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1 Introduction
In this paper, we investigate the existence of solutions for an impulsive fractional Dirich-
let boundary value problem with a p-Laplacian operator and a controlled parameter as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
Tφp(Dα

t u(t)) + a(t)u(t) = f (t, u(t)) + μb(t)|u(t)|ν–u(t), a.e. t ∈ J ,

�(tI–α
T φp(Dα

t u(tj))) = Ij(u(tj)), j = , , . . . , m, m ∈N,

u() = u(T) = ,

(.)

where a(t), b(t) ∈ C([, T],R); f (t, u) ∈ C([, T] × R,R); μ ∈ (,∞), p ∈ (,∞), α ∈ [ 
p , ),

ν ∈ [, p – ); t =  < t < t < · · · < tm < tm+ = T ; J = [, T] \ {t, t, . . . , tm}; φp(s) = |s|p–s
(s �= ), φp() = ; Ij ∈ C(R,R);

�
(

tI–α
T φp

(c
Dα

t u(tj)
))

= tIT
–αφp

(c
Dα

t u
(
t+
j
))

– tIT
–αφp

(c
Dα

t u
(
t–
j
))

,

tIT
–αφp

(c
Dα

t u
(
t+
j
))

= lim
t→t+

j
tI–α

T φp
(c

Dα
t u(tj)

)
,

tIT
–αφp

(c
Dα

t u
(
t+
j
))

= lim
t→t–

j
tI–α

T φp
(c

Dα
t u(tj)

)
.

In the recent years, more and more fractional mathematical models have occurred in many
application fields (see [–]). It should be pointed out that Leszczynski and Blaszczyk []
took advantage of the fractional mathematical model to show that the height of granular
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material of silo decreases over time as follows.

c
t Dα

T
(

Dα
t h∗(t)

)
+ βh∗(t) = , t ∈ [, T], (.)

where α ∈ (, ), c
t Dα

T represents the right Caputo fractional derivatives, Dα
t denotes left

Riemann-Liouville fractional derivatives, h∗(t) = hbed – h(t) in which h(t) and hbed stand
for falling height of the granular bed relative to empty silo and the initial bed height, re-
spectively.

Some classical nonlinear functional methods have been applied to investigate solvabil-
ity of boundary value problems for fractional differential equations such as fixed point
theorems (see [–]), coincidence degree theory (see [–]), etc. Recently, the operator
c
t Dα

T Dα
t with the classical Dirichlet boundary condition possessing variational structure

has been presented in [], in which the following fractional differential system was con-
sidered:

⎧
⎨

⎩

tDα
T (Dα

t u(t)) = ∇F(t, u(t)), a.e. t ∈ [, T],

u() = u(T) = ,
(.)

where α ∈ (, ]; F(t, u) : [, T] × R
N → R satisfies the classical Carathéodory condition.

It should be mentioned that tDα
T u = c

t Dα
T and Dα

t u = c
Dα

t when u() = u(T) = . Based
on the mountain pass theorem and under F(t, u) satisfying a class of superlinear growth
conditions and the classical local Ambrosetti-Rabinowitz condition

 < F(t, u) ≤ 
θ

〈
u,∇F(t, u)

〉
, θ > , |u| ≥ M or u ∈R \ {}, (.)

where θ , M >  are constants, the existence of weak nontrivial solutions was proved when
α ∈ ( 

 , ]. In fact, if α ∈ ( 
 , ], the so-called fractional Sobolev space Eα,

 is compactly em-
bedded into C([, T],R). Thus, the proof is more clear. Torres [] gave the further study
on this type problem when N = . Chen and Liu [] extended the corresponding results
on (.) to a p-Laplacian operator case where  < p < ∞. Moreover, Bergounioux et al.
[], Idczak and Walczak [] and Jin and Liu [] devoted their works to perfecting a
fractional-type Sobolev space. It should be pointed out that Bonanno et al. [] investi-
gated the following impulsive fractional Dirichlet boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (c

Dα
t u(t)) + a(t)u(t) = λf (t, u(t)), a.e. t ∈ J ,

�(tI–α
T (c

Dα
t u(tj))) = μIj(u(tj)), j = , , . . . , m,

u() = u(T) = ,

(.)

where a(t) ∈ C([, T], (,∞)), f (t, u) ∈ C([, T] ×R,R) and λ,μ ∈ (,∞), and proved the
existence of three solutions. For application of variational methods in boundary value
problems of integer or fractional differential equations with impulsive effects, please see
[–] and the references therein.

After that, by the gene property, Ledesma and Nyamoradi [] studied the following
eigenvalue problem:

⎧
⎨

⎩

tDα
Tφp(Dα

t u(t)) = λφp(u), t ∈ [, T],

u() = u(T) = 
(.)
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and found that 	 := {λ ∈R : λ is an eigenvalue of (.)} is a nonempty infinite set, sup	 =
∞ and

λ = inf
u∈Eα,p

 \{}

∫ T
 |Dα

t u(t)|p dt
∫ T

 |u(t)|p dt
> .

