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Abstract
In this paper, we study some properties of q-Lidstone polynomials by using Green’s
function of certain q-differential systems. The q-Fourier series expansions of these
polynomials are given. As an application, we prove the existence of solutions for the
linear q-difference equations

(–1)nD2n
q–1y(x) = φ(x, y(x),Dq–1y(x),D

2
q–1y(x), . . . ,Dk

q–1y(x)),

subject to the boundary conditions

D2j
q–1

y(0) = βj , D2j
q–1

y(1) = γj (βj ,γj ∈ C, j = 0, 1, . . . ,n – 1),

where n ∈N and 0≤ k ≤ 2n – 1. These results are a q-analogue of work by Agarwal
and Wong of 1989.

MSC: 05A30; 11B68; 39A05; 39A13; 30E25; 42A16

Keywords: q-difference equations; Green’s function; q-Lidstone polynomials;
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1 Introduction
In the classical Lidstone expansion theorem [], an entire function f (x) may be expanded
with respect to the points  and  in the form

f (x) =
∞∑

n=

(
f (n)()An(x) – f (n)()An(x – )

)
,

where An is a polynomial of degree n +  that satisfies
(i) A(x) = x,

(ii) An() = An() =  for n ∈N,
(iii) A′′

n(x) = An–(x).
The polynomial An is called Lidstone polynomial.

Ismail and Mansour [] introduced a q-analogue of Lidstone’s theorem where the two
points are  and . They expanded the function in q-analogues of Lidstone polynomials
which are in fact q-Bernoulli polynomials as in the classical case (see Section ).
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It is the object of this paper to give a q-analogue of the results of [] using the terminology
and results given in [].

This article is organized as follows. In the next section, we state the q-definitions and
present some preliminaries of q-calculus which will play an important role in our main re-
sults. In Section , we define the Green’s functions of certain q-differential systems which
are related to q-Lidstone polynomials, and Section  gives q-Fourier expansions of these
functions and for q-Lidstone polynomials. Some interesting results and relationships are
obtained. In Section , we are interested in the existence of solutions to the following
boundary value problem:

(–)nDn
q– y(x) = φ

(
x, y(x), Dq– y(x), D

q– y(x), . . . , Dk
q– y(x)

)
, (.)

n ∈N and  ≤ k ≤ n – , subject to the boundary conditions

Dj
q– y() = βj, Dj

q– y() = γj (βj,γj ∈C, j = , , . . . , n – ), (.)

with some conditions imposed on y.

2 Preliminaries
In this paper, we assume that q is a positive number less than one with

[x] =
 – qx

 – q
.

For t > , the sets Aq,t , A∗
q,t are defined by

Aq,t :=
{

tqn : n ∈N
}

, A∗
q,t := Aq,t ∪ {},

where N := {, , , . . .}. Notice, if t = , we simply use Aq and A∗
q to denote Aq, and A∗

q,,
respectively.

In the following, we state some of the needed q-notations and results (see [] and []).
The q-shifted fractional is defined by

(a; q)∞ =
∞∏

j=

(
 – aqj) and (a; q)n :=

(a; q)∞
(aqn; q)∞

for n ∈ Z, a ∈C.

The q-gamma function is defined by

�q(z) =
(q; q)∞
(qz; q)∞

( – q)–z for z ∈C \ {–n : n ∈N}.

Let f be a function defined on a q-geometric set A, i.e., qx ∈ A for all x ∈ A. The q-
difference operator is defined by

Dqf (x) :=
f (x) – f (qx)

( – q)x
if x ∈ A – {}.
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The q-integration by parts rule (see []) is

∫ a


f (qt)Dqg(t) dqt = (fg)(a) – lim

n→∞(fg)
(
aqn) –

∫ a


Dqf (t)g(t) dqt.

If X is the set Aq,t or A∗
q,t , then for n > , Cn

q (X) is the space of all continuous functions
with continuous q-derivatives up to order n –  on X. The space Cn

q (X) associated with the
norm function

‖f ‖ :=
n–∑

k=

max
x∈X

∣∣Dk
qf (t)

∣∣ (
f ∈ Cn

q (X)
)

is a Banach space (see []).
Ismail and Mansour [] defined a q-analogue of the Bernoulli polynomials Bn(z; q),

z ∈C by the generating function

tEq(zt)
Eq(t/)eq(t/) – 

=
∞∑

n=

Bn(z; q)
tn

[n]!
,

where the functions Eq(z) and eq(z) have the series representation

eq(z) =
∞∑

k=

zk

�q(k + )
; |z| <  and Eq(z) =

∞∑

k=

qk(k–)/zk

�q(k + )
; z ∈ C.

