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Abstract
In this paper, we study the existence of weak solutions for fractional p-Laplacian
equations with sublinear growth and oscillatory behavior as the following

Lp
Ku = λf (x,u) in �,

u = 0 in R
N \ �,

where Lp
K is a nonlocal operator with singular kernel, � is an open bounded smooth

domain of RN . Our purpose is to generalize the known results for fractional Laplacian
equations to fractional p-Laplacian equations.
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1 Introduction
Recently, a great attention has been devoted to the research of problems involving frac-
tional and nonlocal operators. This type of operators finds many applications in a lot of
fields, such as continuum mechanics, phase transition phenomena, population dynam-
ics and game theory, as they are the typical outcome of stochastic stabilization of Lévy
processes; see, for instance, [–] and the references therein. There are many works on
nonlocal fractional operators and their applications which are very interesting; we refer
the interested reader to [–] and the references therein. Here we want to generalize the
multiplicity existence results for fractional Laplacian equations in [] and at the same
time fix some bugs there.

In this paper we deal with the following fractional problem in a bounded smooth domain
� ⊂R

N :

Lp
K u = λf (x, u) in �,

u =  in R
N \ �,

(.)

where λ > ,  < p < +∞. Lp
K is a nonlocal fractional operator defined as follows:

Lp
Kϕ =  lim

ε→

∫
RN \Bε (x)

∣∣ϕ(x) – ϕ(y)
∣∣p–(

ϕ(x) – ϕ(y)
)
K(x – y) dy,
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provided that the limit exists and K is a measurable function having the following prop-
erty:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ K ∈ L(RN ) where γ (x) = min{|x|p, },
there exist λ,� > ,

such that λ < K(x)|x|N+ps < � for any x ∈R
N \ {},

K(x) = K(–x) for any x ∈R
N \ {}.

(.)

Throughout this paper we assume N > ps with s ∈ (, ). A typical example for K is the
singular kernel |x|–(N+ps), in which case problem (.) becomes

(–�)s
pu = λf (x, u) in �,

u =  in R
N \ �,

(.)

where (–�)s
p is the fractional p-Laplacian operator defined as

(–�)s
pϕ(x) =  lim

ε→

∫
RN \Bε(x)

|ϕ(x) – ϕ(y)|p–(ϕ(x) – ϕ(y))
|x – y|N+sp dy

for all x ∈R
N . In the case p = , problem (.) becomes the fractional Laplacian problem

(–�)su = λf (x, u) in �,

u =  in R
N \ �.

(.)

Following [, ], we present the main structural assumptions on the nonlinear term f .

(f) f ∈ C(RN ×R), f (x, ) = , lim inft→
f (x,t)
|t|p–t > –∞.

(f) lim|t|→∞ f (x,t)
|t|p– =  uniformly in x.

(f) There exist t– <  and t+ >  such that min{f (x, t) : (x, t) ∈ �×{t–}} >  and max{f (x, t) :
(x, t) ∈ � × {t+}} < .

(f) There exist t̂– and t̂+, with t̂– < t– and t̂+ > t+, such that

min
{

F(x, t) : (x, t) ∈ � × {
t̂–, t̂+}}

> max
{

f (x, t) : (x, t) ∈ � × [
t–, t+]}

,

where F(x, t) =
∫ t

 f (x, ξ ) dξ .

A typical example of f satisfying (f)-(f) is

f (x, t) =

⎧⎨
⎩

|t|p–(|t| – ) sgn(t), |t| < ,

(|t| – )p––ε sgn(t), |t| > ,

where ε is small.
The natural solution space of problem (.) is

X(�) =
{

u ∈ X
(
R

N)
: u =  a.e. in R

N \ �
}

, (.)
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where X(RN ) is the fractional Sobolev space given by

X
(
R

N)
=

{
u ∈ Lp(

R
N)

: [u]s,p < ∞}
, [u]s,p =

(∫∫
RN

∣∣u(x) – u(y)
∣∣pK(x – y) dx dy

)/p

and endowed with the norm

‖u‖X(RN ) =
(‖u‖p

Lp(RN ) + [u]p
s,p

)/p.

For the basic properties of fractional Sobolev spaces, we refer to []. We seek the solutions
of (.) as the critical points of the functional given by

Iλ(u) =

p

[u]p
s,p – λ

∫
�

F(x, u) dx.

Set

αλ = inf Iλ|[t–,t+],

where t– and t+ are the numbers given in (f).