Moreover, in [], based on the above results, the authors took further study of the fol-
lowing impulsive fractional Dirichlet boundary value problem with p-Laplacian operator:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
Tφp(Dα

t u(t)) + a(t)u(t) = f (t, u(t)), a.e. t ∈ J ,

�(tI–α
T φp(Dα

t u(tj))) = Ij(u(tj)), j = , , . . . , m,

u() = u(T) = .

(.)

For stating the main results of [], we firstly introduce the following assumptions with
respect to f and Ij:

(H) a(t) ∈ C([, T],R) and ess inft∈[,T] a(t) > –λ.
(H) f (t, u) = o(|u|p–) as |u| →  uniformly for t ∈ [, T].
(H) There exist constants D > , θ > p such that, for t ∈ [, T],

 < θF(t, u) ≤ uf (t, u) for |u| ≥ D,

where F(t, u) =
∫ u

 f (t, s) ds.
(H) There exist constants dj >  and γj ∈ (p – , θ – ),

∣
∣Ij(t)

∣
∣ ≤ dj|t|γj for any t ∈R.

(H) For t large enough, Ij(t) satisfy

θ

∫ t


Ij(s) ds ≥ Ij(t)t.

(H) For any t ∈R, Ij(t) satisfy

∫ t


Ij(s) dt ≥ .

(H) Ij(u) and f (t, u) are odd on u.

Theorem . (see []) Assume that conditions (H)-(H) hold. Then problem (.) has
infinitely many weak solutions.

Motivated by the works mentioned above, we take further study on this topic with the
concave-convex nonlinearity (.). For comparing our main result with Theorem ., we
present the following assumed conditions and our main result.

(H′) There exist constants D > , θ > p such that, for t ∈ [, T],

θF(t, u) ≤ uf (t, u) for |u| ≥ D
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and

inf|u|=D
F(t, u) > .

(H′) There exist constants aj, dj >  and γj ∈ [, θ – )

∣
∣Ij(t)

∣
∣ ≤ aj + dj|t|γj for any t ∈ R.

(H) There exist constants M, L > , β > θ such that, for t ∈ [, T],

F(t, u) ≤ M|u|β for |u| ≥ L.

Now, we describe our main result.

Theorem . If conditions (H), (H), (H′), (H′) and (H)-(H) are satisfied, there exists
a constant μ∗ >  such that problem (.) has infinitely many weak solutions for μ ∈ [,μ∗).

Remark . It should be noted that (H′) occurred earlier in [] and was used to deal
with multiplicity of solutions of fourth-order elliptic equations. Clearly, (H′) and (H′)
are weaker than (H) and (H), respectively. Moreover, if μ = , (H) can be removed.
Thus, our conclusion extends Theorem .. Furthermore, if γj is located in ∈ [, p – ) in
(H′), (H) can be removed. Noting that if p = , α = , one has

tDα
T
(∣
∣Dα

t u(t)
∣
∣p–

Dα
t u(t)

)
= tDα

T
(

Dα
t u(t)

)
= –u′′.

Therefore, our main result also generalizes the corresponding result of [].

Remark . Here, Ij(u) could be p-suplinear or p-sublinear growth. It becomes more gen-
eral than the previous papers (see [] and []).

Moreover, we also consider the nonlinearity satisfying p-sublinear growth. We need the
following assumptions.

(H′′) There exist constants aj, dj >  and γj ∈ [, p – )

∣
∣Ij(t)

∣
∣ ≤ aj + dj|t|γj for any t ∈R.

(H) There exists a function ν ∈ Eα,p
 such that


μ

∫ T


F
(
t, v(t)

)
dt +


ν

∫ T


b(t)

∣
∣v(t)

∣
∣ν dt > .

(H)

lim sup
|u|→∞

F(t, u)
|u|p = , uniformly for t ∈ [, T].

Theorem . If conditions (H), (H′′), (H) and (H) are satisfied, there exists a constant
μ∗ >  such that problem (.) has at least one weak solution for μ ∈ (μ∗,∞).



Liu et al. Boundary Value Problems  (2017) 2017:175 Page 5 of 18

2 Preliminaries
First, we show the basic definitions and propositions of fractional integral and derivative,
fractional-type Sobolev space. Let ‖u‖Lp = (

∫ T
 |u(t)|p dt)


p and ‖u‖∞ = maxt∈[,T] |u(t)| be

the norms in Lp([, T],R) and C([, T],R), respectively. The constant c stands for a differ-
ent constant in different sentences.

Definition . ([, ]) Let f be a function defined on [a, b].
(i) The left and right Riemann-Liouville fractional integrals of order α >  for a

function f are defined by

aIα
t f (t) =


�(α)

∫ t

a
(t – s)α–f (s) ds,

tIα
b f (t) =


�(α)

∫ b

t
(s – t)α–f (s) ds, t ∈ [a, b],

provided the right-hand sides are pointwise defined on [a, b], where �(α) is the
standard gamma function.

