems - new results
Consider a Caputo type fractional differential equation

cDqx(t) = f
(
t, x(t)

)
,  < q ≤ , t ∈ [, T], (.)

supplemented with the following anti-periodic boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩

x() = –x(T), x′() = –x′(T),

x′′() = –x′′(T), x′′′() = –x′′′(T),

x()() = –x()(T), x()() = –x()(T),

(.)
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where cDq denotes the Caputo fractional derivative of order q, f is a given continuous
function.

By means of standard tools of fractional calculus, we can express the solution of problem
(.)-(.) in terms of the Green’s function as follows:

x(t) =
∫ T


G(t, s, q)f(s) ds,

where

G(t, s, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t–s)q–

�(q) – (T–s)q–

�(q) + 
 (–t + T) (T–s)q–

�(q–)

+ 
 (–t + Tt) (T–s)q–

�(q–) + 
 (–t + Tt – T) (T–s)q–

�(q–)

+ 
 (–t + Tt – Tt) (T–s)q–

�(q–)

+ 
 (–t + 

 Tt – 
 Tt – Tt + T) (T–s)q–

�(q–)︸ ︷︷ ︸,

s ≤ t,

– (T–s)q–

�(q) + 
 (–t + T) (T–s)q–

�(q–)

+ 
 (–t + Tt) (T–s)q–

�(q–) + 
 (–t + Tt – T) (T–s)q–

�(q–)

+ 
 (–t + Tt – Tt) (T–s)q–

�(q–)

+ 
 (–t + 

 Tt – 
 Tt – Tt + T) (T–s)q–

�(q–)︸ ︷︷ ︸,

t ≤ s.

(.)

Let A = C([, T],R) denote the Banach space of all continuous functions from [, T] to
R endowed with the norm ‖x‖ = sup{|x(t)|, t ∈ [, T]}.

Associated with problem (.)-(.), we define an operator H : A→A by

(Hx)(t) =
∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds –




∫ T



(T – s)q–

�(q)
f
(
s, x(s)

)
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds, (.)

where

ζ(t) =



(–t + T), ζ(t) =



(
–t + Tt

)
,

ζ(t) =



(
–t + Tt – T), ζ(t) =




(
–t + Tt – Tt

)
, (.)

ζ(t) =




(
–t +




Tt –



Tt – Tt + T
)

.

Notice that problem (.)-(.) has solutions if and only if the operator H has fixed
points.
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For the sake of computational convenience, we set

� = max
t∈[,T]

∣∣�(t)
∣∣, (.)

where

�(t) =
tq

�(q + )
–

Tq

�(q + )
+




(–t + T)
Tq–

�(q)
+




(
–t + Tt

) Tq–

�(q – )

+



(
–t + Tt – T) Tq–

�(q – )
+




(
–t + Tt – Tt

) Tq–

�(q – )

+




(
–t +




Tt –



Tt – Tt + T
)

Tq–

�(q – )
.

Now we present existence results for problem (.)-(.). Our first result is based on
Banach’s fixed point theorem.

Theorem . Let f : [, T] × R → R be a continuous function such that the following
condition holds:

(H) |f (t, x) – f (t, y)| ≤ �|x – y|, ∀t ∈ [, T], x, y ∈R, � > .

Then problem (.)-(.) has a unique solution if �� < , where � is given by (.).

Proof Setting supt∈[,T] |f (t, )| = �, ε > ��( – ��)–, we show that HBε ⊂ Bε , where the
operator H is given by (.) and Bε = {x ∈A : ‖x‖ ≤ ε}. Now, for x ∈ Bε , t ∈ [, T], using

∣∣f (t, x(t)
)∣∣ =

∣∣f (t, x(t)
)

– f (t, ) + f (t, )
∣∣

≤ ∣∣f (t, x(t)
)

– f (t, )
∣∣ +

∣∣f (t, )
∣∣ ≤ �ε + �,

and (.), we get

∥∥(Hx)
∥∥ ≤ sup

t∈[,T]

{∫ t



(t – s)q–

�(q)
∣∣f (s, x(s)

)∣∣ds +



∫ T



(T – s)q–

�(q)
∣∣f (s, x(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)∣∣ds + ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)∣∣ds + ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)∣∣ds
}

≤ (�ε + �) sup
t∈[,T]

{
tq

�(q + )
+

Tq

�(q + )
+ ζ 

Tq–

�(q)
+ ζ 

Tq–

�(q – )

+ ζ 
Tq–

�(q – )
+ ζ 

Tq–

�(q – )
+ ζ 

Tq–

�(q – )

}
≤ (�ε + �)� ≤ ε,

which implies that HBε ⊂ Bε .
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Next, for x, y ∈R and for each t ∈ [, T], we obtain

