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Abstract
The authors consider the impulsive differential equation with Monge-Ampère
operator in the form of

⎧
⎪⎨

⎪⎩

((u′(t))n)′ = λntn–1f (–u(t)), t ∈ (0, 1), t �= tk , k = 1, 2, . . . ,m,

�(u′)n|t=tk = λIk(–u(tk)), k = 1, 2, . . . ,m,

u′(0) = 0, u(1) = 0,

where λ is a nonnegative parameter and n ≥ 1. We show the existence, uniqueness,
and continuity results. Our approach is largely based on the eigenvalue theory and
the theory of α-concave operators. The nonexistence result of a nontrivial convex
solution is also studied by taking advantage of the internal geometric properties
related to the problem.

Keywords: continuity on a parameter; existence of nontrivial convex solutions;
Monge-Ampère operator; impulsive differential equation; geometric properties

1 Introduction
In natural sciences, there are various concrete problems involving the Monge-Ampère
equation. For example, the Monge-Ampère equation can describe Weingarten curvature,
or reflector shape design (see []). In recent years, increasing attention has been paid to
the study of the Monge-Ampère equation by different methods (see [–]).

The typical model of the Monge-Ampère equation is

⎧
⎨

⎩

det(Du) = λf (–u) in B,

u =  on ∂B,
(.)

where B = {x ∈ Rn : |x| < } is the unit ball in Rn and Du = ( ∂u
∂xi∂xj

) is the Hessian of u, λ is
a nonnegative parameter and f : R → R is a continuous function.

The study of problem (.) in general domains of Rn may be found in [, ]. Kutev [] in-
vestigated the existence of strictly convex radial solutions of problem (.) when f (u) = up.
Delanoë [] treated the existence of convex radial solutions of problem (.) for a class of
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more general functions, namely λ exp f (|x|, u, |∇u|). Recently, under the case f (u) = eλu,
Zhang and Wang [] obtained some interesting results of problem (.). They got the local
structure of the solutions near a degenerate point by using the Lyapunov-Schmidt reduc-
tion method and established the global structure by Leray-Schauder degree theory and
bifurcation theory.

In [], Kutev also pointed out that problem (.) can reduce to the following boundary
value problem:

⎧
⎨

⎩

((u′(t))n)′ = λntn–f (–u(t)), t ∈ (, ),

u′() = , u() = .

For the case f ≥ , Hu and Wang [] proved the existence, multiplicity, and nonexistence of
strictly convex solutions for the above problem by using fixed point index theory. However,
the corresponding results for impulsive Monge-Ampère type equations have not been in-
vestigated until now, even for the unique solution uλ of the above equation depending
continuously on the parameter λ.

At the same time, we notice that a class of differential equations with impulsive effects
appeared in biological systems, population dynamics, biotechnology, ecology, industrial
robotic, and optimal control; for details and references, see [–]. Recently, the existence
of solutions to the impulsive differential equations has attracted the attention of many
researchers; see Bai et al. [], Agarwal et al. [], Liu and Guo [], Wang and Feng [],
Zhang and Tian [], Karaca and Tokmak [], Liu et al. [], Zeng and Xie [], and Zhang
and Ge [] and the references cited therein. However, it is not difficult to see that there is
almost no paper addressing impulsive differential equations with fully nonlinear operator.
It is well known that the Monge-Ampère operator is just fully nonlinear. This motivates
us to study an impulsive differential equation with Monge-Ampère operator.

Consider the impulsive differential equation with Monge-Ampère operator

⎧
⎪⎪⎨

⎪⎪⎩

((u′(t))n)′ = λntn–f (–u(t)), t ∈ (, ), t �= tk , k = , , . . . , m,

�(u′)n|t=tk = λIk(–u(tk)), k = , , . . . , m,

u′() = , u() = ,

(.)

where λ is a nonnegative parameter and n ≥ , tk (k = , , . . . , m) (here m is a fixed positive
integer) are fixed points with  = t < t < t < · · · < tk < · · · < tm < tm+ = , �(u′)n|t=tk =
[u′(t+

k )]n – [u′(t–
k )]n, where u′(t+

k ) and u′(t–
k ) represent the right-hand limit and left-hand

limit of u′(t) at t = tk . In addition, f and Ik satisfy

(H) f ∈ C(R+,R+), Ik ∈ C(R+,R+) with f () =  and Ik() = , where R+ = [, +∞), k =
, , . . . , m.