(ii) If α = n, n ∈N, they become the usual definitions

aIn
t f (t) =


�(n)

∫ t

a
(t – s)n–f (s) ds,

tIn
b f (t) =


�(n)

∫ b

t
(s – t)n–f (s) ds, t ∈ [a, b].

Definition . ([, ]) Let f be a function defined on [a, b].
(i) The left and right Riemann-Liouville fractional derivatives of order α for a function

f denoted by aDα
t f (t) and tDα

b f (t), respectively, are defined by

aDα
t f (t) =

dn

dtn aIn–α
t f (t), tDα

b f (t) = (–)n dn

dtn tIn–α
b f (t),

where t ∈ [a, b], n –  ≤ α < n and n ∈N.
(ii) If α = n – , n ∈N, they become the usual definitions

aDn–
t f (t) = f n–(t), tDn–

b f (t) = (–)nf n–(t), t ∈ [a, b].

Definition . ([, ]) Let α ≥  and n ∈N.
(i) If α ∈ (n – , n) and f ∈ ACn([a, b],RN ), then the left and right Caputo fractional

derivatives of order α for a function f denoted by c
aDα

t f (t) and c
t Dα

b f (t), respectively,
exist almost everywhere on [a, b], c

aDα
t f (t) and c

t Dα
b f (t) are represented by

c
aDα

t f (t) = aIn–α
t

dn

dtn f (t), c
t Dα

b f (t) = (–)n
tIn–α

b
dn

dtn f (t), t ∈ [a, b].

(ii) If α = n –  and f ∈ ACn–([a, b],RN ), then c
aDn–

t f (t) and c
t Dn–

b f (t) are represented
by

c
aDn–

t f (t) = f (n–)(t), c
t Dn–

b f (t) = (–)(n–)f (n–)(t), t ∈ [a, b].
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Proposition . ([, ]) Let n ∈N and n –  < α < n. If f is a function defined on [a, b], for
which the Caputo fractional derivatives c

aDα
t f (t) and c

t Dα
b f (t) of order α exist together with

the Riemann-Liouville fractional derivatives aDα
t f (t) and tDα

b f (t), then

c
aDα

t f (t) = aDα
t f (t) –

n–∑

j=

f j(a)
�(j – α + )

(t – a)j–α , t ∈ [a, b], (.)

c
t Dα

b f (t) = tDα
b f (t) –

n–∑

j=

f j(b)
�(j – α + )

(b – t)j–α , t ∈ [a, b]. (.)

Remark . In view of (.) and (.), it is easy to find that c
Dα

t u(t) = Dα
t u(t), c

t Dα
T u(t) =

tDα
T u(t), t ∈ [, T] by u() = u(T) = .

Proposition . ([]) We have the following property of fractional integration:

∫ b

a

[
aIα

t f (t)
]
g(t) dt =

∫ b

a

[
tIα

b g(t)
]
f (t) dt, α > ,

provided that f ∈ Lp([a, b],RN ), g ∈ Lq([a, b],RN ) and p ≥ , q ≥ , /p + /q ≤  + α or
p �= , q �= , /p + /q =  + α.

Definition . ([]) Let  < α ≤  and u, v ∈ L[, T]. For any ϕ ∈ C∞
 ([, T],R), we have

∫ T


vϕ dt =

∫ T


utDα

Tϕ dt,

so v is said to be an α-weak fractional derivative for u, and there exists a left Riemann-
Liouville derivative such that v = Dα

t u.

Define the following fractional-type Sobolev space:

Eα,p =
{

u ∈ Lp([, T],R
)

: Dα
t u ∈ Lp([, T],R

)}

with the norm

‖u‖α,p =
(∫ T



∣
∣Dα

t u(t)
∣
∣p dt +

∫ T



∣
∣u(t)

∣
∣p dt

)/p

. (.)

Based on [], if  < p < ∞, it is a reflexive and separable Banach space. Moreover, Eα,p


represents the closure of C∞
 ([, T],R) in the norm of Eα,p. So, Eα,p

 ⊂ Eα,p is also a reflexive
and separable Banach space. Clearly, Eα,p

 becomes the well-known space W ,p
 when α = .

Lemma . ([]) Let  < α ≤  and  < p < ∞. For all u ∈ Eα,p
 , we have

‖u‖Lp ≤ Tα

�(α + )
∥
∥Dα

t u
∥
∥

Lp . (.)

Moreover, if α > 
p and 

p + 
q = , then

‖u‖∞ ≤ Tα–/q

�(α)(q(α – ) + )/q

∥
∥Dα

t u
∥
∥

Lp . (.)



Liu et al. Boundary Value Problems  (2017) 2017:175 Page 7 of 18

Based on (.), we can consider Eα,p
 with respect to the norm

‖u‖α,p =
(∫ T



∣
∣Dα

t u(t)
∣
∣p dt

)/p

=
∥
∥Dα

t u
∥
∥

Lp , ∀u ∈ Eα,p
 , (.)

and (.) is equivalent to (.).

For our problem, we define a new norm in Eα,p
 by

‖u‖ =
(∫ T



∣
∣Dα

t u(t)
∣
∣p dt +

∫ T


a(t)

∣
∣u(t)

∣
∣p dt

)/p

. (.)