‖Hx – Hy‖ ≤ sup
t∈[,T]

{∫ t



(t – s)q–

�(q)
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+



∫ T



(T – s)q–

�(q)
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds
}

≤ �‖x – y‖ sup
t∈[,T]

{∫ t



(t – s)q–

�(q)
ds +




∫ T



(T – s)q–

�(q)
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
ds

}
≤ ��‖x – y‖,

where � is given by (.). Then we deduce from the assumption �� <  that the operator
H is a contraction. Therefore, it follows by Banach’s fixed point theorem that problem
(.)-(.) has a unique solution on [, T]. This completes the proof. �

In the next result, we use Krasnoselskii’s fixed point theorem [].

Lemma . (Krasnoselskii) Let P be a closed, convex, bounded and nonempty subset of a
Banach space X. Let ψ, ψ be operators such that (i) ψν + ψν ∈P whenever ν,ν ∈P ;
(ii) ψ is compact and continuous; and (iii) ψ is a contraction mapping. Then there exists
ω ∈P such that ω = ψω + ψω.

Theorem . Let f : [, T] ×R →R be a continuous function satisfying (H) and

(H) |f (t, x)| ≤ γ (t), ∀(t, x) ∈ [, T] ×R, and γ ∈ C([, T],R+).

Then there exists at least one solution for problem (.)-(.) on [, T] if

�Tq

�(q + )

[



+ ζ T–q + ζ T–q(q – ) + ζ T–q(q – )(q – )

+ ζ T–q(q – )(q – )(q – ) + ζ T–q(q – )(q – )(q – )(q – )
]

< . (.)
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Proof Letting δ ≥ ‖γ ‖�, (‖γ ‖ = maxt∈[,T] |γ (t)|), we consider Bδ = {x ∈ A : ‖x‖ ≤ δ} and
define the operators H and H on Bδ as

(Hx)(t) =
∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds,

(Hx)(t) = –



∫ T



(T – s)q–

�(q)
f
(
s, x(s)

)
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds.

It is easy to show that ‖(H̃x) + (H̃y)‖ ≤ ‖γ ‖� ≤ δ for x̃, ỹ ∈ Bδ , where � is given by (.).
Hence, H̃x + H̃x ∈ Bδ .

Next, we will show that the operator H is a contraction. For x, y ∈R, t ∈ [, T], we can
obtain

‖Hx – Hy‖ ≤ sup
t∈[,T]

{



∫ T



(T – s)q–

�(q)
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds
}

≤ �‖x – y‖ sup
t∈[,T]

{



∫ T



(T – s)q–

�(q)
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
ds

}

≤ �‖x – y‖Tq

�(q + )

[



+ ζ T–q + ζ T–q(q – ) + ζ T–q(q – )(q – )

+ ζ T–q(q – )(q – )(q – ) + ζ T–q(q – )(q – )(q – )(q – )
]

.

In view of assumption (.), the last inequality implies that H is a contraction.
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Now, we will show that H is compact and continuous. The operator H is continuous
by the continuity of f . Also, H is uniformly bounded on Bδ as ‖Hx‖ ≤ ‖γ ‖

�(q+) . Moreover,
for t, t ∈ [, ] with t < t, we have

∣∣(Hx)(t) – (Hx)(t)
∣∣ ≤

∣∣∣∣
∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds –

∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds

∣∣∣∣
≤ ‖γ ‖

�(q + )
(∣∣tq

 – tq

∣∣ + (t – t)q),

which as (t – t) →  tends to zero independent of x. So, H is relatively compact on Bδ .
Thus, by the Arzelá-Ascoli theorem, the operator H is compact on Bδ . Therefore, all the
conditions of Krasnoselskii’s fixed point theorem are satisfied; and consequently, problem
(.)-(.) has at least one solution on [, T]. This completes the proof. �

The next result is based on the Leray-Schauder nonlinear alternative [].

Lemma . (Nonlinear alternative for single-valued maps) Let E be a Banach space, E be
a closed, convex subset of E, V be an open subset of E and  ∈ V . Suppose that U : V → E

is a continuous, compact (that is, U (V ) is a relatively compact subset of E) map. Then
either

(i) U has a fixed point in V , or
(ii) there is x ∈ ∂V (the boundary of V in E) and κ ∈ (, ) with x = κU (x).

Theorem . Let f : [, ] ×R→ R be a continuous function. Assume that

(H) there exist a function p ∈ C([, T],R+) and a nondecreasing function ϕ : R+ → R
+ such

that |f (t, x)| ≤ p(t)ϕ(‖x‖), ∀(t, x) ∈ [, T] ×R;
(H) there exists a constant M >  such that M

ϕ(M)‖p‖�
– > .