Some special cases of problem (.) have been investigated. For example, when n = ,
problem (.) reduces to a second order impulsive boundary value problem (.), which
has been studied in []. The authors obtained many existence results by means of the
theory of fixed point index in cones. For other related results on problem (.), we refer
the reader to the references [–].
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Here we point out that our problem is new in the sense of impulsive Monge-Ampère type
equations introduced here. To the best of our knowledge, the existence of single or mul-
tiple positive solutions for impulsive Monge-Ampère type equation (.) has not yet been
studied, especially for the unique solution uλ of problem (.) depending continuously
on the parameter λ. In consequence, our main results of the present work will be a use-
ful contribution to the existing literature on the topic of impulsive Monge-Ampère type
equations. The existence, uniqueness, and continuity of positive solutions for the given
problem are new, though they are proved by applying the well-known method based on
the eigenvalue theory and the theory of α-concave operators.

Remark . Very recently, Han et al. [] also considered problem (.) under the case
Ik = , k = , , . . . , m. By the bifurcation theory, the authors investigated the existence of
strictly convex or concave solutions of problem (.). Notice that differential equations
with impulses are characterized by sudden changing of their states. This requires a com-
plete different method from those used in [, ] to tackle problem (.).

Remark . On the nonexistence, the arguments that we present here are based in geo-
metric properties of the super-sublinearity of f and I at zero and infinity which was not
observed in [, ] (see Properties .-. below).

The following geometric Properties .-. will be very important in our arguments.

Property . If f =  and f∞ = , then there exists R >  such that

f (R)
Rn = max

u>

f (u)
un . (.)

Property . If I(k) =  and I∞(k) = , then there exists Rk >  such that

Ik(Rk)
Rn

k
= max

u>

Ik(u)
un , (.)

where

I(k) = lim
u→

Ik(u)
un , I∞(k) = lim

u→∞
Ik(u)

un , k = , , . . . , m.

Remark . Some ideas of Properties .-. are from [].

Remark . There is almost no result except [] studying the uniqueness of a nontrivial
solution of problem (.). However, in [], they did not obtain that the unique solution
uλ(t) of problem (.) depends continuously on the parameter λ.

2 Some lemmas
Let J = [, ] and J ′ = J \ {t, t, . . . , tm}, J = [t, t], Jk = (tk , tk+], k = , , . . . , m, and

PC[, ] =
{

v ∈ C[, ] : v′ ∈ C(tk , tk+), v′(t–
k
)

= v′(tk),∃v′(t+
k
)
, k = , , . . . , m

}
.
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Then PC[, ] is a real Banach space with the norm

‖v‖PC = max
{‖v‖∞,

∥
∥v′∥∥∞

}
,

where

‖v‖∞ = sup
t∈J

∣
∣v(t)

∣
∣,

∥
∥v′∥∥∞ = sup

t∈J

∣
∣v′(t)

∣
∣.

A function v ∈ PC[, ] ∩ C(J ′) is called a solution of problem (.) if it satisfies (.).
A strictly convex solution of (.) is negative on [, ).

Let v = –u. Then problem (.) is equivalent to the following problem defined on J :

⎧
⎪⎪⎨

⎪⎪⎩

((–v′(t))n)′ = λntn–f (v(t)),  < t < , t �= tk , k = , , . . . , m,

�(–v′)n|t=tk = λIk(v(tk)), k = , , . . . , m,

v′() = , v() = ,

(.)

where �(–v′)n|t=tk = [–v′(t+
k )]n – [–v′(t–

k )]n, v′(t+
k ) and v′(t–

k ) represent the right-hand limit
and left-hand limit of v′(t) at t = tk .

The following lemmas will be used in the proof of our main results.

Lemma . Assume that (H) holds. Then
(i) If v(t) is a solution of problem (.) on J , then u(t) = –v(t) is a solution of problem

(.) on J ;
(ii) If u(t) is a solution of problem (.) on J , then v(t) = –u(t) is a solution of problem

(.) on J .

Therefore, throughout this paper we shall study positive concave classical solutions of
problem (.).

Lemma . Assume that (H) holds. Then v ∈ PC[, ] ∩ C(J ′) is a solution of problem
(.) if and only if v ∈ PC[, ] is a solution of the following equation:

v(t) =
∫ 

t

(∫ τ


λnsn–f

(
v(s)

)
ds + λ

∑

tk≤τ

Ik
(
v(tk)

)
) 

n
dτ (.)

and

min
t∈[,ξ ]

v(t) ≥ δ‖v‖PC , (.)

where ξ ∈ (, ) and

δ =  – ξ . (.)