Theorem . Assume that (f)-(f) hold. Then there exists � >  such that, for every λ ≥
�, problem (.) admits two positive, two negative and two sign-changing solutions in Y \
[t–, t+], where Y := X(�) ∩ Cα/(�).

Here, for two real numbers t < s, the symbol [t, s] denotes either an order interval in Y
or a usual interval in R. In this paper there will be no ambiguous meaning concerning this
symbol, for example, in Theorem . Y \ [t–, t+] denotes the difference of Y and [t–, t+],
where [t–, t+] is an order interval in Y .

Theorem . Assume that (f)-(f) hold and f (x, t) is odd with respect to t. Then, for every
k ∈ N, there exists positive �k such that, for every λ ≥ �k , problem (.) admits a sign-
changing solution ui with Iλ(ui) < αλ and a sign-changing solution vi with Iλ(vi) ≥ αλ, where
i = , . . . , n.

Next consider the case that f (x, t) is not odd with respect to t, but oscillates around  in
the following manner.

(f) There exist t–
i and t+

i , i = , . . . , n, with t–
n < · · · < t–

 <  < t+
 < · · · < t+

n , such that
min{f (x, t) : (x, t) ∈ � × {t–

i }} >  > max{f (x, t) : (x, t) ∈ � × {t+
i }} for all i = , . . . , n.

(f) min{F(x, t) : (x, t) ∈ � × {t–
i , t+

i }} > max{F(x, t) : (x, t) ∈ � × [t–
i–, t+

i–]} for i = , . . . , n.

Theorem . Assume that (f)-(f) and (f)-(f) hold. Then there exists � >  such that, for
every λ ≥ �, problem (.) admits positive solutions ui, ui, negative solutions vi, vi, and
sign-changing solutions wi, wi in [t–

i+, t+
i+] \ [t–

i , t+
i ], i = , . . . , n – .

At last, we consider the case of f having infinitely many oscillations in both (–∞, ) and
(, +∞).
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(f) There exist a decreasing (an increasing) sequence (t–
i )i and an increasing (a decreasing)

sequence (t+
i )i such that t–

i <  < t+
i , and f (x, t+

i ) <  < f (x, t–
i ) and max{F(x, t) : (x, t) ∈

� × [t–
i–, t+

i–]} < min{F(x, t) : (x, t) ∈ � × {t–
i , t+

i }} for every i ∈N.

Theorem . Assume that (f)-(f) and (f) hold. Then, for every arbitrarily chosen k ∈N,
there exists �k >  such that, for every λ ≥ �k , problem (.) admits at least k positive, k
negative, and k sign-changing solutions.

Theorem . is immediate in view of Theorem ..

Remark . Bartsch and Liu obtained Theorems .-. for p-Laplacian Dirichlet prob-
lems in []. Fu and Pucci obtained Theorems .-. for fractional Laplacian Dirichlet
problems in []. Theorems .-. above are generalizations of the corresponding results
in [].

This article is organized as follows. In Section , we introduce the fractional Sobolev
spaces and some preliminary results. In Section , in a suitably chosen framework, we
verify that the conditions in the abstract critical point theorems in [] are satisfied, then
we generalize the existence of multiplicity solutions for fractional Laplacian problems to
the one for fractional p-Laplacian problems.

2 Preliminaries
Let us now recall some inequalities.

Lemma . (See []) There exist positive constants C-C such that, for all ξ ,η ∈R
N ,

∣∣|ξ |p–ξ – |η|p–η
∣∣ ≤ C

(|ξ | + |η|)p–|ξ – η|, (.)
(|ξ |p–ξ – |η|p–η

)
(ξ – η) ≥ C

(|ξ | + |η|)p–|ξ – η|, (.)∣∣|ξ |p–ξ – |η|p–η
∣∣ ≤ C|ξ – η|p–, if  < p ≤ , (.)

(|ξ |p–ξ – |η|p–η
)
(ξ – η) ≥ C|ξ – η|p, if p > . (.)

The Hölder regularity up to the boundary, strong maximum principles and the Hopf
lemma are important in the proof of our results.

Lemma . (See []) Let u ∈ X satisfy |Lp
K u| ≤ K weakly in � for some K > . Then

∣∣u(x)
∣∣ ≤ (C�K)/p–δ(x)s a.e. in �

for some C� = C(N , p, s,�), δ(x) = dist(x,�C). Furthermore, there exists α ∈ (, s] such that,
for all weak solutions u ∈ X of problem (.), u ∈ Cα(�) and

‖u‖Cα (�) ≤ C�‖f ‖/p–
L∞(�).