The q-Bernoulli numbers are defined by

βn := Bn(; q).

Hence, in terms of the generating function,

t
Eq(t/)eq(t/) – 

=
∞∑

n=

βn
tn

[n]!
. (.)

Also, they defined two q-analogues of the Euler polynomials through the generating
functions

Eq(xt)
Eq(t/)eq(t/) + 

=
∞∑

n=

En(x; q)
tn

[n]!
, (.)

eq(xt)
Eq(t/)eq(t/) + 

=
∞∑

n=

en(x; q)
tn

[n]!
. (.)

Notice, E(x; q) = e(x; q) = , and Ẽn := En(; q) = en(; q) for all n ∈N.

Proposition . For n ∈ N, the q-Bernoulli and q-Euler polynomials satisfy the following
q-difference equations:

Dq– Bn(x; q) = [n]Bn–(x; q);

Dq– En(x; q) = [n]En–(x; q) and Dqen(x; q) = [n]en–(x; q).
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Proposition . The q-Euler polynomials En(x; q) and en(x; q) are given by

E(x; q) = e(x; q) = ,

and for n ∈N,

En(x; q) =
n∑

k=

[
n
k

]

q
q

k(k–)
 Ẽn–kxk , en(x; q) =

n∑

k=

[
n
k

]

q
Ẽn–kxk .

Recall that (see []) an entire function f has a p-exponential growth of order k and a
finite type (p, k ∈R – {} with p > ) if there exists a real number K > , α such that

∣∣f (x)
∣∣ < Kp

k
 ( log |x|

log p ) |x|α .

The following results from [] will be needed in the sequel.

Theorem . Let  < q <  and f be a function of q–-exponential growth of order less than
or equal to . Then

f (z) =
∞∑

n=

(
Dn

q– f ()An(z) – Dn
q– f ()Bn(z)

)
,

where An and Bn are polynomials of degree n +  defined by

An(z) =
n+

[n + ]!

n+∑

j=

[
n + 

j

]

q

(–z; q)j–jβn+–j,

Bn(z) =
n+

[n + ]!
Bn+(z/; q).

Furthermore, the polynomials An are defined recursively by A(z) = z and, for n ∈ N, An

satisfies the second order q-difference equation

D
q– An(z) = An–(z), An() = An() =  (n ∈N). (.)

The polynomials Bn are defined recursively by B(z) =  – z and, for n ∈ N, Bn satisfies the
second order q-difference equation

D
q– Bn(z) = Bn–(z), Bn() = Bn() =  (n ∈N). (.)

Lemma . Let z ∈C. Then

An(z) := ε
q– Bn(z),

where ε
y
q– is a q-translation operator defined by

ε
y
q– xn = xn(–y/x; q–)

n = q– n(n–)
 yn(–x/y; q)n.
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3 The Green’s function of a certain q-differential system
In this section, we consider certain boundary value problems which are related to q-
Lidstone polynomials, and then we define these polynomials by using Green’s function.

Consider the following q-differential equation:

D
q– y(x) – f (x) = 

(
x ∈ A∗

q
)
, (.)

subject to the boundary conditions

y() = , y() = . (.)

Theorem . The boundary value problem (.)-(.) is equivalent to the basic Fredholm
q-integral equation

y(x) =
∫ 


G

(
x, qt

)
f
(
qt

)
dqt, (.)

where

G(x, t) =

{
–t( – x),  ≤ t < x ≤ ;
–x(q – t),  ≤ x < t ≤ .

(.)

Proof Since D
q– y(x) = 

q (D
qy)( x

q ), Equation (.) can be written as

D
qy(x) – qf

(
qx

)
= 

(
x ∈ A∗

q
)
. (.)

By taking double q-integral for (.), we obtain

y(x) = q
∫ x


(x – qt)f

(
qt

)
dqt + cx + c, (.)

where c and c are arbitrary constants. Now, using the boundary conditions, we get

c = –q
∫ 


( – qt)f

(
qt

)
dqt and c = .