Proof If  ≤ t < t, it is easy to see by integration from  to t of problem (.) that

(
–v′(t)

)n –
(
–v′()

)n =
∫ t


λnrn–f

(
v(r)

)
dr.
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If t ≤ t < t, then we have

(
–v′(t–


))n –

(
–v′()

)n =
∫ t–




λnrn–f

(
v(r)

)
dr,

(
–v′(t)

)n –
(
–v′(t+


))n =

∫ t

t+


λnrn–f
(
v(r)

)
dr.

It follows that

(
–v′(t)

)n –
(
–v′()

)n =
∫ t


λnrn–f

(
v(r)

)
dr + I

(
v(t)

)
.

If tk ≤ t < tk+, we have

(
–v′(t)

)n –
(
–v′()

)n =
∫ t


λnrn–f

(
v(r)

)
dr +

∑

tk≤t
Ik

(
v(tk)

)
.

Then

–v′(t) =
[∫ t


λnrn–f

(
v(r)

)
dr +

∑

tk≤t
Ik

(
v(tk)

)
]/n

.

Integrating again, we obtain

v(t) =
∫ 

t

[∫ τ


λnrn–f

(
v(r)

)
dr +

∑

tk≤τ

Ik
(
v(tk)

)
]/n

dτ .

Conversely, if v ∈ PC[, ] is a solution of (.).
Direct differentiation of (.) implies

v′(t) = –
(∫ t


λnsn–f

(
v(s)

)
ds +

∑

tk≤t
Ik

(
v(tk)

)
)/n

.

Evidently,

�
(
–v′)n|t=tk = λIk

(
v(tk)

)
(k = , , . . . , m), v′() = , v() = .

Finally, we show that (.) holds. It is clear that v′(t) = –(
∫ t

 λnsn–f (v(s)) ds +
∑

tk≤t Ik(v(tk)))/n, which implies that

‖v‖PC = v(), min
t∈J

v(t) = v().

As we assume that f (v) ≥ , we see that any nontrivial solution v of problem (.) is
concave on J , i.e., v′′ ≤ , and then we get v′(t) is nonincreasing on J .

So, for every t ∈ (, ξ ], we have

v() – v()


≤ v(t) – v()
t

,
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i.e., v(t) – v() ≥ t(v() – v()), and then

v(t) ≥ ( – t)v() ≥ ( – ξ )v(), ∀t ∈ [, ξ ].

This shows that (.) holds. The lemma is proved. �

To establish the existence of positive concave classical solutions in PC[, ] ∩ C(J ′) of
problem (.), we construct a cone K in PC[, ] by

K =
{

v ∈ PC[, ] : v ≥ , min
t∈[,ξ ]

v(t) ≥ δ‖v‖PC

}
,

where δ is defined in (.). It is easy to see that K is a closed convex cone of PC[, ].

Remark . The definition of K is completely different from those of [, ].

Remark . K is a solid normal cone, and

K =
{

v ∈ PC[, ] : v > , min
t∈[,ξ ]

v(t) ≥ δ‖v‖PC

}
.

Define T : K → PC[, ] by

(Tv)(t) =
∫ 

t

(∫ τ


nsn–f

(
v(s)

)
ds +

∑

tk≤τ

Ik
(
v(tk)

)
) 

n
dτ . (.)

From (.) and Lemma ., it is easy to obtain the following result.

Lemma . Assume that (H) holds. Then T : K → K is completely continuous.

Proof Similar to the proof of Lemma ., we can show that T : K → K . The complete
continuity of T is well known. �

Lemma . Suppose that D is an open subset of an infinite-dimensional real Banach space
E, θ ∈ D, and P is a cone of E. If the operator 
 : P ∩ D → P is completely continuous with

θ = θ and satisfies

inf
x∈P∩∂D


x > ,

then 
 has a proper element on P ∩ ∂D associated with a positive eigenvalue. That is, there
exist x ∈ P ∩ ∂D and μ such that 
x = μx.