Then problem (.)-(.) has at least one solution on [, T].

Proof First, we will show that the operator H : A → A defined by (.) maps bounded
sets into bounded sets in A. Let Bε = {x ∈ A : ‖x‖ ≤ ε} for ε >  be a bounded set in A.
Then, in view of (H), we obtain, for x ∈ Bε ,

∣∣(Hx)(t)
∣∣ ≤

∫ t



(t – s)q–

�(q)
p(s)ϕ

(‖x‖)ds +



∫ T



(T – s)q–

�(q)
p(s)ϕ

(‖x‖)ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
p(s)ϕ

(‖x‖)ds + ζ(t)
∫ T



(T – s)q–

�(q – )
p(s)ϕ

(‖x‖)ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
p(s)ϕ

(‖x‖)ds + ζ(t)
∫ T



(T – s)q–

�(q – )
p(s)ϕ

(‖x‖)ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
p(s)ϕ

(‖x‖)ds

≤ ϕ(ε)‖p‖Tq

�(q + )

[



+ ζ T–q + ζ T–q(q – )

+ ζ T–q(q – )(q – ) + ζ T–q(q – )(q – )(q – )

+ ζ T–q(q – )(q – )(q – )(q – )
]

.
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Next, it will be shown that H maps bounded sets into equicontinuous sets of A. Let t, t ∈
[, T] with t < t and x ∈ Bε . Then

∣∣(Hx)(t) – (Hx)(t)
∣∣

≤ ϕ(ε)‖p‖
�(q + )

[∣∣tq
 – tq


∣∣ + (t – t)q +




(t – t)Tq–q

+



(t – t)
(
T – (t + t)

)
Tq–q(q – )

+ (t – t)
(




T(t + t) +



(
t
 + tt + t


))

Tq–q(q – )(q – )

+ (t – t)
(




T +



T

(
t
 + tt + t


)

+ (t + t)
(
t
 + t


))

Tq–q(q – )(q – )(q – )

+ (t – t)
(




T +



T(t + t) +




T(t + t)
(
t
 + t


)

+



(
t
 + t

 t + t
 t

 + tt
 + t


))

Tq–q(q – )(q – )(q – )(q – )
]

.

Obviously, the right-hand side tends to zero independently of x ∈ Bε as (t – t) → .
Hence, by the Arzelá-Ascoli theorem, the operator H is completely continuous.

Let x be a solution of the given problem. Then, for ρ ∈ (, T), using the method of com-
putation employed to show the boundedness of the operator H, we obtain

∣∣x(t)
∣∣ =

∣∣ρ(Hx)(t)
∣∣

≤ ϕ(‖x‖)‖p‖Tq

�(q + )

{



+ ζ T–q + ζ T–q(q – )

+ ζ T–q(q – )(q – ) + ζ T–q(q – )(q – )(q – )

+ ζ T–q(q – )(q – )(q – )(q – )
}

,

which implies that

‖x‖
[

ϕ(‖x‖)‖p‖Tq

�(q + )

{



+ ζ T–q + ζ T–q(q – )

+ ζ T–q(q – )(q – ) + ζ T–q(q – )(q – )(q – )

+ ζ T–q(q – )(q – )(q – )(q – )
}]–

≤ .

In view of condition (H), there exists M >  such that ‖x‖ �= M. Let us choose N = {x ∈
A : ‖x‖ < M + }. Observe that the operator H : N → A is continuous and completely
continuous. From the choice of N , there is no x ∈ ∂N such that x = ρH(x) for some ρ ∈
(, T). Therefore, by Lemma ., we have that the operator H has a fixed point x ∈ N
which is a solution of problem (.)-(.). This completes the proof. �

Our final result is based on the following fixed point theorem.
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Theorem . Let X be a Banach space. Assume that K : X → X is a completely contin-
uous operator and the set W = {u ∈ X|u = λKu,  < λ < } is bounded. Then K has a fixed
point in X.

Theorem . Assume that there exists a positive constant M such that |f (t, x)| ≤ M for
all t ∈ [, T], x ∈ A. Then there exists at least one solution for problem (.)-(.) on
[, T].

Proof From the previous result, we have that the operator H is completely continuous.
Now, we define a set U = {x ∈ A : x = χHx,  < χ < } and show that it is bounded. For

x ∈ U , t ∈ [, T], we have

x(t) =
∫ t



(t – s)q–

�(q)
f
(
s, x(s)

)
ds –




∫ T



(T – s)q–

�(q)
f
(
s, x(s)

)
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds + ζ(t)

∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds

+ ζ(t)
∫ T



(T – s)q–

�(q – )
f
(
s, x(s)

)
ds.