Substituting in (.), we obtain the required result. �

Now, consider the following equations:

G
(
x, qt

)
:= G

(
x, qt

)
,

Gn
(
x, qt

)
=

∫ 


G

(
x, qy

)
Gn–

(
qy, qt

)
dqy (n = , , . . .)

=
∫ 


· · ·

∫ 


G

(
x, qt

)
G

(
qt, qt

) · · ·G
(
qtn–, qt

)
dqt dqt · · ·dqtn–.

(.)
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Corollary . The q-Lidstone polynomials Am and Bm are given by

A(x) = x,

Am(x) =
∫ 


G

(
x, qt

)
Am–

(
qt

)
dqt = q

∫ 


tGm

(
x, qt

)
dqt,

(.)

and

B(x) =  – x,

Bm(x) =
∫ 


G

(
x, qt

)
Bm–

(
qt

)
dqt =

∫ 


Gm

(
x, qt

)(
 – qt

)
dqt.

(.)

Proof The proof follows immediately from Theorem ., Equation (.), Equation (.)
and Equation (.). �

Theorem . Let  < q <  and g ∈ Cn(A∗
q). Then

g(x) =
n–∑

m=

[
Dm

q– g()Am(x) – Dm
q– g()Bm(x)

]
+

∫ 


Gn

(
x, qt

)
Dn

q– g
(
qt

)
dqt,

where Am and Bm are q-Lidstone polynomials of degree m + .

Proof From Theorem . we can verify that, for q ∈ (, ) and g ∈ Cn(A∗
q), the q-integral

equation

g(x) =
∫ 


Gn

(
x, qt

)
f
(
qt

)
dqt

is the solution of the q-differential system

{
Dn

q– g(x) – f (x) =  (x ∈ A∗
q),

Dk
q– g() = Dk

q– g() =  (k = , , . . . , n – ).

Furthermore, the unique solution of the system

{
Dn

q– g(x) – f (x) =  (x ∈ A∗
q),

Dk
q– g() = ak , Dk

q– g() = bk (k = , , . . . , n – )
(.)

is

g(x) = a(x – ) + bx +
n–∑

k=

ak

∫ 



(
qt – 

)
Gk

(
x, qt

)
dqt

+
n–∑

k=

bk

∫ 


qtGk

(
x, qt

)
dqt +

∫ 


Gn

(
x, qt

)
f
(
qt

)
dqt.
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Replacing ak , bk and f (x) by their values in terms of g(x) as given by the q-differential
system (.), we get

g(x) = g()(x – ) + g()x +
n–∑

k=

Dk
q– g()

∫ 



(
qt – 

)
Gk

(
x, qt

)
dqt

+
n–∑

k=

Dk
q– g()

∫ 


qtGk

(
x, qt

)
dqt +

∫ 


Gn

(
x, qt

)
Dn

q– g
(
qt

)
dqt.

Therefore, according to Equations (.) and (.), we obtain the required result. �

Remark . By using Theorem ., and from Equations (.) and (.), we have

Dj
q– g(x) =

n–∑

m=j

[
Dm

q– g()Dj
q– Am(x) + Dm

q– g()Dj
q– Bm(x)

]

+
∫ 


Gn–j

(
x, qt

)
Dn

q– g(t) dqt

=
n–∑

m=j

[
Dm

q– g()Am–j(x) + Dm
q– g()Bm–j(x)

]

+
∫ 


Gn–j

(
x, qt

)
Dn

q– g(t) dqt

=
n–j–∑

m=

[
D(m+j)

q– g()Am(x) + D(m+j)
q– g()Bm(x)

]

+
∫ 


Gn–j

(
x, qt

)
Dn

q– g(t) dqt,

D(j+)
q– g(x) =

n–j–∑

m=

[
D(m+j)

q– g()Dq– Am(x) + D(m+j)
q– g()Dq– Bm(x)

]

+
∫ 


Dq–,xGn–j

(
x, qt

)
Dn

q– g(t) dqt.

4 Certain q-Fourier expansions
The purpose of this section is to obtain the q-Fourier series expansions of the following
q-integrals:

∫ 



(
qt

)kGn
(
x, qt

)
dqt, k = , , n ≤ ,

and then to compute the series expansions of some of q-Lidstone polynomials which will
be used to solve the boundary value problem (.)-(.).
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First, recall that the q-trigonometric functions Cq(z) and Sq(z) are defined for z ∈C by

Cq(z) =
∞∑

n=

(–)n qn(n–/)zn

(q; q)n
=

z
 – q φ

(
; q; q, q/z),

Sq(z) =
∞∑

n=

(–)n qn(n+/)zn+

(q; q)n+
=

z
 – q φ

(
; q; q, q/z).