Lemma . Suppose that P is a normal cone of a real Banach space, A : P◦ → P◦ is an α-
concave increasing (or –α-convex decreasing) operator. Then A has exactly one fixed point
in P◦.
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3 Existence and nonexistence of nontrivial convex solutions on a parameter
In this section, we shall establish the existence and nonexistence results of nontrivial con-
vex solutions on a parameter for problem (.). We now state and prove our main results.

Theorem . Assume that (H) holds. If  < f∞ < +∞,  < I∞(k) < +∞ (k = , , . . . , m),
then there exists β >  such that, for every R > β, problem (.) has a strictly convex solu-
tion uR(t) satisfying ‖uR‖PC = R for any

λ = λR ∈ [λ, λ̄], (.)

where λ and λ̄ are two positive finite numbers.

Proof It follows from  < f∞ < +∞ and  < I∞(k) < +∞ that there exist  < l < l, μ > 
such that

lvn < f (v) < lvn, lvn < Ik(v) < lvn, k = , , . . . , m,∀v ≥ μ.

Now, we prove that β = μ

δ
is required. Let

�R =
{

x ∈ PC[, ] : ‖x‖PC < R
}

.

Then �R is a bounded open subset of the Banach space PC[, ] and θ ∈ �R. Together
with Lemma ., we have T : K ∩ �̄R → K is completely continuous with Tθ = θ .

Noticing R > β, for any v ∈ K ∩ ∂�R, we have

v(t) ≥ δ‖v‖PC = δR, t ∈ [, ξ ],

and then

v(t) ≥ δ‖v‖PC > δβ = μ, t ∈ [, ξ ].

Therefore, for any v ∈ K ∩ ∂�R, we have

(Tv)(t) =
∫ 

t

(∫ τ


nsn–f

(
v(s)

)
ds +

∑

tk≤τ

Ik
(
v(tk)

)
) 

n
dτ

≥
∫ 

t

(∫ τ


nsn–f

(
v(s)

)
ds

) 
n

dτ

≥
∫ 

ξ

(∫ ξ


nsn–f

(
v(s)

)
ds

) 
n

dτ

≥
∫ 

ξ

(∫ ξ


nsn–lvn(s) ds

) 
n

dτ

≥
∫ 

ξ

(∫ ξ


nsn–lδ

n‖v‖n
PC ds

) 
n

dτ

= ξ ( – ξ )l

n
 δR,
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which shows that

inf
v∈K∩∂�R

Tv ≥ ξ ( – ξ )l

n
 δR > .

By Lemma ., for any R > β, the operator T has a proper element vR ∈ K associated with
the eigenvalue μR > , further vR satisfies ‖vR‖PC = R. Let λR = 

μn
R

. Then problem (.) has
a positive solution vR associated with λR.

From the proof above, for any R > β, there exists a positive solution vR ∈ K ∩ ∂�R as-
sociated with λ = λR > . Thus,

vR(t) = λ

n
R

∫ 

t

(∫ τ


nsn–f

(
vR(s)

)
ds +

∑

tk≤τ

Ik
(
vR(tk)

)
) 

n
dτ

with ‖vR‖ = R.
On the one hand,

vR(t) = λ

n
R

∫ 

t

(∫ τ


nsn–f

(
vR(s)

)
ds +

∑

tk≤τ

Ik
(
vR(tk)

)
) 

n
dτ

≤ λ

n
R

∫ 



(∫ τ


nsn–f

(
vR(s)

)
ds +

∑

tk≤τ

Ik
(
vR(tk)

)
) 

n
dτ

≤ λ

n
R

∫ 



(∫ τ


nsn–lvn

R(s) ds +
∑

tk≤τ

lvn
R(s)

) 
n

dτ

≤ (λRl)

n ‖vR‖PC

∫ 



(∫ τ


nsn– ds + m

) 
n

dτ

≤ (λRl)

n ‖vR‖PC

∫ 



(
τ n + m

) 
n dτ

< (λRl)

n ‖vR‖PC ( + m)


n ,

∣
∣v′

R(t)
∣
∣ = λ


n
R

(∫ t


nsn–f

(
vR(s)

)
ds +

∑

tk≤τ

Ik
(
vR(tk)

)
) 

n

≤ λ

n
R

(∫ 


nsn–f

(
vR(s)

)
ds +

∑

tk≤τ

Ik
(
vR(tk)

)
) 

n

≤ λ

n
R

(∫ 


nsn–lvn

R(s) ds +
∑

tk≤τ

lvn
R(s)

) 
n

≤ (λRl)

n ‖vR‖PC

(∫ 


nsn– ds + m

) 
n

≤ (λRl)

n ‖vR‖PC ( + m)


n ,

which implies that

‖vR‖PC = R ≤ (λRl)

n ‖vR‖PC ( + m)


n ,
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and hence,

λR ≥ 
l( + m)

= λ.

