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Abstract
In this article, we devote ourselves to establishing a natural boundary element (NBE)
method for the Sobolev equation in the 2D unbounded domain. To this end, we first
constitute the time semi-discretized super-convergence format for the Sobolev
equation by means of the Newmark method. Then, using the principle of natural
boundary reduction, we establish a fully discretized NBE format based on the natural
integral equation and the Poisson integral formula of this problem and analyze the
errors between the exact solution and the fully discretized NBE solutions. Finally, we
use some numerical experiments to verify that the NBE method is effective and
feasible for solving the Sobolev equation in the 2D unbounded domain.
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1 Introduction
Let � ⊂ R be a connected and bounded region with smooth boundary � := ∂�, �c :=
R\�, x = (x, x), |x| =

√
x

 + x
. For given time upper bound T , we consider the following

Sobolev equation in the D unbounded domain:

Problem I Find � that satisfies

⎧
⎪⎪⎨

⎪⎪⎩

�t – ε��t – γ�� = f (x, t), (x, t) ∈ �c × (, T),
∂�
∂n = g(x, t), (x, t) ∈ � × (, T),

� (x, ) = u(x), x ∈ �c,

()

where �t = ∂�
∂t represents the partial derivative for the unknown function � (x, t) about

time, ε and γ are positive constants, f (x, t), g(x, t), and u(x) are three known functions
satisfying the appropriate conditions, ∂

∂n denotes the external normal derivative operator,
and n represents a normal vector onto boundary � of domain �c toward the interior of
domain �. In addition, we also assume the function � (x, t) is bounded at infinity point
(see [, ]).
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Just like the heat equation (see []) and the reaction diffusion equation (see []), Prob-
lem I is an important system of equations with real-life application background. It has been
widely applied to many practical engineering fields (see [, ]), for example, it is used to de-
scribe the procedure of fluid flow permeating rocks, the soils moisture migration, and the
different media heat transfer. It usually includes complex computing domain, initial and
boundary value functions, or source term for the Sobolev equation in the D unbounded
domain in the real world so that it has no analytic solution. Hence, one has to depend on
the numerical methods.

The natural boundary element (NBE), which was proposed by Feng and Yu at the end
of s (see [–]), is a novel type of boundary element method (BEM) and suitable
for solving the unbound regional problem and is an attractive and promising numeri-
cal method. It has been effectively applied to complicated boundary and infinity regional
problem. It has more specific advantages than the usual BEM, for instance, it has a unique
form of boundary integral equation, remains the unchanged energy functional, holds very
good numerical stability, adopts the same variation principle as the finite element method
(FEM), can couple with FEM and we need not calculate a great many singular integrations
in practice. The main idea of the NBE method consists in introducing an appropriate arti-
ficial boundary and then restricting the computation to an appropriate large finite spatial
domain. It divides the domain into two subregions, a bounded inner region � (bounded
annular region by � and �R) and a regular unbounded region � (unbounded domain
outside circle �R) (see [, ]). One can obtain the natural integral equation on bound-
ary �R and corresponding Poisson integral formula of the subproblem over unbounded
domain � by the natural boundary reduction. Only the function itself, not its normal
derivative at the common boundary �R, appears in the variational. It has been used to
solve the second-order elliptic equations, standard parabolic equations, and hyperbolic
equations (see [, , , , ]).

However, for all we know, up to now, the NBE method has yet not been used to solve the
Sobolev equation. Especially, the Sobolev equation not only includes a first-order deriva-
tive term of time and two second-order derivative terms of spatial variables but also does
two mixed derivative terms of spatial variables (second-order) and time (first-order) so
that either the establishment of NBE format or the theoretical analysis needs more skills
and is confronted with more difficulties than the second-order elliptic equations, standard
parabolic equations, and hyperbolic equations as mentioned above, but it has certain spe-
cial applications as mentioned above. Therefore, it is worth to study the NBE method for
the Sobolev equation in the D unbounded domain.

The forthcoming contents are scheduled as follows. In Section , we establish a semi-
discretized super-convergence format about time for the Sobolev equation in the D
unbounded domain and deduce the super-convergence error estimates of the semi-
discretized solutions about time. In the next Section , by the principle of natural bound-
ary reduction, we establish a fully discretized NBE format based on the natural integral
equation and the Poisson integral formula of this problem and provide the error estimates
between the exact solution and the fully discretized NBE solutions. In Section , we sup-
ply some numerical experimentations to validate that the numerical computational con-
sequences are concordant with the theoretical ones. Section  summarizes main conclu-
sions.
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2 Semi-discretized formulation by the Newmark method and error estimate
about time for the Sobolev equation in the 2D unbounded domain

By using Green’s formula, we can obtain the following variational form for the Sobolev
equation.