Lemma . (See []) If u ∈ X is such that u(x) ≥  a.e. in � and
∫∫

RN

∣∣u(x) – u(y)
∣∣p–(u(x) – u(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy ≥ 

for each ϕ ∈ X,ϕ(x) ≥  a.e. in �, then u(x) >  a.e. in �.
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Let s ∈ (, ), p ∈ (,∞). Consider the problem

⎧⎨
⎩

(–�)s
pu = c(x)|u|p–u in �,

u =  in R
N \ �.

(.)

Lemma . (see []) Let � be bounded and satisfy the interior ball condition on ∂�,
 ≥ c ∈ C(�), and u ∈ X be a weak solution of (.), then either u =  a.e. in R

N or

lim inf
BR
x→x

u(x)
δR(x)s > ,

where δR(x) = dist(x, BC
R ).

In the sequel, for any fixed parameter λ > , the space X(�) is endowed with the norm

‖u‖λ =
(
[u]p

s,p + λm‖u‖p
Lp(�)

)/p,

and, for brevity, we put Xλ = (X(�),‖ · ‖λ). The number m >  will be determined in
Section . Y = Xλ ∩ Cα/(�) is endowed with the Cα/-norm and Z = Xλ ∩ Cα(�) with the
Cα-norm, where α >  is from Lemma ..

3 Multiplicity of weak solutions
We say that u ∈ Xλ is a (weak) solution of problem (.) if

〈u,ϕ〉s,p = λ

∫
�

f (x, u)ϕ(x) dx

holds for any ϕ ∈ Xλ, where

〈u,ϕ〉s,p =
∫∫

RN

∣∣u(x) – u(y)
∣∣p–(u(x) – u(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy.

Fix λ >  and m > . Define L(v) = Lp
K v + λm|v|p–v and

Aλ : Xλ → Xλ, Aλ(u) = v,

where v is the solution of the linear problem

⎧⎨
⎩
Lp

K v + λm|v|p–v = λ(f (x, u) + m|u|p–u) in �,

v =  in R
N \ �,

(.)

which is uniquely determined.
In the following we give a series of lemmas to show that the conditions in the abstract

critical point theorems in [] are satisfied. First we study the properties of the operator Aλ.

Lemma . Aλ ∈ C(Xλ, Xλ) is well defined and Aλ(Y ) ⊂ Z.
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Proof First, from

〈
L(v), v

〉
X∗

λ ,Xλ
=

〈
Lp

K v + λm|v|p–v, v
〉
X∗

λ ,Xλ
= [v]p

s,p + λm
∫

�

|v|p dx,

we know that

lim‖v‖Xλ
→∞

〈L(v), v〉X∗
λ ,Xλ

‖v‖Xλ

= ∞,

i.e., the operator L is coercive. Second, from

〈
L(v) – L(v), v – v

〉
X∗

λ ,Xλ

=
∫∫

RN

(∣∣v(x) – v(y)
∣∣p–(v(x) – v(y)

)
–

∣∣v(x) – v(y)
∣∣p–

× (
v(x) – v(y)

))((
v(x) – v(y)

)
–

(
v(x) – v(y)

))
K(x – y) dx dy

+ λm
∫

�

(|v|p–v – |v|p–v
)
(v – v) dx

> , (.)

whenever v �= v, we get thatL is monotone. It is easy to show thatL is weakly continuous.
Thus, by the monotone operator theory, see [, ], we conclude that problem (.) has
a unique (weak) solution in Xλ. Therefore, Aλ is well defined.

Next we prove that Aλ ∈ C(Xλ, Xλ). By (f) and (f), we have |f (x, u)| ≤ C(|u|p– + ) for
some constant C depending only on f . Suppose that un → u in Xλ. Then (un)n is bounded
in Xλ. By (.), Hölder’s and Young’s inequalities, we have

[vn]p
s,p + λm

∫
�

|vn|p dx =
∫

�

f (x, un)vn dx + λm
∫

�

|un|p–unvn dx

≤ C
(‖un‖p–

Lp(�) + 
)‖vn‖Lp(�)

≤ Cε‖vn‖p
Lp(�) + C(ε)

(‖un‖p
Lp(�) + 

)
.