On the other hand,

vR(t) = λ

n
R

∫ 

t

(∫ τ


nsn–f

(
vR(s)

)
ds +

∑

tk≤τ

Ik
(
vR(tk)

)
) 

n
dτ

≥ λ

n
R

∫ 

t

(∫ τ


nsn–f

(
vR(s)

)
ds

) 
n

dτ

≥ λ

n
R

∫ 

ξ

(∫ ξ


nsn–f

(
vR(s)

)
ds

) 
n

dτ

≥ λ

n
R

∫ 

ξ

(∫ ξ


nsn–lvn

R(s) ds
) 

n
dτ

≥ λ

n
R

∫ 

ξ

(∫ ξ


nsn–l

(
δ‖vR‖PC

)n ds
) 

n
dτ

= (λRl)

n δ‖vR‖PCξ ( – ξ ),

which shows that

‖vR‖PC = R ≥ (λRl)

n δ‖vR‖PCξ ( – ξ ),

and hence,

λR ≤ 
(lδ( – ξ )ξ )n = λ̄.

In conclusion, λR ∈ [λ, λ̄]. It follows from Lemma . that Theorem . holds. The
proof is complete. �

Theorem . Assume that (H) holds. If  < f < +∞,  < I(k) < +∞ (k = , , . . . , m), then
there exists β∗

 >  such that, for every  < r < β∗
 , problem (.) has a strictly convex solu-

tion ur (t) satisfying ‖ur‖PC = r associated with

λ = λr ∈ [
λ∗

, λ̄∗

]
,

where λ∗
 and λ̄∗

 are two positive finite numbers.

Proof The proof is similar to that of Theorem ., we omit it here. �

Theorem . Assume that (H) holds. If f∞ = +∞, I∞(k) = +∞ (k = , , . . . , m), then there
exists β̄ >  such that, for every r∗ > β̄, problem (.) has a strictly convex solution ur∗ (t)
satisfying ‖ur∗‖PC = r∗ for any

λ = λr∗ ∈ (,λ∗], (.)

where λ∗ is a positive finite number.
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Proof It follows from f∞ = +∞ and I∞(k) = +∞ that there exist l∗ > , μ∗ >  such that

f (v) > l∗vn, Ik(v) > l∗vn, k = , , . . . , m,∀v ≥ μ∗.

Now, we prove that β̄ = μ∗
δ

is required. Let

�r =
{

v ∈ PC[, ] : ‖v‖PC < r
}

.

Then �r is a bounded open subset of the Banach space PC[, ] and  ∈ �r . Together
with Lemma ., we have T : K ∩ �̄r → K is completely continuous with Tθ = θ .

Noticing r > β̄, for any v ∈ K ∩ ∂�r , we have

v(t) ≥ δ‖v‖PC = δr, t ∈ [, ξ ],

and then

v(t) ≥ δ‖v‖PC > δβ̄ = μ∗, t ∈ [, ξ ].

Therefore, for any v ∈ K ∩ ∂�r , we have

(Tv)(t) =
∫ 

t

(∫ τ


nsn–f

(
v(s)

)
ds +

∑

tk≤τ

Ik
(
v(tk)

)
) 

n
dτ

≥
∫ 

t

(∫ τ


nsn–f

(
v(s)

)
ds

) 
n

dτ

≥
∫ 

ξ

(∫ ξ


nsn–f

(
v(s)

)
ds

) 
n

dτ

≥
∫ 

ξ

(∫ ξ


nsn–l∗vn(s) ds

) 
n

dτ

≥
∫ 

ξ

(∫ ξ


nsn–l∗

(
δ‖v‖PC

)n(s) ds
) 

n
dτ

≥ l

n∗ δξ ( – ξ )r,

which shows that

inf
v∈K∩∂�r

Tv ≥ l

n∗ δξ ( – ξ )r > .