Problem II For t ∈ (, T), find � (t) ∈ H(�c) that satisfies

(I – ε�)(�t ,υ) + γ (∇� ,∇υ) = (f ,υ) + 〈g,υ〉, ∀υ ∈ H(�c), ()

where (·, ·) represents the inner product in L(�c), but 〈·, ·〉 is the inner product in L(�).

The existence and uniqueness of the solution for the variational form, Problem II, are
well known (see [, , ]).

Set τ is the time-step, tk = k · τ , � k = � (x, tk), and �̇ (x, tk)= ∂�
∂t (x, tk). By the Newmark

method (see, e.g., []), we can establish the following iterative scheme:

�̇ k(x) = γ (I – ε�)–�� k(x) + (I – ε�)–f k(x), k = , , . . . , N , ()

� k(x) = � k–(x) + τ
[
( – β)�̇ k–(x) + β�̇ k(x)

]
, k = , , . . . , N , ()

where β ∈ (, ] and N = [T/τ ] ([T/τ ] denotes the integer part of T/τ ).
By using [(� k –� k–)/τ – ( –β)�̇ k–]/β to approximate to � k

t , we obtain the following
semi-discretized format about time for the Sobolev equation.

Problem III Find � k ∈ H(�c) such that

(
� k – � k–,υ

)
+ (ε + βτγ )

(∇� k ,∇υ
)

+
(
τγ ( – β) – ε

)(∇� k–,∇υ
)

=
(
βτ f k + τ ( – β)f k–,υ

)
+
〈
(βτγ + ε)gk +

(
τγ ( – β) – ε

)
gk–,υ

〉
,

∀υ ∈ H(�c), k = , , . . . , N , ()

where �  = u(x), f k = f (x, tk), and gk = g(x, tk).

The solutions to Problem III possess the following conclusions.

Theorem  If f ∈ L(, T ; L(�c)), g ∈ L(, T ; L(�)), and u ∈ H(�c), then Problem III
has a unique set of solutions {� k}N

k= ⊂ H(�c) satisfying

∥∥� k∥∥
 ≤

(

‖u‖
 + (ε + τβγ )‖∇u‖



+ 
k∑

i=

(
C
(
βγ + ετ–)∥∥gi∥∥

,� + βτ
∥∥f i∥∥

,�c
)
) 



exp(T/), ()

where C is the nonnegative constant in the trace theorem and k = , , . . . , N . This signifies
that the solutions of Problem III are stable and consecutively rely on the source function f ,
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boundary value function g , and initial value function u. In addition, when � is sufficiently
smooth about t, we have the following error estimates:

∥∥∇(� (tk) – � k)∥∥
 =

∥∥∇ek∥∥
 ≤ Cτ , k = , , . . . , N , ()

where C = τε–∑k
i=(‖(I – ε�)�tt(ξ i

)‖
 + ‖(I – ε�)�tt(ξ i

)‖
) · exp(T), tk– ≤ ξ k

 , ξ k
 ≤

tk+.

Proof Because Problem III is a linear equation about unknown function � , to prove the
existence and uniqueness of solutions of Problem III is equivalent to demonstrating that
it has only a zero solution when g = f = u = .

Choosing υ = � k in Problem III together with utilizing the Hölder and Cauchy-Schwarz
inequalities and the trace theorem (see []), we have

∥∥� k∥∥
 + (ε + βτγ )

∥∥∇� k∥∥


≤ 
(
βτ

∥∥f k∥∥
 + Cτ

–(ε + βτγ )
∥∥gk∥∥

,�

)
+



(∥∥� k∥∥

 +
∥∥� k–∥∥



)

+
τ


(∥∥� k∥∥

 + (ε + βτγ )
∥∥∇� k∥∥



)
+

(ε + βτγ )


(∥∥∇� k–∥∥
 +

∥∥∇� k∥∥


)
, ()

where C is the nonnegative constant in the trace theorem (see []). By summing () from
 to k, we have

∥∥� k∥∥
 + (ε + βτγ )

∥∥∇� k∥∥


≤ τ



k∑

i=

(∥∥ui∥∥
 + (ε + βτγ )