The Fourier series expansion for any function defined on the q-linear grid Aq is the fol-
lowing (see [, ]):

Sq(f ) :=
a


+

∞∑

k=

[
akCq

(
q/wkz

)
+ bkSq(qwkz)

]
,

where a =
∫ 

– f (t) dqt and, for k = , , . . . ,

ak =


μk

∫ 

–
f (t)Cq

(
q/wkt

)
dqt, bk =

√q
μk

∫ 

–
f (t)Sq(qwkt) dqt,

μk = ( – q)Cq
(
q/wk

)
S′

q(wk)

on the q-linear grid Aq, where {wk : k ∈N} is the set of positive zeroes of Sq(z).
One can verify that

Dq,zCq(wz) = –
w

 – q
Sq(wz

√
q) and Dq,zSq(wz) =

w
 – q

Cq(wz
√

q).

Lemma . Let x ∈ A∗
q and n ∈N. Then

∫ 


G

(
x, qy

)
Sq

(
qnwky

)
dqy =

( – q)

qn–/w
k

(
xSq

(
qn–wk

)
– Sq

(
qn–wkx

))
.

Proof By using Equations (.) and (.), the q-integral

y(x) =
∫ 


G

(
x, qy

)
Sq

(
qnwky

)
dqy

is the solution of the q-differential system

{
D

q– y(x) – Sq(qn–wkx) =  (x ∈ A∗
q),

y() = , y() = .
(.)

Therefore,

Dqy(x) =
–( – q)
qn– 

 wk
Cq

(
qn– 

 wkx
)

+ c,

y(x) =
–( – q)

qn– 
 w

k

Sq
(
qn–wkx

)
+ cx + c.

(.)
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From the boundary conditions, we get

c =
( – q)

qn– 
 w

k

Sq
(
qn–wk

)
and c = .

Substituting the values of c and c into Equation (.), we obtain the required result. �

Lemma . For x ∈ A∗
q , the following q-Fourier series expansion holds:

∫ 


G

(
x, qt

)
dqt = –

√
q( – q)

∞∑

k=

Lk

w
k

Sq(wkx), (.)

where

Lk :=
 – Cq(q/wk)

wkCq(q/wk)S′
q(wk)

.

Proof By computing the q-Fourier series expansion of the function f (x) =  for  < x < ,
we get

 = 
∞∑

k=

 – Cq(q/wk)
wkCq(q/wk)S′

q(wk)
Sq(qwkt), t ∈ A∗

q. (.)

Multiplying (.) by G(x, qt) and integrating with respect to t from zero to unity, we get

∫ 


G

(
x, qt

)
dqt = 

∞∑

k=

Lk

∫ 


G

(
x, qt

)
Sq(wkqt) dqt, (.)

where

Lk :=
 – Cq(q/wk)

wkCq(q/wk)S′
q(wk)

, x ∈ A∗
q.

By using Lemma ., we get

∫ 


G

(
x, qt

)
Sq(wkqt) dqt =

–√q( – q)

w
k

Sq(wkx). (.)

Substituting from (.) into (.), we obtain the required series. �

Lemma . For x ∈ A∗
q , the following q-Fourier series expansion holds:

∫ 


G

(
x, qt

)(
qt

)
dqt = –q/( – q)

∞∑

k=

L̃k

w
k

Sq(wkx),

where

L̃k :=
qwkCq(q/wk) – ( – q)Sq(qwk)

qw
kCq(q/wk)S′

q(wk)
.
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Proof Considering the function g(t) = t for  < t <  and computing the q-Fourier series of
the extension of g as an odd function on [–, ], we get

t = 
∞∑

k=

L̃kSq(qwkt) for all  < t < , (.)

where

L̃k :=
qwkCq(q/wk) – ( – q)Sq(qwk)

qw
kCq(q/wk)S′

q(wk)
. (.)

Hence, the proof can be performed by using (.) similar to the proof of Lemma .. So,
we will omit it. �

Throughout the following results, we define the constants Lk and L̃k as in Lemma .
and Lemma ., respectively.

Note that, by using Equation (.), we get

G
(
x, qt

)
=

∫ 


G

(
x, qy

)
G

(
qy, qt

)
dqy. (.)