Taking ε = λm/C, we conclude that (vn)n is bounded in Xλ. Hence, (vn)n admits a weakly
convergent subsequence, still denoted by (vn)n. Suppose that vn ⇀ v weakly in Xλ. By
Lemma . in [], we have vn → v in Lp(�) since � is bounded. By [], we get f (x, un) →
f (x, u) in Lp(�) by going to a further subsequence if necessary. By (.) and Lemma .,
using an argument similar to (.), we also have

∫
�

(
λf (x, u) + λm|u|p–u – λf (x, un) – λm|un|p–un

)(
Aλ(u) – vn

)
dx

=
〈
Lp

K Aλ(u) + λm
∣∣Aλ(u)

∣∣p–Aλ(u) – Lp
K vn – λm|vn|p–vn, Aλ(u) – vn

〉
X∗

λ ,Xλ

=
∫∫

RN

(∣∣v(x) – v(y)
∣∣p–(v(x) – v(y)

)
–

∣∣vn(x) – vn(y)
∣∣p–

× (
vn(x) – vn(y)

))((
v(x) – v(y)

)
–

(
vn(x) – vn(y)

))
K(x – y) dx dy
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+ λm
∫

�

(|v|p–v – |vn|p–vn
)
(v – vn) dx

≥ C
∫∫

RN

(∣∣v(x) – v(y)
∣∣ +

∣∣vn(x) – vn(y)
∣∣)p–

× ∣∣(v(x) – v(y)
)

–
(
vn(x) – vn(y)

)∣∣K(x – y) dx dy

+ Cλm
∫

�

(|v| + |vn|
)p–|v – vn| dx

≥ C
(

[v – vn]p
s,p + λm

∫
�

|v – vn|p dx
)

.

Letting n → ∞, we obtain

vn → v = Aλ(u) in Xλ.

This shows that Aλ ∈ C(Xλ, Xλ), as claimed.
If u ∈ Y , then by (f) and (f) the solution v of (.) is in L∞(�) thanks to Lemma ..

Therefore, � 
 x �→ g(x) = λ(f (x, u(x)) + m|u(x)|p–u(x)) is in L∞(�) by (f), (f) and the
fact that u ∈ L∞(�). Hence, v ∈ Cα(�) by Lemma ., since v ∈ Xλ, and so v ∈ Z by the
definition of Z. �

Second, we show that conditions (J) and (J) in [] are satisfied.

Lemma .
(i) If  < p ≤ , then the functional Iλ satisfies

〈
I ′
λ(u), u – v

〉
X∗

λ ,Xλ
≥ C‖u – v‖

Xλ

(‖u‖Xλ
+ ‖v‖Xλ

)p–,
∥∥I ′

λ(u)
∥∥

X∗
λ
≤ C‖u – v‖p–

Xλ
.

(ii) If p ≥ , then the functional Iλ satisfies

〈
I ′
λ(u), u – v

〉
X∗

λ ,Xλ
≥ C‖u – v‖p

Xλ
,

∥∥I ′
λ(u)

∥∥
X∗

λ
≤ C‖u – v‖Xλ

(‖u‖Xλ
+ ‖v‖Xλ

)p–.

Proof Let u ∈ Xλ. Thus v = Aλ(u) implies that

〈
I ′
λ(u), u – v

〉
X∗

λ ,Xλ

=
∫∫

RN

∣∣u(x) – u(y)
∣∣p–(u(x) – u(y)

)((
u(x) – u(y)

)
–

(
v(x) – v(y)

))
K(x – y) dx dy

– λ

∫
�

f (x, u)(u – v) dx

=
∫∫

RN

(∣∣u(x) – u(y)
∣∣p–(u(x) – u(y)

)
–

∣∣v(x) – v(y)
∣∣p–(v(x) – v(y)

))

× ((
u(x) – u(y)

)
–

(
v(x) – v(y)

))
K(x – y) dx dy

+ λm
∫

�

(|u|p–u – |v|p–v
)
(u – v) dx.
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If p ≥ , it follows by Lemma . that

〈
I ′
λ(u), u – v

〉
X∗

λ ,Xλ
≥ C‖u – v‖p

Xλ
.

If  < p ≤ , then from Lemma . we have

〈
I ′
λ(u), u – v

〉
X∗

λ ,Xλ

≥ C

∫∫
RN

(∣∣u(x) – u(y)
∣∣ +

∣∣v(x) – v(y)
∣∣)p–∣∣(u(x) – u(y)

)
–

(
v(x) – v(y)

)∣∣

× K(x – y) dx dy + Cλm
∫

�

(∣∣u(x)
∣∣ +

∣∣v(x)
∣∣)p–∣∣u(x) – v(x)

∣∣ dx.