∥∥∇ui∥∥


)
+ ‖u‖

 + (ε + βτγ )‖∇u‖


+ 
k∑

i=

(
Cτ

–(ε + βτγ )
∥∥gi∥∥

,� + βτ
∥∥f i∥∥



)
,  ≤ k ≤ N . ()

When τ is adequately small such that τ ≤ , by Gronwall’s lemma (see [, ]), we have

∥∥� k∥∥


≤
[

‖u‖
 + (ε + τβγ )‖∇u‖



+ 
k∑

i=

(
C
(
βγ + ετ–)∥∥gi∥∥

,� + βτ
∥∥f i∥∥

,�c
)
] 



· exp(T/),  ≤ k ≤ N . ()

Thus, when f = g = u = , from (), we obtain ‖� k‖ = , implying � k =  (k =
, , . . . , N ). Therefore, Problem III has a unique set of solutions.

With Taylor’s expanding formula, we acquire

�t(tk) =

β

{

τ

[
� (tk) – � (tk–)

]
– ( – β)�t(tk–)

}

+
τ

β
�tt

(
ξ k


)

–
( – β)τ

β
�tt

(
ξ k


)
, ()
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where tk– ≤ ξ k
 , ξ k

 ≤ tk+. From Problem II, we obtain

(� (tk) – � (tk–,υ) + (ε + βτγ )
(∇� (tk),∇υ

)
+
(
τγ ( – β) – ε

)(∇� (tk–),∇υ
)

=
(
βτ f (tk) + τ ( – β)f (tk–),υ

)
+ τ ( – β)

(
(I – ε�)�tt

(
ξ k


)
,υ
)

+
〈
(βτγ + ε)g(tk) +

(
τγ ( – β) – ε

)
g(tk–),υ

〉
–

τ 


(
(I – ε�)�tt

(
ξ k


)
,υ
)
,

∀υ ∈ H(�c). ()

Let ek = � (tk) – � k . By subtracting () from () taking t = tk , we obtain

(
ek – ek–,υ

)
+ (ε + βτ )

(∇ek ,∇υ
)

+
(
τγ ( – β) – ε

)(∇ek–,∇υ
)

= τ ( – β)
(
(I – ε�)�tt

(
ξ k


)
,υ
)

–
τ 


(
(I – ε�)�tt

(
ξ k


)
,υ
)
. ()

By taking υ = ek in () and using the Cauchy and Hölder-Schwarz inequalities, we have

∥∥ek∥∥
 + (ε + βτγ )

∥∥∇ek∥∥


≤ 

(∥∥ek∥∥

 +
∥∥ek–∥∥



)
+ τ ∥∥(I – ε�)�tt

(
ξ k


)∥∥



+
τ


∥∥ek∥∥

 + τ β∥∥(I – ε�)�tt
(
ξ k


)∥∥

 +
(ε + βτγ )


(∥∥∇ek–∥∥

 +
∥∥∇ek∥∥



)
. ()

By summing () from  to k, when τ is adequately small such that τ / ≤ /, we have

∥∥ek∥∥
 + (ε + βτγ )

∥∥∇ek∥∥
 ≤ τ

k–∑

i=

∥∥ei∥∥
 + τ 

k∑

i=

(∥∥(I – ε�)�tt
(
ξ i


)∥∥



+ ( – β)∥∥(I – ε�)�tt
(
ξ i


)∥∥



)
. ()

By Gronwall’s lemma (see [, ]), we have

∥∥ek∥∥
 + (ε + βτγ )

∥∥∇ek∥∥
 ≤ τ 

k∑

i=

(
( – β)∥∥(I – ε�)�tt

(
ξ i


)∥∥



+
∥∥(I – ε�)�tt

(
ξ i


)∥∥



) · exp(T). ()

From (), we obtain

∥∥∇(� (tk) – � k)∥∥
 =

∥∥∇ek∥∥
 ≤ Cτ , k = , , . . . , N , ()

where C = τε–∑k
i=(‖(I –ε�)�tt(ξ i

)‖
 +‖(I –ε�)�tt(ξ i

)‖
) ·exp(T). This finishes the

proof of Theorem . �

3 Natural boundary reduction on the outside circle area and error estimate for
the fully discretized NBE solutions

We define μ := (
√

(ε + τβγ ))–, �̃ k := (I –ε�)� k– +τ (I –ε�)(–β)�̇ k–, f̃ := –�̃ k –τβf k .
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The procedure for solving the above semi-discretized Problem III is given as follows.
() Prediction

�̃ k := (I – ε�)� k– + τ (I – ε�)( – β)�̇ k–. ()

() Solve the problem

�� k – μ� k = μ̃f k , x ∈ �c, ()

∂� k

∂n
= gk , x ∈ �, ()

∣∣� k∣∣ < +∞, |x| → +∞. ()

() Update value

�̇ k =


τβ

(
� k – �̃ k). ()

From the above procedure, it is not difficult to find that our main task is to solve elliptic
boundary value problems at each time level.