We can obtain that |x(t)| = χ |(Hx)(t)| ≤ M� = M, then ‖x‖ ≤ M, ∀x ∈ U , t ∈ [, T].
Thus, U is bounded. Therefore, by Theorem ., problem (.)-(.) has at least one
solution on [, ]. This completes the proof. �

Example . Consider a fractional boundary value problem with anti-periodic bound-
ary conditions given by

⎧⎪⎪⎨
⎪⎪⎩

cD 
 x(t) = x√

t+
+ sin(x)

t+ + 
 , t ∈ [, ],

x() = –x(), x′() = –x′(), x′′() = –x′′(),

x′′′() = –x′′′(), x()() = –x()(), x()() = –x()().

(.)

Here, q = /, T =  and � = 
 as |f (t, x) – f (t, y)| ≤ 

‖x – y‖. Using the given data, we
get � = maxt∈[,] |�(t)| ≈ .. Clearly, �� ≈ . < . Hence, all the conditions of
Theorem . are satisfied. Therefore, the conclusion of Theorem . applies, and prob-
lem (.) has a unique solution on [, ].

Example . Consider the following fractional differential equation:

cD

 x(t) =

(t + )


(

π

tan–(x) + x
)

, t ∈ [, ], (.)

subject to the boundary conditions of Example .. In this case, |f (t, x)| ≤ (t + )( +
‖x‖)/. Let us fix p(t) = (t + )/, ϕ(‖x‖) =  + ‖x‖ and ‖p‖ = /.

By the assumption M/ϕ(M)‖p‖� > , we find that M > M̃, where M̃ ≈ .. Thus,
by Theorem ., there exists at least one solution for problem (.).
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4 Sequential fractional differential equations
In [], Aqlan et al. studied some new boundary value problems of Liouville-Caputo type
sequential fractional differential equation:

(cDα + kcDα–)u(t) = f
(
t, u(t)

)
,  < α ≤ ,  < t < T , T > , (.)

subject to anti-periodic type (non-separated) boundary conditions of the form

αu() + ρu(T) = β, αu′() + ρu′(T) = β, (.)

and anti-periodic type (non-separated) nonlocal integral boundary conditions

αu() + ρu(T) = λ

∫ η


u(s) ds + λ,

αu′() + ρu′(T) = μ

∫ T

ξ

u(s) ds + μ,
(.)

where cDα denotes the Liouville-Caputo fractional derivative of order α, k ∈ R
+,  < η <

ξ < T , α,α,ρ,ρ,β,β,λ,λ,μμ ∈R with α + ρ �= , α + ρe–kT �= , and f : [, T] ×
R →R is a given continuous function. Instead of writing the so-called ‘Caputo’ derivative,
they called it ‘Liouville-Caputo’ derivative as it was introduced by Liouville many decades
ago.

Several existence and uniqueness results were obtained for problem (.)-(.) by using
the operator H : E → E given by

(Hu)(t) = ν(t) +
∫ t


e–k(t–s)

(∫ s



(s – x)α–

�(α – )
f
(
x, u(x)

)
dx

)
ds

+ ν(t)
∫ T



(T – s)α–

�(α – )
f
(
s, u(s)

)
ds

+ ν(t)
∫ T


e–k(T–s)

(∫ s



(s – x)α–

�(α – )
f
(
x, u(x)

)
dx

)
ds, (.)

where E = C([, T],R) denotes the Banach space of all continuous functions from [, T] →
R endowed with the norm defined by ‖u‖ = sup{|u(t)|, t ∈ [, T]} and

ν(t) =
β

(α + ρ)
+

((α + ρe–kT ) – (α + ρ)e–kt)β

k(α + ρ)(α + ρe–kT )
,

ν(t) =
ρ((α + ρ)e–kt – (α + ρe–kT ))

k(α + ρ)(α + ρe–kT )
, ν(t) =

αρ – αρ – ρ(α + ρ)e–kt

(α + ρ)(α + ρe–kT )
.

To study the existence of solutions for problems (.) and (.), the following fixed point
operator G : E → E (associated with the given problem) was considered:

(Gu)(t) = B(t)
{
λ

∫ η



(∫ s


e–k(s–x)Iα–h(x) dx

)
ds

– ρ

∫ T


e–k(T–s)Iα–h(s) ds + λ

}
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+ B(t)
{
μ

∫ T

ξ

(∫ s


e–k(s–x)Iα–h(x) dx

)
ds

+ kρ

∫ T


e–k(T–s)Iα–h(s) ds – ρIα–h(T) + μ

}

+
∫ t


e–k(t–s)Iα–h(s) ds, (.)

where

B(t) =
(εe–kt + δ)

�
, B(t) =

(εe–kt – δ)
�

, � = δε + δε,

δ = α + ρe–kT +
λ

k
(
e–kη – 

)
, ε = (α + ρ – λη),

δ = –kα – kρe–kT +
μ

k
(
e–kT – e–kξ

)
, ε = μ(T – ξ ). (.)