By Hölder’s inequality

‖u – v‖p
Xλ

≤ C(C, p)
〈
I ′
λ(u), u – v

〉 p

X∗

λ ,Xλ

(‖u‖Xλ
+ ‖v‖Xλ

)p(– p
 ),

and therefore

〈
I ′
λ(u), u – v

〉
X∗

λ ,Xλ
≥ C‖u – v‖

Xλ

(‖u‖Xλ
+ ‖v‖Xλ

)p–.

For w ∈ Xλ, we have

〈
I ′
λ(u), w

〉
X∗

λ ,Xλ
=

∫∫
RN

∣∣u(x) – u(y)
∣∣p–(u(x) – u(y)

)(
w(x) – w(y)

)
K(x – y) dx dy

– λ

∫
�

f (x, u)w dx

=
∫∫

RN

(∣∣u(x) – u(y)
∣∣p–(u(x) – u(y)

)
–

∣∣v(x) – v(y)
∣∣p–(v(x) – v(y)

))

× (
w(x) – w(y)

)
K(x – y) dx dy + λm

∫
�

(|u|p–u – |v|p–v
)
w dx.

If  < p ≤ , then by Lemma .

∥∥I ′
λ(u)

∥∥
X∗

λ
≤ C‖u – v‖p–

Xλ
.

If p ≥ , then by Lemma . and Hölder’s inequality, we have

∥∥I ′
λ(u)

∥∥
X∗

λ
≤ C‖u – v‖Xλ

(‖u‖Xλ
+ ‖v‖Xλ

)p–.

Now we conclude the result. �

Third, we establish the regularity of the critical points of Iλ.

Lemma . Let K = {u ∈ X(�) : I ′
λ(u) = }. Then K ⊂ Y .

Proof Let u be fixed in K . Then u ∈ L∞(�) by (f), (f) and Lemma .. Hence, � 

x �→ λf (x, u(x)) is in L∞(�) again by (f), (f) and the fact that u is in L∞(�). Therefore,
Lemma . gives u ∈ Cα(�) since u ∈ Xλ, and so u ∈ Y . �
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Forth, we get a comparison principle for the operator L.

Lemma . If u, v ∈ Xλ, with v ≥ u in R
N \ �, are such that Lv ≥ Lu in �, i.e., 〈Lv –

Lu, w〉X∗
λ ,Xλ

≥  for all w ∈ Xλ, with w ≥  in �, then v ≥ u in �.

Proof Let u, v ∈ Xλ, with v ≥ u in R
N \ �, be such that Lv ≥ Lu in �. Take ϕ = u – v =

[u – v]+ – [u – v]–, w = [u – v]+ = [ϕ]+. Clearly, w ∈ Xλ and w ≥  in �. As

|b|p–b – |a|p–a = (p – )(b – a)
∫ 



∣∣a + t(b – a)
∣∣p– dt,

we have

〈Lv – Lu, w〉X∗
λ ,Xλ

=
∫∫

RN
(p – )

((
u(y) – v(y)

)
–

(
u(x) – v(x)

))
Q(x, y)

(
w(x) – w(y)

)
K(x – y) dx dy

+ λm
∫

�

(p – )(v – u)R(x)w dx

=
∫∫

RN
(p – )Q(x, y)

[
–
(
ϕ+(x) – ϕ+(y)

) – ϕ–(x)ϕ+(y) – ϕ–(y)ϕ+(x)
]
K(x – y) dx dy

– λm
∫

�

(p – )R(x)
(
ϕ+) dx

≥ ,

where

Q(x, y) =
∫ 



∣∣(u(x) – u(y)
)

+ t
((

v(x) – v(y)
)

–
(
u(x) – u(y)

))∣∣p– dt,

R(x) =
∫ 



∣∣u + t(v – u)
∣∣p– dt.

We see that Q(x, y) ≥  and Q(x, y) =  only if v(y) = v(x) and u(y) = u(x), and R(x) ≥ .
Thus ϕ+ =  in �, i.e., v ≥ u in �. �

For u, v ∈ Y , define u � v provided u(x) < v(x) for any x ∈ � and

lim inf
x=x–dν∈�,d→

u(x) – v(x)
dα/ < 

for any x ∈ ∂�, where ν is the unit outward normal vector of ∂� at x. If u ≤ v in �, then
[u, v] denotes the order interval {w ∈ Y : u ≤ w ≤ v}.