Let In(x) and Kn(x) (n = , , , . . .) be, severally, the first and second type of modified
Bessel functions (see []), and �μ and μ be, respectively, the natural and Poisson integral
operators (see [, ]). From the NBE method (see [, , ]), the Dirichlet boundary �̂ k



and the Neumann boundary ∂� k

∂n satisfy the following relationship:

∂� k

∂n
+ N

(
μ, r; f̃ k , θ

)
= �μ�̂ k

 , ()

and the relationship between the solution � k of Problem III with its Dirichlet boundary
value �̂ k

 is as follows:

� k = μ�̂ k
 + F

(
μ, r; f̃ k , R, θ

)
, ()

where

N
(
μ, r; f̃ k , θ

)
=

μ



+∞∑

n=

ξn

∫ +∞

r
Ḡn(μ, r;σ )

[
f̃ k,c
n (σ ) cos nθ + f̃ k,s

n (σ ) sin nθ
]

dσ ,

ξ = ; ξn = , n = , , . . . ,

Ḡn(μ, r;σ ) = –
Kn(μσ )
Kn(μr)

· σ

r
, n = , , , . . . ,

F
(
μ, r; f̃ k , R, θ

)
=

μ



+∞∑

n=

ξn

∫ +∞

r
σ Gn(R,σ )

[
f̃ k,c
n (σ ) cos nθ + f̃ k,s

n (σ ) sin nθ
]

dσ ,

σ Gn(R,σ ) =

⎧
⎨

⎩

φn(σ )ψn(R)
En(σ ) , R ≤ σ ,

ψn(σ )φn(R)
En(σ ) , R ≥ σ ,

n = , , , . . . ,

φn(σ ) = Kn(μσ ), ψn(σ ) = In(μσ )Kn(μr) – Kn(μσ )In(μr), n = , , , . . . ,
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En(σ ) = ψn(σ )φ′
n(σ ) – φn(σ )ψ ′

n(σ ), n = , , , . . . ,

f̃ k,c
n (σ ) =


π

∫ π


f̃ k(σ , θ ) cos nθ dθ , n = , , , . . . ,

f̃ k,s
n (σ ) =


π

∫ π


f̃ k(σ , θ ) sin nθ dθ , n = , , . . . .

The above () and () are named the natural and the Poisson integral equations, respec-
tively. Thus, () is equivalent to the following variation form:

Find � k
 ∈ H 

 (�) ( ≤ k ≤ N ) that satisfy

B̂
(
� k

 ,νk) =
〈
gk(r, θ ) + N

(
μ, r; f̃ k , θ

)
,νk 〉, ∀νk ∈ H


 (�), ()

where B̂(� k
 ,νk) = 〈�μ�̂ k

 ,νk〉 =:
∫
�

(�μ�̂ k
 )νk ds and 〈ω,�〉 =:

∫
�

ω�ds.

3.1 Natural boundary reduction on the external circle area
Now, let the domain � be a circle with radius r and center at origin. For convenience,
we also suppose that the solutions � k of Problem III are appropriately smooth. Under
the polar coordinates, � = {(R, θ ) : R = r, θ ∈ [, π ]}, �c = {(R, θ ) : R = |x| > r, θ ∈ [, π ]},
and the external normal derivative operator onto � satisfies ∂

∂n = – ∂
∂R . The solution of

equations ()-() can be expressed with the following form in the polar coordinates:

� k(R, θ ) =



a(R) +
+∞∑

n=

[
an(R) cos nθ + bn(R) sin nθ

]
, ()

where

an(R) =

π

∫ π


� k(R, θ ) cos nθdθ , n = , , , . . . ;

bn(R) =

π

∫ π


� k(R, θ ) sin nθdθ , n = , , . . . .

By calculating, we get the solution � k(R, θ ) of equations ()-() as follows.