Since ess inft∈[,T] a(t) > –λ, following [], the norm ‖u‖ is equivalent to ‖u‖α,p.

Proposition . ([]) Let  < α ≤  and  < p < ∞. Assume that α > 
p and the sequence un

converges weakly to u in Eα,p
 , i.e., un ⇀ u. Then un → u in C([, T],R), i.e., ‖un – u‖∞ → ,

n → ∞.

Based on the above proposition, there exists a constant S >  such that ‖u‖∞ ≤ S‖u‖.
For v ∈ Eα,p

 , multiplying the two sides of equation (.) by v and integrating from  to T ,
one has

∫ T


tDα

Tφp
(

Dα
t u(t)

)
v(t) +

∫ T


a(t)φp

(
u(t)

)
u(t)v(t) dt

–
∫ T


f
(
t, u(t)

)
v(t) dt – μ

∫ T


b(t)

∣
∣u(t)

∣
∣ν–u(t)v(t) dt = .

Based on Proposition ., we have

∫ T


tDα

Tφp
(

Dα
t u(t)

)
v(t) dt

= –
m∑

j=

∫ tj+

tj

v(t) d
[

tI–α
T φp

(
Dα

t u(t)
)]

= –
m∑

j=
tI–α

T φp
(

Dα
t u(t)

)
v(t)|tj+

tj +
m∑

j=

∫ tj+

tj

φp
(

Dα
t u(t)

)
Dα

t v(t) dt

=
m∑

j=

(
tI–α

T φp
(

Dα
t u

(
t+
j
))

v(tj) – tI–α
T φp

(
Dα

t u
(
t–
j
))

v(tj)
)

+
∫ T


φp

(
Dα

t u(t)
)

Dα
t v(t) dt

= Ij
(
u(tj)

)
v(tj) +

∫ T


φp

(
Dα

t u(t)
)

Dα
t v(t) dt.

Now, we describe the definition of weak solution of (.).
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Definition . Let u ∈ Eα,p
 be a weak solution of (.) if

∫ T


φp

(
Dα

t u(t)
)

Dα
t v(t) dt +

∫ T


a(t)φp

(
u(t)

)
u(t)v(t) dt +

m∑

j=

Ij
(
u(tj)

)
v(tj)

–
∫ T


f
(
t, u(t)

)
v(t) dt – μ

∫ T


b(t)

∣
∣u(t)

∣
∣ν–u(t)v(t) dt = 

holds for any v ∈ Eα,p
 .

Define the functional � : Eα,p
 →R by

�(u) =

p
‖u‖p +

m∑

j=

∫ u(tj)


Ij(t) dt –

∫ T


F
(
t, u(t)

)
dt –

μ

ν

∫ T


h(t)

∣
∣u(t)

∣
∣ν dt.

Based on the continuity of f and Ij, following [], one has φ ∈ C(Eα,p
 ,R). For any v ∈ Eα,p

 ,
we can get

〈
�′(u), v

〉
=

∫ T


tDα

Tφp
(

Dα
t u(t)

)
v(t) +

∫ T


a(t)φp

(
u(t)

)
u(t)v(t) dt +

m∑

j=

Ij
(
u(tj)

)
v(tj)

–
∫ T


f
(
t, u(t)

)
v(t) dt – μ

∫ T


b(t)

∣
∣u(t)

∣
∣ν–u(t)v(t) dt.

Therefore, the weak solutions of problem (.) are the corresponding critical points of �.
In order to obtain our main results, we introduce the following tools.

Definition . ([]) Let X be a Banach space and � ∈ C(X,R) satisfy �(–u) = �(u),
u ∈ X. Let

� =
{

A ⊂ X – {} | A is closed in X and symmetric with respect to 
}

.

The genus of A is defined by

γ (A) =

⎧
⎪⎪⎨

⎪⎪⎩

inf{n ∈ Z+ | there exists an odd mapping ϕ ∈ C(A,Rn \ {})},
, A = ∅,

+∞, when ϕ is non-existent.

Lemma . ([]) Let n, k ∈ N. The properties of the genus γ are as follows:
(i) If X = X ⊕ X, dim X = k, γ (A) > k, then A ∩ X �= ∅;

(ii) If � is a symmetric bounded domain near zero in R
n, there exists a mapping

h ∈ C(A, ∂�) with odd homeomorphism such that, for A ∈ �, then γ (A) = n;
(iii) If γ (A) = k,  /∈ A, then there exist at least k pairs of different points in A.

Lemma . ([]) Let X be a Banach space and � ∈ C(X,R) satisfy �(–u) = �(u), u ∈ X.
The pseudo-index is defined by

i∗(A) = inf
h∈	∗(ρ)

γ
(
A ∩ h(∂B)

)
,
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where

	∗(ρ) ≡ {
h ∈ C(X, X) | h is an odd homeomorphism,

for some ρ > , h(B) ⊂ �–(,∞) ∪ Bρ

}
,

A ∈ �∗ ≡ {A ∈ � | A is compact}.