In a more recent work [], the authors presented a novel idea of unification of anti-
periodic and multipoint boundary conditions and developed the existence theory for se-
quential fractional differential equations by applying some standard fixed point theorems
due to Banach, Krasnoselskii, Leray-Schauder alternative criterion, and Leray-Schauder
degree theory. Precisely, the following problem was investigated:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(cDq + kcDq–)u(t) = f (t, u(t)),  < q ≤ ,  < t < T ,

αu() +
∑m

i= aiu(ηi) + γu(T) = β,

αu′() +
∑m

i= biu′(ηi) + γu′(T) = β,

αu′′() +
∑m

i= ciu′′(ηi) + γu′′(T) = β,

(.)

where cDq denotes the Caputo fractional derivative of order q, αj,βj,γj ∈ R (j = , , ),
ai, bi, ci ∈ R (i = , , . . . , m), k ∈ R

+ and f is an appropriately chosen continuous function.
The new boundary conditions in (.) can be interpreted as the values of the unknown
function, and its first- and second-order derivatives at the end points of the interval under
consideration relate to the linear combination of the values of the unknown function, and
its first- and second-order derivatives at interior points ηi ∈ (, T).

5 Coupled anti-periodic boundary conditions
In [], Alsulami et al. introduced a new kind of boundary value problems of coupled
Caputo type fractional differential equations:

⎧⎨
⎩

cDαx(t) = f (t, x(t), y(t)), t ∈ [, T],  < α ≤ ,
cDβy(t) = g(t, x(t), y(t)), t ∈ [, T],  < β ≤ ,

(.)

subject to the following non-separated coupled boundary conditions:

⎧⎨
⎩

x() = λy(T), x′() = λy′(T),

y() = μx(T), y′() = μx′(T),
(.)
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where cDα , cDβ denote the Caputo fractional derivatives of order α and β , respectively,
f , g : [, T] × R × R → R are appropriately chosen functions, and λi, μi, i = , , are real
constants with λiμi �= , i = , .

In order to obtain the existence and uniqueness results for problem (.)-(.), the au-
thors derived the operator T : X × X → X × X defined by

T(u, v)(t) =

(
T(u, v)(t)
T(u, v)(t)

)
,

where X = {u(t)|u(t) ∈ C([, T],R)} endowed with the norm ‖u‖ = sup{|u(t)|, t ∈ [, T]} is
a Banach space,

T(u, v)(t)

=
μ

 – λμ

(
λT(μλ + )

 – λμ
+ λt

)
Bf +

λ

 – λμ

(
T(μ + μ)λ

 – λμ
+ t

)
Ag

+
λ

 – λμ
(Ag + μBf ) +

∫ t



(t – s)α–

�(α)
f
(
s, x(s), y(s)

)
ds,

T(u, v)(t)

=
μ

 – λμ

(
Tμ(λ + λ)

 – λμ
+ t

)
Bf +

λ

 – λμ

(
Tμ(λμ + )

 – λμ
+ μt

)
Ag

+
μ

 – λμ
(λAg + Bf ) +

∫ t



(t – s)β–

�(β)
g
(
s, x(s), y(s)

)
ds,

Ag =
∫ T



(T – s)β–

�(β)
g
(
s, x(s), y(s)

)
ds, Bf =

∫ T



(T – s)α–

�(α)
f
(
s, x(s), y(s)

)
ds,

Ag =
∫ T



(T – s)β–

�(β – )
g
(
s, x(s), y(s)

)
ds, Bf =

∫ T



(T – s)α–

�(α – )
f
(
s, x(s), y(s)

)
ds.

In the most recent work [], Ahmad et al. investigated the existence of solutions for the
following boundary value problem of nonlinear Caputo sequential fractional differential
equations:

⎧⎨
⎩

(cDα + k
cDα–)x(t) = f (t, x(t), y(t)),  < α ≤ , t ∈ [, T],

(cDβ + k
cDβ–)y(t) = g(t, x(t), y(t)),  < β ≤ , t ∈ [, T],

(.)

supplemented with coupled anti-periodic type boundary conditions

⎧⎨
⎩

x() = ay(T), x′() = ay′(T),

y() = bx(T), y′() = bx′(T),
(.)

where cDα , cDβ denote the Caputo fractional derivative of order α and β , respectively,
k, k ∈ R