� k(R, θ ) =


π

+∞∑

n=

ξn

∫ π



Kn(μR)
Kn(μr)

cos n
(
θ – θ ′)� k(r, θ ′)dθ ′

+ F
(
μ, r; f̃ k , R, θ

)
, R > r,

()

∂� k(r, θ )
∂n

+ N
(
μ, r; f̃ k , θ

)
=

μ

π

∫ π


K̄n
(
μ, r; θ – θ ′)� k(r, θ ′)dθ ′, ()

where K̄n(μ, r; θ – θ ′) = –
∑+∞

n= ξn cos n(θ – θ ′) · K ′
n(μr)/Kn(μr).

Remark  The formats () and () are, respectively, the Poisson and the natural integral
equations. We can attain the solution � k(r, θ ) from the natural integral equation () and
then obtain the solution of the original boundary value, i.e., Problem I, by the Poisson
integral formula (). But the solution of Problem I can be acquired directly by the Poisson
integral formula () for the Cauchy-Dirichlet initial boundary value problem, because the
function � k(r, θ ) is known.
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Remark  In numerical computations, we can limit r ≤ R < +∞ on the r ≤ R ≤ Rmax

and use the corresponding numerical integral to calculate the integral calculation of the
N (μ, r; f̃ k , θ ) and F (μ, r; f̃ k , R, θ ). Meanwhile, the expressions of an infinite series summa-
tion can be substituted with a finite series summation in the practical applications.

3.2 Error analysis of NBE solutions
We divide the circumference � into some finite elements, which satisfy regular conditions.
For the sake of simplicity, we take uniform subdivision. Let Sh(�) ⊂ H/(�) be a finite
element subspace spanned by appropriate basis functions. Thus, the NBE approximation
to Problem II is as follows.

Problem IV Find � k
h ∈ Sh(�) ( ≤ k ≤ N ) that satisfy

B̂
(
� k

h,νk) =
〈
gk(r, θ ) + N

(
μ, r; f̃ k , θ

)
,νk 〉, ∀νk ∈ Sh(�), ()

and

� k
h (R, θ ) =


π

+∞∑

n=

ξn

∫ π



Kn(μR)
Kn(μr)

cos n
(
θ – θ ′)� k

h
(
r, θ ′)dθ ′

+ F
(
μ, r; f̃ k , R, θ

)
, R > r. ()

The above formula () is the approximate expression of Poisson integral formula ().
In order to analyze the errors of NBE solutions of Problem IV, it is necessary to introduce
the following L-projection and its property (see []).

Definition  An operator Ph : L(�) → Sh(�) (where Sh(�) ⊂ L(�) is a finite element
space) is known as an L-projection if, for any υ ∈ L(�), there exists unique Phυ ∈ Sh(�)
satisfying

〈υ – Phυ,υh〉 = , ∀υh ∈ Sh(�).

Lemma  If Sh(�) is a subspace spanned by piecewise linear polynomials and υ ∈ H(�),
then the L-projection Ph satisfies

‖υ – Phυ‖s ≤ Ch–s‖υ‖,� , s = –, , ,

where C used next represents a generic positive real independent of τ and h.

Problem IV possesses the following conclusion.

Theorem  Let � k
 ∈ H 

 (�) and � k
h be, respectively, solutions to () together with (),

τ = O(h), and Sh(�) be the piecewise linear polynomial subspace. Then we have the fol-
lowing error estimates:

∥∥� k
 – � k

h
∥∥

,� ≤ Ch, k = , , . . . , N . ()
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Proof By subtracting () from () taking νk = νk
h , we obtain

B̂
(
� k

 – � k
h,νk

h
)

=

〈
μ

π

+∞∑

n=

ξn

∫ +∞

r
Ḡn(μ, r;σ )

[∫ π



[
–
(
� k–

 – � k–
h
)

+ ε�
(
� k–

 – � k–
h
)

– τ ( – β)γ�
(
� k–

 – � k–
h
)]

cos nθ̂ dθ̂ cos nθ

+
∫ π



[
–(I – ε�)

(
� k–

 – � k–
h
)

– τγ�
(
� k–

 – � k–
h
)

+ τβγ�
(
� k–

 – � k–
h
)]

sin nθ̂ dθ̂ sin nθ

]
dσ ,νk

h

〉

, ∀νk ∈ Sh(�). ()