By Lemma ., for any r > β̄, the operator T has a proper element vr ∈ K associated with
the eigenvalue μr > , further vr satisfies ‖vr‖PC = r. Let λr = 

μn
r

and follow the proof of
Theorem ., we complete the proof of Theorem .. �

Theorem . Assume that (H) holds. If f = +∞, I(k) = +∞ (k = , , . . . , m), then there
exists β >  such that, for any  < r∗ < β, problem (.) has a strictly convex solution ur∗ (t)
satisfying ‖ur∗‖PC = r∗ for any

λ = λr∗ ∈ (,λ∗],

where λ∗ is a positive finite number.
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Proof The proof is similar to that of Theorem ., we omit it here. �

For ease of exposition, we set

mf (r∗∗) = min

{
f (u)
rn∗∗

: u ∈ [δr∗∗, r∗∗]
}

,

mIk (r∗∗) = min

{
Ik(u)
rn∗∗

: u ∈ [δr∗∗, r∗∗]
}

, k = , , . . . , m,

where δ is defined in (.).

Theorem . Assume that (H) holds. If there exist r∗∗ >  and βr∗∗ >  such that mf (r∗∗) ≥
βr∗∗ and mIk (r∗∗) ≥ βr∗∗ (k = , , . . . , m), then problem (.) has a strictly convex solution
ur∗∗ (t) satisfying ‖ur∗∗‖PC = r∗∗ for any

λ = λr∗∗ ∈ (,λ∗∗], (.)

where λ∗∗ is a positive finite number.

Proof In fact, for any v ∈ K ∩ ∂�r∗∗ , we have δr∗∗ ≤ v(t) ≤ r∗∗, t ∈ [, ξ ].
Noticing that mf (r∗∗) ≥ βr∗∗ >  and mIk (r∗∗) ≥ βr∗∗ >  (k = , , . . . , m), we have

f
(
v(t)

) ≥ mf (r∗∗)rn
∗∗ ≥ rn

∗∗βr∗∗ ≥ βr∗∗vn(t), ∀t ∈ [, ξ ], v ∈ [δr∗∗, r∗∗],

and

Ik(v) ≥ mIk

(
r∗∗)rn

∗∗ ≥ rn
∗∗βr∗∗ ≥ βr∗∗vn, k = , , . . . , m, v ∈ [δr∗∗, r∗∗].

The following proof is similar to that of Theorem .. This finishes the proof of Theo-
rem .. �

Theorem . Assume that (H) holds. If f = f∞ =  and I(k) = I∞(k) =  (k = , , . . . , m),
then there exists λ >  such that problem (.) has no strictly convex solutions for λ ∈ (,λ).

Proof It follows from f = f∞ =  and I(k) = I∞(k) =  (k = , , . . . , m), (.) and (.) that
there exist v̄ >  and vk >  such that

f (v̄)
v̄n


= max

v>

f (v)
vn ,

Ik(v̄k)
vn

k
= max

v>

Ik(v)
vn , k = , , . . . , m.

Let

M = max

{
f (v̄)

v̄n


,
I(v̄)

vn


,
I(v̄)

vn


, . . . ,
Im(v̄m)

vn
m

}

+ .

Then M >  and

f (v) ≤ Mvn, Ik(v) ≤ Mvn, k = , , . . . , m, v > . (.)
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Assume that v(t) is a strictly concave solution of problem (.). We will show that this
leads to a contradiction for λ < λ, where λ = ((M( + m)) 

n )–. Let μ = 
λ


n

. Since (Tv)(t) =
μv(t) for t ∈ J , it follows from (.) that

v(t) = λ

n

∫ 

t

(∫ τ


nsn–f

(
v(s)

)
ds +

∑

tk≤τ

Ik
(
v(tk)

)
) 

n
dτ

≤ λ

n

∫ 



(∫ τ


nsn–f

(
v(s)

)
ds +

∑

tk≤τ

Ik
(
v(tk)

)
) 

n
dτ

≤ λ

n

∫ 



(∫ τ


nsn–Mvn(s) ds +

∑

tk≤τ

Mvn(s)
) 

n
dτ

≤ λ

n M


n ‖v‖PC

∫ 



(∫ τ


nsn– ds + m

) 
n

dτ

≤ λ

n M


n ‖v‖PC

∫ 



(
τ n + m

) 
n dτ

≤ λ

n M


n ‖v‖PC ( + m)


n ,

∣
∣v′(t)

∣
∣ = λ


n

(∫ t


nsn–f

(
v(s)

)
ds +

∑

tk≤τ

Ik
(
v(tk)