Integrating (.) with respect to t from  to unity and using Lemma ., we obtain

∫ 


G

(
x, qt

)
dqt = –

√
q( – q)

∞∑

k=

Lk

w
k

∫ 


G

(
x, qy

)
Sq

(
qwky

)
dqy.

Again, using Lemma ., we get

∫ 


G

(
x, qy

)
Sq

(
qwky

)
dqy =

( – q)

q/w
k

(
xSq(qwk) – Sq(qwkx)

)
.

Hence,

∫ 


G

(
x, qt

)
dqt = –

( – q)

q

∞∑

k=

Lk

w
k

(
xSq(qwk) – Sq(qwkx)

)
.

Repeating the process for n =  and n = , we obtain the following result.

Theorem . For x ∈ A∗
q and n ≤ , the following expansion holds:

q
∫ 


Gn

(
x, qt

)
dqt =

(–)n–( – q)n

qn(n–/)

[ ∞∑

k=

Lk

wn
k

(
xSq

(
wkqn–) – Sq

(
wkqn–x

))

+ 
n–∑

i=

(–)iq(n+i–)
∞∑

k=

Lk

w(n–i)
k

Sq
(
qn–i–wk

)

×
∞∑

k=

L̃k

wi
k

(
xSq

(
qi–wk

)
– Sq

(
qi–wkx

))
]

. (.)
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Remark . In the classical case, Widder [] concluded a general formula for a Fourier
series of the integral of Green’s functions Gn for all n ∈ N. Theorem . gives a formula
for the q-Fourier series of

∫ 
 Gn(x, qt) dqt for n ≤ , we could not put it in a closed form

for all n ∈N. However, we can verify that

∫ 


Gn

(
x, qt

)
dqt =

(–)n–( – q)n

qn(n–/) Sk,n (n ∈N),

where Sk,n denotes a sum of q-series which converge uniformly on A∗
q and depend on the

q-trigonometric function Sq and the constants Lk and L̃k .

Theorem . For x ∈ A∗
q and n ≤ , the following expansion holds:

∫ 


Gn

(
x, qt

)
t dqt =

(–)n–( – q)n

qn(n–/)

[ ∞∑

k=

L̃k

wn
k

(
xSq

(
wkqn–) – Sq

(
wkqn–x

))

+ 
n–∑

i=

(–)iq(n+i–)
∞∑

k=

L̃k

w(n–i)
k

Sq
(
qn–i–wk

)

×
∞∑

k=

L̃k

wi
k

(
xSq

(
qi–wk

)
– Sq

(
qi–wkx

))
]

.

Proof The proof is similar to the proof of Theorem . and is omitted. �

The following corollary follows immediately from Theorems . and ..

Corollary . For x ∈ A∗
q and n ≤ , the following expansion holds:

∫ 


Gn

(
x, qt

)(
 – qt

)
dqt

=
(–)n–( – q)n

qn(n–/)

[ ∞∑

k=


wn

k

(
Lk – qL̃k

)(
xSq

(
wkqn–) – Sq

(
wkqn–x

))

+ 
n–∑

i=

(–)iq(n+i–)
∞∑

k=

Sq(qn–i–wk)
w(n–i)

k

(
Lk – qL̃k

)

×
∞∑

k=

L̃k

wi
k

(
xSq

(
qi–wk

)
– Sq

(
qi–wkx

))
]

.

Corollary . For x ∈ A∗
q and n ≤ , the q-Fourier series for the q-Lidstone polynomials

An(x) and Bn(x) are given by

An(x) =
(–)n–( – q)n

qn(n–/)

[ ∞∑

k=

L̃k

wn
k

(
xSq

(
wkqn–) – Sq

(
wkqn–x

))

+ 
n–∑

i=

(–)iq(n+i–)
∞∑

k=

L̃k

w(n–i)
k

Sq
(
qn–i–wk

)

×
∞∑

k=

L̃k

wi
k

(
xSq

(
qi–wk

)
– Sq

(
qi–wkx

))
]

,
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Bn(x) =
(–)n–( – q)n

qn(n–/)

[ ∞∑

k=


wn

k

(
Lk – qL̃k

)(
xSq

(
wkqn–) – Sq

(
wkqn–x

))

+ 
n–∑

i=

(–)iq(n+i–)
∞∑

k=

Sq(qn–i–wk)
w(n–i)

k

(
Lk – qL̃k

)

×
∞∑

k=

L̃k

wi
k

(
xSq

(
qi–wk

)
– Sq

(
qi–wkx

))
]

.