Suppose that � satisfies the (PS)c-condition and
(i) there are constants ρ,σ >  such that �|X⊥

 ∩∂Bρ
≥ σ for the subspace X ⊂ X ,

dim X = m;
(ii) there is a subspace X ⊂ X , dim X = m > m, l >  such that �(u) ≤ , ∀u ∈ X \ Bl .

Then � at least possesses m – m pairs of different critical points:

c∗
n = inf

i∗(A)≥n
sup
u∈A

�(u).

Definition . ([, ]) Let X be a real Banach space with its dual X∗ and � ∈ C(X,R).
For any {un} ⊂ X, {un} has a convergent subsequence if �(un) is bounded or �(un) → c, c ∈
R and �′(un) →  as n → ∞. Then we say that �(u) satisfies the Palais-Smale condition
or the Palais-Smale condition at the level c ((PS)-condition or (PS)c-condition for short).

Lemma . ([]) Let E be a real Banach space and � ∈ C(E,R) satisfy the (PS)-
condition. If � is bounded from below, then c = infE � is a critical point.

3 Main results
In order to prove the theorem, we need the following lemmas. Firstly, in Eα,p

 , we can
choose a completely orthonormal basis {ei}∞i=. Set Yi = Rei, Xk =

⊕k
i= Yi, Xk+r =

⊕k+r
i= Yi

and X⊥
k =

⊕∞
i=k+ Yi, so W ,

T = X⊥
k ⊕ Xk and dim Xk+r-dim Xk = r, where r ∈ N. b±(t) =

max{±b(t), }.

Lemma . If the assumptions of Theorem . hold, then � satisfies the (PS)c-condition
for μ ∈ (,∞).

Proof Let {un}n∈N ⊂ Eα,p
 such that �(un) → c and �′(un) →  as n → ∞, which tell us the

fact that there exists a constant C >  such that |�(un)| ≤ C, ‖�′(un)‖(Eα,p
 )∗ ≤ C. Next, our

aim is to prove that {un} is a bounded sequence in Eα,p
 . If not, we assume that ‖un‖ → ∞

as n → ∞. For any u ∈ Eα,p
 \ {}, let vn = un

‖un‖ , then vn is bounded in Eα,p
 . From the fact

that Eα,p
 is a reflexive Banach space, we can find a subsequence of {vn} (called again {vn})

such that vn ⇀ v in Eα,p
 , vn → v uniformly in C([, T],R). By (H′), we can get

∫ T


F(t, un) dt =


p
‖un‖p +

m∑

j=

∫ un(tj)


Ij(t) dt –

μ

ν

∫ T


b(t)

∣
∣u(t)

∣
∣ν dt – �(un)

≤ 
p
‖un‖p +

m∑

j=

ajS‖un‖ +
m∑

j=

djSγj+‖un‖γj+

+
μ

ν
TSν‖b‖∞‖u‖ν + C,
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which shows the fact that there exists c >  such that
⎧
⎨

⎩

limn→∞
∫ T


F(t,un)
‖un‖p dt ≤ c for γj ∈ [, p – ),

limn→∞
∫ T


F(t,un)

‖un‖γ∗+ dt ≤ c for γj ∈ [p – , θ – ),
(.)

where γ∗ = max{γj}. From (H), for any ε > , there exists a constant D >  such that

∣
∣f (t, u)

∣
∣ ≤ ε|u|p–, |u| ≤ D. (.)

Therefore, for |u| ≤ D, there exists a constant ε >  such that

∣
∣uf (t, u) – θF(t, u)

∣
∣ ≤ ε( + θ )up.

For (t, u) ∈ [, T] × [D, D], we can find a constant c >  such that

∣
∣uf (t, u) – θF(t, u)

∣
∣ ≤ c,

which together with (H′) yields that

uf (t, u) – θF(t, u) ≥ –ε( + θ )up – c.

Based on (H), there exists a constant c >  such that

θ

m∑

j=

∫ un(tj)


Ij(t) dt –

m∑

j=

Ij
(
un(tj)

)
un(tj) ≥ –c.

Therefore, we have

θC + C‖un‖ ≥ θ�(un) –
〈
�′(un), un

〉

=
(

θ

p
– 

)

‖un‖p + θ

m∑

j=

∫ un(tj)


Ij(t) dt –

m∑

j=

Ij
(
un(tj)

)
un(tj)

+
∫ T



(
un(t)f

(
t, un(t)

)
– θF

(
t, un(t)

))
dt

– μ
θ – ν

ν

∫ T


b(t)

∣
∣un(t)

∣
∣ν dt

≥ ‖un‖p +
∫ T



(
un(t)f

(
t, un(t)

)
– θF

(
t, un(t)

))
dt

– μ
θ – ν

ν

∫ T


b(t)|un(t)|ν dt – c

≥ ‖un‖p – ε( + θ )T‖un‖p
∞ – μ

θ – ν

ν

∥
∥b+∥

∥
L‖un‖ν

∞ – c.