+, T >  and f , g : [, T] ×R×R→R are given continuous functions, and a, a,
b, b are real constants with ab �=  and abe–(kT+kT) �= .
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We briefly describe the results obtained for problem (.)-(.). First of all, they obtained
an operator H : X × X −→ X × X given by

H(u, v)(t) =

(
H(u, v)(t)
H(u, v)(t)

)
, (.)

where

H(u, v)(t) =
∫ t


e–k(t–s)

(∫ s



(s – τ )α–

�(α – )
f
(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ ρ

[
μ(t)

∫ T


e–k(T–s)

(∫ s



(s – τ )β–

�(β – )
g
(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ μ(t)
∫ T


e–k(T–s)

(∫ s



(s – τ )α–

�(α – )
f
(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ μ(t)
∫ T



(T – s)α–

�(α – )
f
(
s, u(s), v(s)

)
ds

+ μ(t)
∫ T



(T – s)β–

�(β – )
g
(
s, u(s), v(s)

)
ds

]
, (.)

H(u, v)(t) =
∫ t


e–k(t–s)

(∫ s



(s – τ )β–

�(β – )
g
(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ ρ

[
ν(t)

∫ T


e–k(T–s)

(∫ s



(s – τ )β–

�(β – )
g
(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ ν(t)
∫ T


e–k(T–s)

(∫ s



(s – τ )α–

�(α – )
f
(
τ , u(τ ), v(τ )

)
dτ

)
ds

+ ν(t)
∫ T



(T – s)α–

�(α – )
f
(
s, u(s), v(s)

)
ds

+ ν(t)
∫ T



(T – s)β–

�(β – )
g
(
s, u(s), v(s)

)
ds

]
. (.)

The product space X × X equipped with the norm ‖(u, v)‖ = ‖u‖ + ‖v‖ is a Banach space
(X = {u(t)|u(t) ∈ C[, T]} endowed with the usual supremum norm ‖u‖ = max{|u(t)|, t ∈
[, T]} is a Banach space),

μ(t) = ak
e–kt + δ, μ(t) = kkabe–(kt+kT) + δ,

μ(t) = δ – kabe–(kT+kt), μ(t) = δ – kae–kt ,

ν(t) = kkabe–(kT+kt) + σ, ν(t) = k
 be–kt + σ,

ν(t) = σ – kbe–kt , ν(t) = σ – kabe–(kT+kt),

δ = k
(
cγ + acaγe–kT)

, δ = k
(
caγ + cbγe–kT)

,

δ = caγ – cbγe–kT , δ = cγ – caaγe–kT ,

σ = ck
(
bγ + aγe–kT)

, σ = ck
(
γ + bbγe–kT)

,

σ = c
(
γ – bbγe–kT)

, σ = c
(
bγ – aγe–kT)

,

c = abe–(kT+kT), c =


 – ab
, c =  + abc, γ = ak – ak,
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γ = bk – bk, γ = ak – ack,

γ = bk – bck, ρ =


kk( – c)
. (.)

To establish the desired results, the following conditions were assumed:

(H) There exist real constants mi, ni >  (i = , ), and m > , n >  such that |f (t, x,
x)| ≤ m + m|x| + m|x|, |g(t, x, x)| ≤ n + n|x| + n|x|, ∀xi ∈R, i = , .

(H) f , g : [, ]×R
 →R are continuous functions, and there exist constants �i, �i, i = , ,

such that for all t ∈ [, T], ui, vi ∈ R, i = , , |f (t, u, u) – f (t, v, v)| ≤ �|u – v| +
�|u – v|, |g(t, u, u) – g(t, v, v)| ≤ �|u – v| + �|u – v|.
For brevity, the following notations were set for computational convenience:

S = max
t∈[,T]

{
tα–( – e–kt)

k�(α)
+ ρ

[ |μ(t)|Tα–( – e–kT )
k�(α)

+
|μ(t)|Tα–

�(α)

]}
, (.)

S = max
t∈[,T]

{
ρ

[ |μ(t)|Tβ–( – e–kT )
k�(β)

+
|μ(t)|Tβ–

�(β)

]}
, (.)

S = max
t∈[,T]

{
tβ–( – e–kt)

k�(β)
+ ρ

[ |ν(t)|Tβ–( – e–kT )
k�(β)

+
|ν(t)|Tβ–

�(β)

]}
, (.)

S = max
t∈[,T]

{
ρ

[ |ν(t)|Tα–( – e–kT )
k�(α)

+
|ν(t)|Tα–

�(α)

]}
, (.)

and

S = min
{

 –
[
m(S + S) + n(S + S)

]
,  –

[
m(S + S) + n(S + S)

]}
, (.)

mi, ni ≥  (i = , ).