Proof It follows immediately from Theorem ., Corollary ., Equations (.) and (.).�

Proposition . There exists a constant C such that

 ≤ (–)n
∫ 


Gn

(
x, qt

)
dqt ≤ ( – q)n

qn(n–/) C.

Proof By using Equations (.) and (.), we get

(–)n
∫ 


Gn

(
x, tq–)dqt ≥ .

Another inequality follows from Theorem . together with the result that the series in
(.) converges uniformly at each fixed point x ∈ A∗

q . �

Proposition . There exists a constant C̃ such that

∫ 



∣∣Dq–,xGn
(
x, qt

)∣∣dqt ≤ ( – q)(n–)

q(n–)(n–/) C̃.

Proof By using (.), we have

∫ 



∣∣Dq–,xGn
(
x, qt

)∣∣dqt =
∫ 



[
Dq–,x

∫ 


G

(
x, qy

)
(–)n–Gn–

(
qy, qt

)
dqy

]
dqt

=
∫ 



∫ x


(–)n–(qy

)
Gn–

(
qy, qt

)
dqy dqt

–
∫ 



∫ 

x
(–)n–(q – qy

)
Gn–

(
qy, qt

)
dqy dqt.

Interchanging the order of the double q-integrations and using Proposition ., we get

∫ 



∣∣Dq–,xGn
(
x, qt

)∣∣dqt =
∫ x



(
qy

)[∫ 



∣∣Gn–
(
qy, qt

)∣∣dqt
]

dqy

–
∫ 

x

(
q – qy

)[∫ 



∣∣Gn–
(
qy, qt

)∣∣dqt
]

dqy

≤ ( – q)(n–)

q(n–)(n–/) C
[∫ x



(
qy

)
dqy –

∫ 

x

(
q – qy

)
dqy

]

=
( – q)(n–)

q(n–)(n–/) C
[

q( – x) +
q

(q + )

]

≤ ( – q)(n–)

q(n–)(n–/) C
[

q +
q

( + q)

]
.



Mansour and Al-Towailb Boundary Value Problems  (2017) 2017:178 Page 13 of 18

Hence, if we define the constant C̃ as

C̃ :=
(

q +
q

( + q)

)
C,

we get the required result. �

We end this section by computing the q-Fourier expansion of the q-Euler polynomials
of degree . We start by the following lemma.

Lemma .

∞∑

k=

Lk

wk
=

√q
( – q)

and
∞∑

k=

L̃k

wk
= –

√q
[]!( – q)

.

Proof By computing the q-Fourier series for the function f (x) = |x|, we obtain

f (x) =


 + q
–

( – q)√q

∞∑

k=

 – Cq(q/wk)
w

kCq(q/wk)S′
q(wk)

Cq
(
q/wkx

)
.

In particular, when x = , this implies

 =


 + q
–

( – q)√q

∞∑

k=

 – Cq(q/wk)
w

kCq(q/wk)S′
q(wk)

.

Therefore,

∞∑

k=

Lk

wk
=

√q
( – q)

.

Similarly, computing the q-Fourier series for the function g(x) = |x|, we obtain

|x| =


[]
+

[]( – q)√q

∞∑

k=

L̃k

wk
Cq

(
q/wkx

)
.

At x = , we have

∞∑

k=

L̃k

wk
= –

√q
[]!( – q)

. �

Theorem . For x ∈ A∗
q , the q-Fourier series for q-Euler polynomials e(x; q) is given by

e(x; q) =
[]
q

[
–

√
q( – q)

∞∑

k=

Lk

w
k

Sq(wkx) +
(

q
 + q

–
q


)
x

]
.

Proof By using Proposition ., we have

 = e(x; q) = Dqe(x; q).
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Therefore, for x ∈ A∗
q , the q-Fourier expansion of the function Dqe(x; q) is

Dqe(x; q) = 
∞∑

k=

 – Cq(q/wk)
wkCq(q/wk)S′

q(wk)
Sq(qwkx). (.)

Integrating (.) from  to x, we obtain

e(x; q) =
–( – q)√q

∞∑

k=

Lk

wk
Cq

(
q/wkx

)
+ C, (.)

where C is a constant of integration. This constant is obtained by putting x =  in Equation
(.) and then using Lemma . and the result e(; q) = Ẽ() = – 

 . We get C = – 
 + 

+q .
Hence,

e(x; q) =
–( – q)√q

∞∑

k=

Lk

wk
Cq

(
q/wkx

)
+


 + q

–



. (.)