)
) 

n

≤ λ

n

(∫ 


nsn–f

(
v(s)

)
ds +

∑

tk≤τ

Ik
(
v(tk)

)
) 

n

≤ λ

n

(∫ 


nsn–Mvn(s) ds +

∑

tk≤τ

Mvn(s)
) 

n

≤ λ

n M


n ‖v‖PC

(∫ 


nsn– ds + m

) 
n

≤ λ

n M


n ‖v‖PC ( + m)


n ,

which shows that

‖v‖PC ≤ λ

n M


n ‖v‖PC ( + m)


n

< λ

n M


n ‖v‖PC ( + m)


n

= ‖v‖PC ,

which is a contradiction. This finishes the proof. �

Remark . The method to study the existence and nonexistence results of nontrivial
convex solutions is completely different from those of Hu and Wang [] and Han et al.
[].

Remark . Some ideas of the proof of Theorem . come from Theorems - in [].
From the proof of the main results in [], it is easy to see that f (u) >  for u >  is an im-
portant condition, although we consider the nonexistence of a nontrivial convex solution
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without using it; for details, see Theorem .. Moreover, we introduce a new notation

M = max

{
f (v̄)

v̄n


,
I(v̄)

vn


,
I(v̄)

vn


, . . . ,
Im(v̄m)

vn
m

}

+ .

4 Uniqueness and continuity of nontrivial convex solutions on a parameter
In the previous section, we have established some existence and nonexistence criteria of
nontrivial convex solutions for problem (.). Next we consider the uniqueness and con-
tinuity of nontrivial convex solutions on a parameter for problem (.).

Theorem . Suppose that f (u), Ik(u) : [, +∞) → [, +∞) are nondecreasing functions
with f (u) > , Ik(u) >  (k = , , . . . , m) for u >  and satisfy f (ρu) ≥ ρnαf (u), Ik(ρu) ≥
ρnαIk(u) (k = , , . . . , m) for any  < ρ < , where  ≤ α < . Then, for any λ ∈ (,∞), prob-
lem (.) has a unique nontrivial convex solution uλ(t). Furthermore, such a solution uλ(t)
satisfies the following properties:

(i) uλ(t) is strongly decreasing in λ. That is, λ > λ >  implies uλ (t) � uλ (t) for t ∈ J .
(ii) limλ→+ ‖uλ‖PC = , limλ→+∞ ‖uλ‖PC = +∞.

(iii) uλ(t) is continuous with respect to λ. That is, λ → λ >  implies ‖uλ – uλ‖PC → .

Proof Set � = λ

n T , and T be the same as in (.).

Let

K =
{

y(t) ∈ PC[, ] : y(t) ≥ 
}

.

It is easy to see that K is a normal solid cone of PC[, ], and its interior K
 = {y(t) ∈

PC[, ] : y(t) > }. Being similar to Lemma ., the operator � maps K into K. In view
of f (u) > , Ik(u) >  (k = , , . . . , m) for u > , it is easy to see that � : K

 → K
 . We assert

that � : K
 → K

 is an α-concave increasing operator. Indeed

�(ρv) = λ

n

∫ 

t

(∫ τ


nsn–f

(
ρv(s)

)
ds +

∑

tk≤τ

Ik
(
ρv(tk)

)
) 

n
dτ

≥ λ

n

∫ 

t

(∫ τ


nsn–ρnαf

(
v(s)

)
ds +

∑

tk≤τ

ρnαIk
(
v(tk)

)
) 

n
dτ

≥ ραλ

n

∫ 

t

(∫ τ


nsn–f

(
v(s)

)
ds +

∑

tk≤τ

Ik
(
v(tk)

)
) 

n
dτ

= ρα�(v), ∀ < ρ < ,

where  ≤ α < . Since f (u) and Ik(u) (k = , , . . . , m) are nondecreasing, then

(�v∗)(t) = λ

n

∫ 

t

(∫ τ


nsn–f

(
v∗(s)

)
ds +

∑

tk≤τ

Ik
(
v∗(tk)

)
) 

n
dτ

≤ λ

n

∫ 

t

(∫ τ


nsn–f

(
v∗∗(s)

)
ds +

∑

tk≤τ

Ik
(
v∗∗(tk)

)
) 

n
dτ

= (�v∗∗)(t) for v∗ ≤ v∗∗, v∗, v∗∗ ∈ PC[, ].
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In view of Lemma ., � has a unique fixed point vλ ∈ K
 . This shows that problem (.)

has a unique concave positive solution vλ(t). It follows from Lemma . that problem (.)
has a unique nontrivial convex solution uλ(t).