Theorem . (Existence result via the Leray-Schauder alternative) Assume that (H) holds
and that

m(S + S) + n(S + S) < , m(S + S) + n(S + S) < ,

where S, S, S and S are given by (.), (.), (.) and (.), respectively. Then problem
(.)-(.) has at least one solution on [, T].

Theorem . (Uniqueness result via Banach’s contraction mapping principle) Let (H)
and the following assumption hold:

(� + �)(S + S) + (� + �)(S + S) < , (.)

where S, S, S and S are given by (.), (.), (.) and (.) respectively. Then there
exists a unique solution for problem (.)-(.) on [, T].
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Example . Consider the following fully coupled fractional boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

(cD/ + 


cD/)x(t) = |x(t)|
(t+)(+|x(t)|) + 

(+y(t)) + 
 , t ∈ [, ],

(cD/ + 


cD/)y(t) = sin(πx(t))
π

+ 


√
t+ + |y(t)|

(+|y(t)|) , t ∈ [, ],

x() = 
 y(), x′() = y′(), y() = 

 x(), y′() = –x′().

(.)

Here T = , k = /, k = /, a = /, a = , b = /, b = –, f (t, u, v) = |u|
(t+)(+|u|) +


(+v) + 

 , g(t, u, v) = sin(πu)
π

+ 


√
t+ + |v|

(+|v|) . Using the given data, it was found that
S ≈ ., S ≈ ., S ≈ ., S ≈ . (S, S, S and S are given
by (.), (.), (.) and (.), respectively).

(a) Clearly, m = 
 , m = 

 , m = 
 , n = 

 , n = 
 , n = 

 as
|f (t, u, v)| ≤ 

 + 
 |u| + 

 |v| and |g(t, u(t), v(t))| ≤ 
 + 

 |u| + 
 |v|. Also

m(S + S) + n(S + S) = . <  and m(S + S) + n(S + S) = . < .
Thus the hypothesis of Theorem . is satisfied. Hence, by the conclusion of
Theorem ., problem (.) has at least one solution on [, ].

(b) Since |f (t, u, v) – f (t, u, v)| ≤ 
 |u – u| + 

 |v – v|,
|g(t, u, v) – g(t, u, v)| ≤ 

 |u – u| + 
 |v – v|, therefore � = 

 , � = 
 , � = 

 ,
� = 

 , m = 
 . Further, [(� + �)(S + S) + (� + �)(S + S)] = . < . Thus

all the conditions of Theorem . are satisfied. Therefore, the conclusion of
Theorem . applies and hence problem (.) has a unique solution on [, ].

Remark . Fixing the parameters involved in conditions (.), several new results fol-
low as special cases of the present work. For example, if x() = , y() =  (a =  = b),
x′() = ay′(T), y′() = bx′(T), our results correspond to a problem with coupled flux type
conditions. By selecting a =  = b and a �=  �= b, we obtain the results for a nonlinear
fractional-order coupled system with semi-periodic coupled boundary conditions of the
form x() = y(T), x′() = ay′(T), y() = x(T), y′() = bx′(T). In case we choose a =  = a

and b = – = b or vice versa, our results correspond to a boundary value problem of
nonlinear coupled fractional differential equations subject to a combination of coupled
periodic and anti-periodic boundary conditions of the form x() = y(T), x′() = y′(T),
y() = –x(T), y′() = –x′(T) or x() = –y(T), x′() = –y′(T), y() = x(T), y′() = x′(T).

6 Fractional-order anti-periodic boundary conditions
Ahmad and Nieto [] introduced fractional-order anti-periodic boundary conditions and
investigated the existence and uniqueness of solutions for the following problem:

⎧⎨
⎩

cDqx(t) = f (t, x(t)), t ∈ [, T],  < q ≤ ,

x() = –x(T), cDpx() = –cDpx(T),  < p < .
(.)

In [], Wang and Liu studied problem (.) with the nonlinearity of the form f (t, u(t),
cDαu(t)),  < α < .

In [], the authors applied Schaefer’s fixed point theorem to prove the existence of so-
lutions for an anti-periodic boundary value problem of Caputo type fractional differential
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equations involving a p-Laplacian operator of the form
⎧⎨
⎩

Dβ

+φp(Dα
+ x(t)) = f (t, x(t)), t ∈ [, ],  < α,β ≤ ,

x() = –x(), Dα
+ x() = –Dα

+ x().
(.)

Later, the authors in [] obtained several existence results for a higher-order Caputo
fractional differential equation supplemented with fractional anti-periodic boundary con-
ditions:

⎧⎨
⎩

cDqx(t) = f (t, x(t)), t ∈ [, T],  < q ≤ ,

x() = –x(T), cDpx() = –cDpx(T), cDp+x() = –cDp+x(T),  < p < .