By (f)-(f), we can choose suitable positive m so that

tf (x, t) + m|t|p >  for t �= ,

f (x, t) + m|t|p–t

⎧⎨
⎩

> m|t–|p–t– for t ≥ t–,

< m|t+|p–t+ for t ≤ t+.
(.)

Fix such an m from now on.
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Fifth, we give the following three technical lemmas which are necessary to verify that
the conditions in the abstract critical point theorems in [] (especially (P)-(P) there) are
satisfied.

Lemma . Assume that (f) and (f) also hold. Then there exist φ, ψ ∈ Y having the
following properties.

() t– ≤ φ �  � ψ ≤ t+.
() For every u ∈ Xλ ∩ L∞(�) with φ ≤ u, φ � Aλ(u).
() For every u ∈ Xλ ∩ L∞(�) with u ≤ ψ , Aλ(u) � ψ .
() For every u ∈ Xλ ∩ L∞(�) with t– ≤ u, φ � Aλ(u).
() For every u ∈ Xλ ∩ L∞(�) with u ≤ t+, Aλ(u) � ψ .
() max{F(x, t) : (x, t) ∈ � × [–‖φ‖L∞(�),‖ψ‖L∞(�)]} < min{F(x, t) : (x, t) ∈ � × {s–, s+}}.

Proof Let ψ be the solution of

Lp
K u + λm|u|p–u = λm

∣∣t+∣∣p–t+ in �,

u =  in R
N \ �.

Thus  � ψ ≤ t+ again by Lemma . and the strong maximum principle Lemma .
since Lp

K (ψ) ≥ . By Lemmas . and ., we also have lim infBR
x→x
ψ(x)
δR(x)s > . Let φ be

the solution of

Lp
K u + λm|u|p–u = λm

∣∣t–∣∣p–t– in �,

u =  in R
N \ �.

Therefore t– ≤ φ �  by Lemma . and by the strong maximum principle Lemma .
since Lp

K (–φ) ≥ . By Lemmas . and ., we also have lim infBR
x→x
–ϕ(x)
δR(x)s > .

Next we prove the results on Aλ. By (.), we can choose δ ∈ (, ) small enough such
that

f (x, t) + m|t|p–t

⎧⎨
⎩

> δm|t–|p–t– for t ≥ t–,

< δm|t+|p–t+ for t ≤ t+.

Let u ∈ Xλ ∩ L∞(�) such that t– ≤ u. Denote v = Aλ(u). Then

Lp
K v + λm|v|p–v = λf (x, u) + λm|u|p–u ≥ δλm

∣∣t–∣∣p–t– = δ
[
Lp

Kφ + λm|φ|p–φ
]
.

Hence, v ≥ δ


p– φ � φ by Lemma ..
Similarly, if u ∈ Xλ ∩ L∞(�) with u ≤ t+, then v ≤ δ


p– ψ � ψ . This completes the proof

of ()-().
Conclusion () follows directly from (f) and properties ()-(). �

Lemma . Suppose that (f) and (f) also hold. Then there exists � >  such that, for
every λ ≥ �, there exists h ∈ C([, ], Ỹ ) satisfying h() ≤  ≤ h() and

max
≤t≤

Jλ
(
h(t)

)
< inf

u∈[φ,ψ]
Jλ(u), (.)
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where Ỹ = X ∩ C(�), φ and ψ are the ones in Lemma .. Furthermore, if f (x, t) is odd
with respect to t, then, for every k ∈N, there exists �k >  such that, for every λ ≥ �k , there
exists an odd map hk ∈ C(Sk , Ỹ ) satisfying

max
θ∈Sk

Jλ
(
hk(θ )

)
< inf

u∈[φ,ψ]
Jλ(u). (.)

The proof is a minor modification of the corresponding argument given in order to prove
Lemma . of [].

Lemma . For any bounded set B ⊂ Y and any order interval [φ,ψ], there exist φ, ψ ∈ Y
such that

B ∪ [φ,ψ] ⊂ int
Y

[φ,ψ], (.)

and

Aλ(u) ∈ [φ,ψ] for every u ∈ X satisfying φ ≤ u ≤ ψ. (.)