Next, we give the proof for (i)-(iii). Let γ = 
λ


n

, and denote λ

n Tvλ = vλ by Tvγ = γ vγ .

Assume  < γ < γ. Then vγ ≥ vγ . Indeed, set

η̄ = sup{η : vγ ≥ ηvγ}. (.)

We assert η̄ ≥ . If it is not true, then  < η̄ < , and further

γvγ = Tvγ ≥ T(η̄vγ ) ≥ η̄αTvγ = η̄αγvγ ,

which imply

vγ ≥ η̄α γ

γ
vγ � η̄αvγ � η̄vγ .

This is a contradiction to (.).
In view of the discussion above, we have

vγ =

γ

Tvγ ≥ 
γ

Tvγ =
γ

γ
vγ � vγ . (.)

Hence, vγ (t) is strongly decreasing in γ . Namely vλ(t) is strongly increasing in λ

n . By

Lemma ., (i) is proved.
Set γ = γ and fix γ in (.), we have vγ ≥ γ

γ
vγ , for γ > γ. Further

‖vγ ‖PC ≤ γN

γ
‖vγ‖PC , (.)

where N >  is a normal constant. Note that γ = 
λ


n

, we have limλ→+ ‖vλ‖PC = .
And then, it follows from Lemma . that limλ→+ ‖uλ‖PC = .
Let γ = γ , and fix γ, again by (.) and normality of K , we have limλ→+∞ ‖vλ‖PC = +∞.
And then, it follows from Lemma . that limλ→+∞ ‖uλ‖PC = +∞.
This gives the proof of (ii).
Next, we show the continuity of uγ (t). For given γ > , by (i),

vγ � vγ ∀γ > γ. (.)

Let

lγ = sup{ν >  | vγ ≥ νvγ ,γ > γ}.

Obviously,  < lγ <  and vγ ≥ lγ vγ . So, we have

γ vγ = Tvγ ≥ T(lγ vγ ) ≥ lαγ Tvγ = lαγ γvγ ,
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and further

vγ ≥ γ

γ
lαγ vγ .

By the definition of lγ ,

γ

γ
lαγ ≤ lγ or lγ ≥

(
γ

γ

) 
–α

.

Again, by the definition of lγ , we have

vγ ≥
(

γ

γ

) 
–α

vγ , ∀γ > γ. (.)

Notice that K is a normal cone. In view of (.) and (.), we obtain

‖vγ – vγ ‖PC ≤ N

[

 –
(

γ

γ

) 
–α

]

‖vγ‖PC → , γ → γ + ,

where N >  is a normal constant.
In the same way, we can prove

‖vγ – vγ‖PC → , γ → γ – .

Hence, vγ is continuous at γ = γ.
Therefore, by Lemma ., we have

‖uγ – uγ ‖PC = ‖vγ – vγ‖PC → , γ → γ +  (γ → γ – ).

Consequently, (iii) holds. The proof is complete. �

Remark . Some ideas of the proof of Theorem . come from Theorem .. in []
and Theorem  in [].

Remark . In Theorem ., even though we do not assume that T is completely contin-
uous, even continuous, we can assert that uλ depends continuously on λ.

Remark . If we replace K, K
 by K , K, respectively, then Theorem . also holds.

Remark . The function f and Ik (k = , , . . . , m) satisfying the conditions of Theo-
rem . can be easily found. For example,

f (u) = unα + unα + · · · + unαs ,

Ik(u) = unα + unα + · · · + unαs , k = , , . . . , m,

where αj > , supj αj < , s is a positive integer.
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5 Conclusion
Using the eigenvalue theory, we show the existence of a strictly convex solution for prob-
lem (.), which is a new problem in the sense of impulsive Monge-Ampère type equations
introduced here. Further, we prove that problem (.) has no strictly convex solution for
sufficiently small λ by means of the internal geometric properties related to the problem.
Finally, by applying the theory of α-concave operators, we prove that the unique solution
uλ(t) of problem (.) is strongly increasing and depends continuously on the parameter
λ. In consequence, our main results of the present work will be a useful contribution to
the existing literature on the topic of impulsive Monge-Ampère type equations.
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