Again, using Proposition . with n = , we get

e(x; q) = []
∫

e(x, q) dqx + C. (.)

Substituting Equation (.) into Equation (.) gives us

e(x; q) = []

[
–( – q)√q

∞∑

k=

Lk

wk

∫
Cq

(
q/wkx

)
dqx +

∫ (


 + q
–




)
dqx

]
+ C.

This implies

e(x; q) = []

[
–( – q)

√q

∞∑

k=

Lk

w
k

Sq(wkx) +
(

q
 + q

–
q


)
x

]
+ C.

In the last equation putting x = , we get C = , and hence the theorem. �

Corollary . For x ∈ A∗
q , the following holds:

e(x; q) =
[]
q

[∫ 


G

(
x, qt

)
dqt +

(
q

 + q
–

q


)
x
]

.

Proof The proof follows immediately from Lemma . and Theorem .. �

Remark . From Equation (.), we have

Bn(x) =
∫ 


Gn

(
x, qt

)
dqt – q

∫ 


tGn

(
x, qt

)
dqt.

Thus, by using Corollary . and Equation (.), we obtain the following relation:

B(x) + qA(x) = q
[

e(x; q)
[]

+
(




–


 + q

)
x
]

. (.)
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If q → , Equation (.) coincides with the result which is given by Agarwal and Wong
[] in the classical case.

5 An application: q-boundary value problems
The q-difference equations are important in q-calculus. This subject initiated in the first
quarter of the twentieth century [–], and it has been developed over the years. Re-
cently, many authors have studied the existence and uniqueness of solutions for some
problems of q-difference equations, for instance, see [, –].

The goal of this section is to solve the boundary value problem (.)-(.) by using the q-
Lidstone expansion theorem. The results here attained are the q-analogue of those given
by Agarwal and Wong [], where they studied the existence of solutions for

⎧
⎪⎨

⎪⎩

(–)nx(m)(t) = f (t, x(t), x′(t), . . . , x(k)(t)),
x(i)() = ai,
x(i)() = bi,

where  ≤ k ≤ m –  and i = , , . . . , m –  with some conditions imposed on f and x.
For our purpose, let us define two constants C and C̃ as in Proposition . and Propo-

sition ., respectively, and we introduce the following assumptions:
H: Kj,  ≤ j ≤ k are given real numbers, and define the nonzero constant M to be the

maximum of |φ(x, y, y, y, . . . , yk)| on the compact set A∗
q × E, where

E =
{

(y, y, y, . . . , yk), |yj| ≤ Kj,  ≤ j ≤ k
}

.

H :
( – q)(n–j)

q(n–j)(n–j–/) MC ≤ Kj, j = , , , . . . ,
k


;

H :
( – q)(n–j–)

q(n–j–)(n–j–/) MC̃ ≤ Kj+, j = , , , . . . ,
k – 


;

H : max
{|γj|, |βj|

}
+

n–j–∑

i=

max
{|γi+j|, |βi+j|

} ( – q)i

qi(i–/) C ≤ Kj;

H : |γj + βj| + C̃
n–j–∑

i=

max
{|γi+j|, |βi+j|

} ( – q)(i–)

q(i–)(i–/) ≤ Kj+.

The proof of the existence results for boundary value problem (.)-(.) depends on q-
Lidstone polynomials and the Arzela-Ascoli theorem [].

Theorem . Let q ∈ (, ) and y ∈ Cn
q– (A∗

q) be a real or complex-valued function. Assume
that assumptions H, H, H and H hold. Then the boundary value problem (.)-(.) has
a solution in E.

Proof By using Theorem ., we conclude that the boundary value problem (.)-(.) is
equivalent to the following Fredholm q-integral equation:

y(x) =
n–∑

i=

[
γiAi(x) + βiBi(x)

]
+

∫ 


Gn

(
x, qt

)
φ
(
t, y(t), . . . , Dk

q– y(t)
)

dqt. (.)
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Hence, this problem can be interpreted as a fixed point for the mapping T : Ck
q– (A∗

q) →
Cn

q– (A∗
q) which is defined by

(Ty)(x) =
n–∑

i=

[
γiAi(x) + βiBi(x)

]
+

∫ 



∣∣Gn
(
x, qt

)∣∣φ
(
t, y(t), . . . , Dk

q– y(t)
)

dqt. (.)