This shows the fact that there exists a constant c >  such that

lim
n→∞‖vn‖∞ = lim

n→∞
‖un‖∞
‖un‖ ≥ c > .
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Hence, we obtain v �= . From (H′), for s ∈ [D/|u|, ], |u| ≥ D, one has

d
ds

(
F(t, su)

sθ

)

=
f (t, su)su – θF(t, su)

sθ+ ≥ .

Thus, for t ∈ [, T], we have

F(t, u) ≥ |u|θ
Dθ

inf|u|=D
F(t, u), (.)

which together with (H′) yields that

⎧
⎨

⎩

F(t,u)
|u|p ≥ |u|θ–p

Dθ inf|u|=D F(t, u) → ∞ as |u| → ∞ for γj ∈ [, p – ),
F(t,u)
|u|γ∗+ ≥ |u|θ–γ∗–

Dθ inf|u|=D F(t, u) → ∞ as |u| → ∞ for γj ∈ [p – , θ – ).
(.)

Based on Fatou’s lemma, one has

⎧
⎨

⎩

∫

v�=
F(t,un)
|un|p |vn|p dt → ∞ as n → ∞ for γj ∈ [, p – ),

∫

v�=
F(t,un)
|un|γ∗+ |vn|γ∗+ dt → ∞ as n → ∞ for γj ∈ [p – , θ – ).

In view of (.), we know F(t, u) ≥  for |u| ≥ D, t ∈ [, T]. From (H), there exist constants
c, ε >  such that

F(t, u) ≥ –εup – c, u ∈R, t ∈ [, T].

Let

O := meas
{

t ∈ [, T] : v(t) = 
}

.

We have
⎧
⎨

⎩

∫

v=
F(t,un)
‖un‖p dt ≥ –εSpO – c

‖un‖p for γj ∈ [, p – ),
∫

v=
F(t,un)

‖un‖γ∗+ dt ≥ –εSpO
‖un‖γ∗+–p – c

‖un‖γ∗+ for γj ∈ [p – , θ – ).

This means
⎧
⎨

⎩

lim infn→∞
∫

v=
F(t,un)
‖un‖p dt > –∞ for γj ∈ [, p – ),

lim infn→∞
∫

v=
F(t,un)

‖un‖γ∗+ dt > –∞ for γj ∈ [p – , θ – ).

Thus, we can obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

lim infn→∞
∫ T


F(t,un)
‖un‖p dt = lim infn→∞(

∫

v= +
∫

v�=) F(t,un)
‖un‖p dt

→ ∞ for γj ∈ [, p – ),

lim infn→∞
∫ T


F(t,un)

‖un‖γj+ dt = lim infn→∞(
∫

v= +
∫

v�=) F(t,un)
‖un‖γj+ dt

→ ∞ for γj ∈ [p – , θ – ).
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This is a contradiction to (.). Hence, {un} is bounded. By a similar standard argument as
the one in [], we can show un → u in Eα,p

 . For the completeness, we state the proof as
follows. Based on the fact that Eα,p

 is a reflexive Banach space, {un} has a convergent subse-
quence (named again {un}) such that un ⇀ u in Eα,p

 , so un → u uniformly in C([, T],R).
Thus, we have

∫ T



(
f
(
t, un(t)

)
– f

(
t, u(t)

))(
un(t) – u(t)

)
dt → , n → ∞, (.)

m∑

j=

(
Ij
(
un(tj)

)
– Ij

(
u(tj)

))(
un(tj) – u(tj)

) → , n → ∞, (.)

∫ T


a(t)

(
φp

(
un(t)

)
– φp

(
u(t)

))(
un(t) – u(t)

)
dt → , n → ∞, (.)

∫ T


b(t)

(|un|ν–un(t) –
∣
∣un(t)

∣
∣ν–un(t)

)(
un(t) – u(t)

)
dt → , n → ∞. (.)

By �′(un) →  and un ⇀ u, we can obtain

〈
�′(un) – �′(u), un – u

〉 → , n → ∞. (.)

Thus, we have

〈
�′(un) – �′(u), un – u

〉

=
∫ T



(
φp

(
Dα

t un(t)
)

– φp
(

Dα
t u(t)

))(
Dα

t un(t) – Dα
t u(t)

)
dt

+
∫ T


a(t)

(
φp

(
un(t)

)
– φp

(
u(t)

))(
un(t) – u(t)

)
dt

+
m∑

j=

(
Ij
(
un(tj)

)
– Ij

(
u(tj)

))(
un(tj) – u(tj)

)

–
∫ T



(
f
(
t, un(t)

)
– f

(
t, u(t)

))(
un(t) – u(t)

)
dt

– μ

∫ T


b(t)

(∣
∣un(t)

∣
∣ν–un(t) –

∣
∣un(t)

∣
∣ν–un(t)

)(
un(t) – u(t)

)
dt.