Proof By (f) there exist ε, C > , which depend on λ, such that

λ
∣∣f (x, t)

∣∣ ≤ (λ – ε)|t|p– + C for every x ∈ �, t ∈R,

where λ is the first eigenvalue in � of Lp
K with zero Dirichlet boundary condition. By the

monotone operator theory, see [, ], there exists a unique solution ψ to

Lp
K u – (λ – ε)|u|p–u =

C
μ

in �,

u =  in R
N \ �,

where

μ =
λ – ε + λm
λ – ε + λm

< .

Let φ = –ψ. Then we get φ �  � ψ by Lemma . and the strong maximum principle
lemma. Provided that C >  is large enough, (.) follows.

Next, fix u ∈ Xλ which satisfies φ ≤ u ≤ ψ. Denote v = Aλ(u). We have

Lp
K v + λm|v|p–v = λ

[
f (x, u) + m|u|p–u

]

≤ (λ – ε)|ψ|p–ψ + C + λm|ψ|p–ψ

= μ
[
(λ – ε)|ψ|p–ψ + λm|ψ|p–ψ + C/μ

]

= μ
[
Lp

Kψ + λm|ψ|p–ψ
]
.

Hence, v ≤ μ


p– ψ � ψ by Lemma .. Similarly, v � φ. This completes the proof of
(.). �
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At last, we show that Iλ satisfies the Palais-Smale condition which is crucial to guaran-
teeing the existence of critical points.

Lemma . Let (un)n ⊂ Xλ be a Palais-Smale sequence of Iλ, i.e., (Iλ(un))n is bounded and
I ′
λ(un) →  as n → ∞. Then (un)n admits a strongly convergent subsequence in Xλ.

Proof By (f)-(f), for ε >  small enough,

∣∣f (x, t)
∣∣ ≤ C(ε) +


p
ε|t|p–,

∣∣F(x, t)
∣∣ ≤ C(ε) + ε|t|p. (.)

By Lemma . in [],

‖u‖Lp(�) ≤ C[u]s,p, (.)

since � is bounded.
Let (un)n be a Palais-Smale sequence of Iλ in Xλ. Then there exists C >  such that, for

all n,

C ≥ Iλ(un) ≥ 
p

[un]p
s,p – λε‖un‖

Lp(�) – C(ε)|�| ≥ 
p

[un]p
s,p – C,

where ε = /pC
 λ in (.). Thus (un)n is bounded in Xλ by (.). So, up to a subsequence,

still denoted by (un)n, we have un ⇀ u weakly in Xλ. Then 〈I ′(un), un – u〉 → , and further
we obtain

〈
I ′(un), un – u

〉

=
∫∫

RN

∣∣un(x) – un(y)
∣∣p–(un(x) – un(y)

)[(
un(x) – u(x)

)
–

(
un(y) – u(y)

)]

× K(x – y) dx dy – λ

∫
�

f (x, un)(un – u) dx

→  (.)

as n → ∞. Moreover, by Lemma . in [], up to a subsequence, un → u strongly in Lp(�)
and a.e. in �. Thus, f (x, un)(un – u) →  a.e. in � as n → ∞. It is easy to show that the
sequence (f (x, un)(un – u))n is uniformly bounded and equi-integrable in L(�). Hence, by
the Vitali convergence theorem (see Rudin []), we get

lim
n→∞

∫
�

f (x, un)(un – u) dx = .

Therefore, by (.), we have

∫∫
RN

∣∣un(x) – un(y)
∣∣p–(un(x) – un(y)

)[(
un(x) – u(x)

)
–

(
un(y) – u(y)

)]
K(x – y) dx dy

→ 
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as n → ∞. Thus, by the weak convergence of (un)n in Xλ, we get

∫∫
RN

[∣∣un(x) – un(y)
∣∣p–(un(x) – un(y)

)
–

∣∣u(x) – u(y)
∣∣p–(u(x) – u(y)

)]

× [(
un(x) – u(x)

)
–

(
un(y) – u(y)

)]
K(x – y) dx dy

→ 

as n → ∞. By Lemma ., we obtain, for p > ,

∫∫
RN

∣∣(un(x) – u(x)
)

–
(
un(y) – u(y)

)∣∣pK(x – y) dx dy

≤ C

∫∫
RN

[∣∣un(x) – un(y)
∣∣p–(un(x) – un(y)

)
–

∣∣u(x) – u(y)
∣∣p–(u(x) – u(y)

)]

× [(
un(x) – u(x)

)
–

(
un(y) – u(y)

)]
K(x – y) dx dy

→  (.)

as n → ∞. For  < p < , we have

∫∫
RN

∣∣(un(x) – u(x)
)