By applying Banach’s contraction mapping principle and Leray-Schauder degree theory,
Chai [] obtained the existence results for the problem

⎧⎪⎪⎨
⎪⎪⎩

cDα
+ u(t) = f (t, u(t), cDα

+ u(t), cDα
+ u(t)), t ∈ (, ),

u() = –u(), tβ–cDβ
+ u(t)|t→+ = –tβ–cDβ

+ u(t)|t=,

tβ–cDβ
+ u(t)|t→+ = –tβ–cDβ

+ u(t)|t=,

(.)

where cDγ denotes the Caputo fractional derivative of order γ , the constants α, α, α,
β, β are such that  < α ≤ ,  < α ≤  < α ≤ ,  < β <  < β <  and f is a given
continuous function. The inclusion case of problem (.) was discussed in [].

Ahmad and Nieto [] obtained some existence results for a problem of Riemann-
Liouville fractional differential equations with fractional boundary conditions:

Dαu(t) = f
(
t, u(t)

)
, t ∈ [, T],α ∈ (, ],

Dα–u
(
+)

= bDα–u
(
T–)

, Dα–u
(
+)

= bDα–u
(
T–)

,

where Dα denotes the Riemann-Liouville fractional derivative of order α and b �=  and
b �= . Observe that the fractional boundary conditions in this problem can be regarded
as Riemann-Liouville anti-periodic boundary conditions for b = – = b.

Agarwal et al. [] investigated the existence and uniqueness of solutions for a new kind
of q-anti-periodic boundary value problem of sequential q-fractional integro-differential
equations given by

⎧⎨
⎩

cDα
q (cDγ

q + λ)x(t) = Af (t, x(t)) + BIρ
q g(t, x(t)),  ≤ t ≤ ,  < q < ,

x() = –x(), (t(–γ )Dqx(t))|t= = –Dqx(),

where cDα
q and cDγ

q denote the fractional q-derivative of the Caputo type,  < α,γ ≤ , Iρ
q (·)

denotes the Riemann-Liouville integral with  < ρ < , f , g are given continuous functions,
λ ∈R and A, B are real constants.

Ahmad et al. [] obtained some existence results for sequential fractional q-integro-
difference equations with perturbed anti-periodic boundary conditions given by

⎧⎨
⎩

cDβ
q (cDγ

q + λ)x(t) = pf (t, x(t)) + kIξ
q g(t, x(t)),  ≤ t ≤ ,  < q < ,

x(a) = –x(), cDγ
q x(a) = –cDγ

q x(),  < a � ,
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where cDβ
q and cDγ

q denote the fractional q-derivative of Caputo type,  < β ,γ ≤ , Iξ
q (·)

denotes the Riemann-Liouville integral with  < ξ < , f , g are given continuous functions,
λ �=  and p, k are real constants.

More details on anti-periodic boundary value problems involving q-difference and frac-
tional q-difference equations can be found in a recent text by Ahmad et al. [].

7 Conclusions
We have presented an up-to-date review of the results on boundary value problems of
nonlinear fractional-order differential equations, inclusions and coupled systems supple-
mented with a variety of anti-periodic (and anti-periodic type) boundary conditions. In
Section , we have given some basic definitions of fractional calculus and model equa-
tions involving fractional-order derivatives. In Section , we have collected a variety of
results on classical anti-periodic boundary value problems of nonlinear fractional differ-
ential equations, inclusions and impulsive equations. The concept of parametric type anti-
periodic boundary conditions is also outlined. The relationship between the Green’s func-
tions of lower- and higher-order anti-periodic fractional boundary value problems is also
described. Some new results related to further generalization of classical anti-periodic
problems are discussed in detail and illustrated with examples. Section  contains some
recent results on boundary value problems of Liouville-Caputo (Caputo) type sequential
fractional differential equations supplemented with anti-periodic type (non-separated)
two-point and nonlocal multipoint boundary conditions. In Section , some existence
results for a new kind of boundary value problem of coupled Caputo type fractional dif-
ferential equations equipped with non-separated coupled boundary conditions are given.
Some results involving fractional order anti-periodic boundary conditions are elaborated
in Section . We recall that anti-periodic boundary conditions appear in numerous situ-
ations such as interpolation problems, anti-periodic wavelets, mathematical problems of
ordinary, partial and impulsive differential equations, problems in physics, etc. Keeping in
view the importance of anti-periodic type boundary value problems occurring in several
disciplines, the present survey provides a detailed description of the work on the topic
completed over a period of the last decade and may serve as a platform for the researchers
who are interested in exploring more and more insights in this topic.
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