Based on [], we have

∫ T



(
φp

(
Dα

t un(t)
)

– φp
(

Dα
t u(t)

))(
Dα

t un(t) – Dα
t u(t)

)
dt

≥
⎧
⎨

⎩

c
∫ T

 |Dα
t un(t) – Dα

t u(t)|p dt, p ≥ ,

c
∫ T


|Dα

t un(t)–Dα
t u(t)|

(|Dα
t un(t)|+|Dα

t u(t)|)–p dt,  < p < .
(.)
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If p ≥ , following (.)-(.), ‖un – u‖ → , n → ∞. If  < p < , by Hölder’s inequality,
one has

∫ T



∣
∣Dα

t un(t) – Dα
t u(t)

∣
∣p dt

≤ c
(∫ T



|Dα
t un(t) – Dα

t u(t)|
(|Dα

t un(t)| + |Dα
t u(t)|)–p dt

) p
 (‖un‖ + ‖u‖) p(–p)

 .

Thus, we can get

∫ T



(
φp

(
Dα

t un(t)
)

– φp
(

Dα
t u(t)

))(
Dα

t un(t) – Dα
t u(t)

)
dt

≥ c
(‖un‖ + ‖u‖)–p

(∫ T



∣
∣Dα

t un(t) – Dα
t u(t)

∣
∣p dt

) 
p

.

Hence, one has ‖un – u‖ → , n → ∞. Therefore, �(u) satisfies the (PS)c-condition. �

Lemma . If the assumptions of Theorem . hold, then there exist constants ρ,σ ,μ∗ > 
such that �|X⊥

k ∩∂Bρ
≥ σ for μ ∈ [,μ∗).

Proof By (H) and (H), for any ε > , there exists Cε such that, for x ∈R, t ∈ [, T],

F(t, u) ≤ ε|u|p + Cε|u|β , (.)

which implies that

∫ T


F(t, u) dt ≤ ε

∫ T


|u|p dt + Cε

∫ T


|u|β dt

≤ εTSp‖u‖p + CεTSβ‖u‖β .

Thus, from (H), we can obtain

�(u) =

p
‖u‖p +

m∑

j=

∫ u(tj)


Ij(t) dt –

∫ T


F
(
t, u(t)

)
dt –

μ

ν

∫ T


b(t)

∣
∣u(t)

∣
∣ν dt

≥ 
p
‖u‖p –

∫ T


F
(
t, u(t)

)
–

μ

ν

∫ T


b+(t)

∣
∣u(t)

∣
∣ν dt

≥ 
p
‖u‖p – εTSp‖u‖p – CεTSβ‖u‖β –

μ

ν
TSv∥∥b+∥

∥
L‖u‖ν

= ‖u‖ν

((

p

– εTSp
)

‖u‖p–ν – CεTSβ‖u‖β–ν –
μ

ν
TSv∥∥b+∥

∥
L

)

.

Choosing ε = 
TpSp , we have

ϕ(u) ≥ ‖u‖ν

(


p
‖u‖p–ν – CεTSβ‖u‖β–ν –

μ

ν
TSv∥∥b+∥

∥
L

)

.
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Let

y(t) =


p
tp–ν – CεTSβtβ–ν , t ≥ .

By a simple calculation, we can find

ρ =
[

p – ν

pCεTSβ (β – ν)

] 
β–p

such that

y(ρ) = max
t≥

y(t) =
β – p

p(β – ν)

[
p – ν

pCεTSβ (β – ν)

] p–ν
β–p

> .

Thus, there exists a constant

μ∗ =
ν(β – p)

pTSv(β – ν)
∥
∥b+

∥
∥

L

[
p – ν

pCεTSβ (β – ν)

] p–ν
β–p

.

When μ ∈ [,μ∗), we can find a constant σ >  such that

�|X⊥
k ∩∂Bρ

≥ σ . �

Lemma . If the assumptions of Theorem . hold, then there exists a constant l >  such
that �(u) ≤ , ∀u ∈ Xk+r \ Bl for μ ∈ (,∞).

Proof For t ∈ [, T], we know that

F(t, u) ≥ |u|θ
Dθ

inf|u|=D
F(t, u).

Thus, we have

F(t, u) ≥ k|u|θ , |u| ≥ D, t ∈ [, T], (.)

where k = D–θ inf|u|=D F(t, u) > . By (H), there exist constants ε, c >  such that

F(t, u) ≥ –εup – c, |u| ≤ D, t ∈ [, T]. (.)

Hence, one has

F(t, u) ≥ k|u|θ – lup – c, u ∈ R, t ∈ [, T], (.)

where l = kDθ–p + ε. Thus, for any u ∈ Xk+j, by the equivalence of the norms on the finite-
dimensional space, there exist constants l, l >  such that

ϕ(u) ≤ 
p
‖u‖p +

m∑

j=

ajS‖u‖ +
m∑

j=

djSγj+‖u‖γj+ + llp
 ‖u‖p

+
μ

ν
TSν‖b‖∞‖u‖ν + cT – klθ‖u‖θ ,
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which implies �(u) → –∞ as ‖u‖ → ∞ because of θ > {p,γj + }. There exists a constant
l >  such that �(u) ≤ , ∀u ∈ Xk+r \ Bl for μ ∈ (,∞). �

Next, we give the proof of Theorem ..