We define the set

J
(
A∗

q
)

:=
{

y(x) ∈ Ck
q–

(
A∗

q
)

:
∥∥Dj

q– y
∥∥ = max

≤x≤

∣∣Dj
q– y(x)

∣∣ ≤ Kj,  ≤ j ≤ k
}

.

Notice that J(A∗
q) is a closed subset of the space Ck

q– (A∗
q). We prove that T maps J(A∗

q) into
itself.

Let y(x) ∈ J(A∗
q). Then, from Equation (.), Remark ., Proposition . and hypotheses

H, H and H, we get

∣∣D(j)
q– (Ty)(x)

∣∣ ≤
n–j–∑

i=

∣∣γi+jAi(x) + βi+jBi(x)
∣∣ + M

∫ 



∣∣Gn–j
(
x, qt

)∣∣dqt

≤ |γjx| +
∣∣βj( – x)

∣∣ +
n–j–∑

i=

∣∣∣∣γi+j

∫ 



(
qt

)
Gi

(
x, qt

)
dqt + βi+j

×
∫ 



(
 – qt

)
Gi

(
x, qt

)
dqt

∣∣∣∣ + M
∫ 



∣∣Gn–j
(
x, qt

)∣∣dqt

≤ sup
x∈A∗

q

[|γjx| +
∣∣βj( – x)

∣∣] +
n–j–∑

i=

max
{|γi+j|, |βi+j|

}

×
∫ 



∣∣Gi
(
x, qt

)∣∣dqt + M
∫ 



∣∣Gn–j
(
x, qt

)∣∣dqt

≤ max
{|γj|, |βj|

}
+

n–j–∑

i=

max
{|γi+j|, |βi+j|

} ( – q)i

qi(i–/) C

+
( – q)(n–j)

q(n–j)(n–j–/) MC ≤ Kj, j = , , , . . . ,
k


. (.)

Similarly, from Equation (.), Remark ., Proposition . and hypotheses H and H,
we get

∣∣D(j+)
q– (Ty)(x)

∣∣ ≤ |γj + βj| + C̃
n–j–∑

i=

max
{|γi+j|, |βi+j|

} ( – q)(i–)

q(i–)(i–/)

+
( – q)(n–j–)

q(n–j–)(n–j–/) MC̃

≤ Kj+ + Kj+ = Kj+, j = , , , . . . ,
k – 


. (.)

This completes the proof of T(J(A∗
q)) ⊆ J(A∗

q). Furthermore, from the inequalities (.) and
(.) we conclude that the set

{
Dj

q– (T)y(x) : y(x) ∈ J
(
A∗

q
)
,  ≤ j ≤ k

}
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is uniformly bounded and equicontinuous on J(A∗
q). Therefore, from the Arzela-Ascoli

theorem T(J(A∗
q)) is compact. It means that we can find a fixed point of T in E which

satisfies the boundary value problem (.)-(.). �

Corollary . Assume that the function φ(x, y, y, . . . , yk) satisfies the following condition
on A∗

q ×R
k+:

∣∣φ(x, y, y, . . . , yk)
∣∣ ≤ L +

k∑

j=

Lj|yj|αj , (.)

where L, Lj are nonnegative constants, and  ≤ αj < . Then the boundary value problem
(.)-(.) has a solution.

Proof By using (.), for y(x) ∈ J(A∗
q), we get

∣∣φ
(
x, y(x), Dq– y(x), D

q– y(x), . . . , Dk
q– y(x)

)∣∣ ≤ N ,

where N := L +
∑k

j= Lj(Kj)αj . Hence, the result follows by observing that the hypotheses
of Theorem . are satisfied and replacing M by N such that Kj ( ≤ j ≤ k) are sufficiently
large. �

6 Conclusion
The goal of this paper is to study some properties of q-Lidstone polynomials by using
Green’s function of certain q-differential systems and then to solve the following boundary
value problem:

(–)nDn
q– y(x) = φ

(
x, y(x), Dq– y(x), D

q– y(x), . . . , Dk
q– y(x)

)
,

Dj
q– y() = βj, Dj

q– y() = γj (βj,γj ∈C, j = , , . . . , n – ),

where n ∈N and  ≤ k ≤ n – .
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