–
(
un(y) – u(y)

)∣∣pK(x – y) dx dy

≤ C

[∫∫
RN

[∣∣un(x) – un(y)
∣∣p–(un(x) – un(y)

)
–

∣∣u(x) – u(y)
∣∣p–(u(x) – u(y)

)]

× [(
un(x) – u(x)

)
–

(
un(y) – u(y)

)]
K(x – y) dx dy

]p/

×
[∫∫

RN

∣∣(un(x) – un(y)
∣∣ –

∣∣u(x) – u(y)
∣∣pK(x – y) dx dy

]–p/

≤ C

[∫∫
RN

[∣∣un(x) – un(y)
∣∣p–(un(x) – un(y)

)
–

∣∣u(x) – u(y)
∣∣p–(u(x) – u(y)

)]

× [(
un(x) – u(x)

)
–

(
un(y) – u(y)

)]
K(x – y) dx dy

]p/

→  (.)

as n → ∞. Combining (.) and (.), we get that un → u strongly in Xλ as n → ∞.
Therefore, Iλ satisfies the (PS) condition. �

Taking inspiration from [], we apply Lemmas .-. in order to prove Theorems .-
.. Let intD (D) refer to the Y -topology on D.

Proof of Theorem . Let φ, ψ and � be the ones in Lemma . and Lemma .. Fix λ ≥ �.
Let h be the one in Lemma .. Choose B = h([, ]) so that B ⊂ Ỹ ⊂ Y by Lemma .. Let
the corresponding φ and ψ be the ones stated in Lemma ..

Define D+
 = [,ψ] and D+

 = [,ψ]. Then

intD+

D+

 = {u ∈ Y :  ≤ u � ψ},
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where intD+

(D+

 ) refers to the Y -topology on D+
 . By Lemmas . and . and Lemma .,

conditions (P)-(P) in Section  are satisfied for D+
 ⊂ D+

 and A = Aλ. By Lemmas .-.
and Theorem . in [], there are two positive and two negative solutions of problem (.).

Choose D = [φ,ψ], D = [φ,ψ], D = [φ,ψ], and D = [φ,ψ]. By Lemmas .-., Di,
i = , . . . , , and A = Aλ satisfy all the assumptions of Theorem . in []. So there are two
sign-changing solutions of problem (.).

At last, in view of () of Lemma ., we complete the proof. �

Proof of Theorem . Let Di, i = , . . . , , be the ones in the proof of Theorem .. First, in
view of Lemmas .-., all the assumptions of Theorem . in [] are satisfied. Second,
by () and () of Lemma .,

inf
u∈[t–,t+]

Iλ(u) ≤ inf
u∈D

Iλ(u) (.)

and

Aλ

([
t–, t+]) ⊂ intY (D). (.)

Hence, (.)-(.) and Proposition . of [] yield the result. �

Proof of Theorem . Define fi(x, t), i = , . . . , n – , as in []. Consider

⎧⎨
⎩
Lp

ku = λfi(x, u) in �,

u(x) = , in R
N \ �.

(.)

By Theorem ., problem (.) admits two positive, two negative and two sign-changing
solutions. Replacing t–, t+ by t–

i , t+
i , respectively, the six solutions are outside of the order

interval [t–
i , t+

i ]. According to the choice of m, we have

∣∣mt–
i+

∣∣p–mt–
i+ < f (x, t) + mt = fi(x, t) + m|t|p–t < m

∣∣t+
i+

∣∣p–t+
i+ for t–

i+ ≤ t ≤ t+
i+.

Thus, by the definition of fi, we get

Lp
K u + λm|u|p– > λm

∣∣t–
i+

∣∣p–t–
i+ = Lp

K t–
i+ + λm

∣∣t–
i+

∣∣p–t–
i+ in �,

u =  > t–
i+ in R

N \ �.

Furthermore, by Lemma . the six solutions of problem (.) are inside the order interval
[t–

i+, t+
i+] and are obviously solutions of problem (.). In this way, we manage to get (n–)

positive, (n – ) negative and (n – ) sign-changing solutions of problem (.). �

4 Conclusions
The purpose of this paper is to study the existence of multiplicity solutions for fractional
p-Laplacian equations with sublinear growth and oscillatory behavior. The key point is the
choice of the framework to study the existence of weak solutions. In the suitably chosen
framework, we are able to fulfil our strategy and generalize the corresponding results for
fractional Laplacian equations.
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