Proof of Theorem . Based on the genus property and the definition of c∗
n, we have, for

r ∈N,

σ ≤ c∗
k+s < +∞, r ≥ s ≥ .

For all A ∈ �∗, we know that i∗(A) ≥ k + s. Let h = ρ · id, then h ∈ 	∗(ρ) and

γ (A ∩ ∂Bρ) = γ
(
A ∩ h(∂B)

) ≥ inf
h∈	∗(ρ)

γ
(
A ∩ h(∂B)

)
= i∗(A) > k.

From (i) of Lemma ., one has A ∩ ∂Bρ ∩ X⊥
k �= ∅. By Lemma ., we have

sup
u∈A

�(u) ≥ inf
u∈∂Bρ∩X⊥

k

�(u) ≥ σ .

In view of the arbitrariness of A ∈ �∗, so c∗
k+s ≥ σ . Based on Lemma ., if k +s ≤ dim Xk+r ,

one has c∗
k+s < +∞. Then we have

σ ≤ c∗
k+ ≤ c∗

k+ ≤ · · · ≤ c∗
k+r < +∞.

From Lemmas ., . and ., we know that (i) and (ii) of Lemma . and the (PS)c-
condition are satisfied. Moreover, �(u) = �(–u) and �() = . Thus, from Lemma .,
�(u) possesses at least r pairs of different critical points. Since r is arbitrary and λr → ∞,
r → ∞, then problem (.) has infinitely many nontrivial weak solutions. �

Lemma . If the assumptions of Theorem . hold, then problem (.) has at least one
weak solution for μ ∈ (,∞).

Proof In view of (H), for any ξ > , we can find a constant K >  such that, for t ∈ [, T],

F(t, u) ≤ ξ |u|p, |u| ≥ K .

Since f is continuous, there exists c >  such that

F(t, u) ≤ ξ |u|p + c for (t, u) ∈ [, T] ×R.

From (H′′), we have

�(u) =

p
‖u‖p +

m∑

j=

∫ u(tj)


Ij(t) dt –

∫ T


F
(
t, u(t)

)
dt –

μ

ν

∫ T


b(t)

∣
∣u(t)

∣
∣ν dt

≥ 
p
‖u‖p –

m∑

j=

ajS‖u‖ –
m∑

j=

djSγj+‖u‖γj+ – ξSpT‖u‖p –
μ

ν

∥
∥b+∥

∥
L Sν‖u‖ν – cT .
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Setting ξ = 
pTSp , one has

�(u) ≥ 
p

‖u‖p –
m∑

j=

ajS‖u‖ –
m∑

j=

djSγj+‖u‖γj+ –
μ

ν

∥
∥b+∥

∥
L Sν‖u‖ν – cT .

In view of  < γj < p – , it is easy to get that �(u) → ∞ as ‖u‖ → ∞. Therefore, �(u) is co-
ercive, which presents the fact that �(u) is bounded from below. Let {un} ⊂ Eα,p

 such that
�(un) is bounded and �′(un) →  as n → ∞. Since �(u) is coercive, so {un} is bounded. By
a similar way as Lemma ., we can get that �(u) satisfies the (PS)-condition. Therefore,
problem (.) has at least one weak solution for μ ∈ (,∞). �

Next, we show the proof of Theorem ..

Proof of Theorem . Let u∗ ∈ Eα,p
 be a critical point of �(u) such that �(u∗) = infEα,p


�(u).

Based on (H), we can find a function ν ∈ Eα,p
 such that


μ

∫ T


F
(
t, v(t)

)
dt +


ν

∫ T


b(t)

∣
∣v(t)

∣
∣ν dt > .

Thus, we have

�(u) =

p
‖v‖p +

m∑

j=

∫ v(tj)


Ij(t) dt –

∫ T


F
(
t, v(t)

)
dt –

μ

ν

∫ T


b(t)

∣
∣v(t)

∣
∣ν dt

≤ 
p
‖v‖p +

m∑

j=

ajS‖v‖ +
m∑

j=

djSγj+‖v‖γj+ –
∫ T


F
(
t, v(t)

)
dt

–
μ

ν

∫ T


b(t)

∣
∣v(t)

∣
∣ν dt.

Therefore, there exists

μ∗ =

p‖v‖p +

∑m
j= ajS‖v‖ +

∑m
j= djSγj+‖v‖γj+


μ

∫ T
 F(t, v(t)) dt + 

ν

∫ T
 b(t)|v(t)|ν dt

> 

such that �(v) <  if μ > μ∗. Thus, �(u∗) = c < , which implies the fact that u∗ is a non-
trivial weak solution of problem (.). �

4 Conclusion
In this paper, we are devoted to analyzing a class of nonlinear fractional differential models
generated by impulsive effects. By variational methods, we can find the range of controlled
parameters to ensure the existence of solutions for this type of differential model when
nonlinearity f is p-suplinear growth or p-sublinear growth. It should be pointed out that
if λ =  and the nonlinearity f is p-suplinear growth, our results enrich and extend some
previous results.
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