Due to B̂(·, ·) being positive definite on H 
 (�) × H 

 (�) (see []), by using the Hölder in-
equality, we have

M
∥∥� k

 – � k
h
∥∥

,�

≤ ∣∣B̂
(
� k

 – � k
h,� k

 – � k
h
)∣∣

≤ ∣∣B̂
(
� k

 – � k
h,� k

 – Ph�
k

)∣∣ +

∣∣B̂
(
� k

 – � k
h, Ph�

k
 – � k

h
)∣∣

≤ ∥∥� k
 – � k

h
∥∥

,�

∥∥� k
 – Ph�

k

∥∥

,� +

∣∣∣∣∣

〈
μ

π

+∞∑

n=

ξn

∫ +∞

r
Ḡn(μ, r;σ )

×
[∫ π



[
–
(
� k–

 – � k–
h
)

+ ε�
(
� k–

 – � k–
h
)

– τ ( – β)γ�
(
� k–

 – � k–
h
)]

cos nθ̂ dθ̂ cos nθ

+
∫ π



[
–(I – ε�)

(
� k–

 – � k–
h
)

– τ ( – β)γ�
(
� k–

 – � k–
h
)]

sin nθ̂ dθ̂ sin nθ

]
dσ , Ph�

k
 – � k

h

〉∣∣∣∣∣

≤ ∥∥� k
 – � k

h
∥∥

,�

∥∥� k
 – Ph�

k

∥∥

,� + C
[∥∥� k–

 – � k–
h
∥∥

,�

∥∥Ph�
k
 – � k


∥∥

,�

+
(
ε
∥∥� k–

 – � k–
h
∥∥

,� + τ
∥∥∇(� k–

 – � k–
h
)∥∥

,�

)∥∥Ph�
k
 – � k


∥∥

,�

– τβ
∥∥∇(� k–

 – � k–
h
)∥∥

,�

∥∥Ph�
k
 – � k


∥∥

,�

+ ( + ε)
∥∥� k–

 – � k–
h
∥∥

,�

∥∥� k
 – � k

h
∥∥

,�

+ τγ ( – β)
∥∥∇(� k–

 – � k–
h
)∥∥

,�

∥∥� k
 – � k

h
∥∥

,�

]
.

Further, by the Cauchy-Schwarz inequality and Lemma  as well as the inverse estimating
theorem (see []), we acquire

∥∥� k
 – � k

h
∥∥

,� ≤ C
(∥∥� k–

 – � k–
h
∥∥

,� + h).
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Further, we acquire

∥∥� k
 – � k

h
∥∥

,� ≤ Ch.

This finishes the proof of Theorem . �

The solutions for approximate expression () have the following error estimates.

Theorem  Let � k and � k
h be, respectively, the solutions of () and () and τ = O(h).

Then we have the error estimates:

∥∥� k – � k
h
∥∥

,∞,�c ≤ Ch. ()

Proof By the literature [], we can immediately derive

Kn(x) =
√

π

n

(
n
ex

)n[
 + o

(
n–)], n → +∞.

Therefore, we have Kn(μR)/Kn(μr) ≤  (r < R). Thus, there is real M̃ ≥  that satisfies

∣∣∣∣∣

+∞∑

n=

ξn
Kn(μR)
Kn(μr)

∣∣∣∣∣
≤ M̃.

By using (), we have f̃ k = [–(I – ε�) – τ ( – β)γ�]� k– – τβf k – τ ( – β)f k–. Thus, from
() and (), we have

∣∣� k – � k
h
∣∣

≤ 
π

∣∣∣∣∣

+∞∑

n=

ξn

∫ π



+∞∑

n=

Kn(μR)
Kn(μr)

cos n
(
θ – θ ′) · (� k

 – � k
h
)

dθ ′
∣∣∣∣∣

+
μ

π

+∞∑

n=

ξn

∫ +∞

r
σ Gn(R,σ )

{[∫ π



∣∣–(I – ε�)
(
� k–

 – � k–
h
)

cos nθ̂
∣∣dθ̂

+
∫ π



∣∣–τ ( – β)γ�
(
� k–

 – � k–
h
)

cos nθ̂
∣∣dθ̂

]
cos nθ

+
[∫ π



∣∣–(I – ε�)
(
� k–

 – � k–
h
)

sin nθ̂
∣∣dθ̂

+
∫ π



∣∣–τ ( – β)γ�
(
� k–

 – � k–
h
)

sin nθ̂
∣∣dθ̂

]
sin nθ

}
dσ

≤
∣∣∣∣∣


π

+∞∑

n=

ξn
Kn(μR)
Kn(μr)

∣∣∣∣∣

(∫ π


cos n

(
θ – θ ′)dθ ′

) 
 · ∥∥� k

 – � k
h
∥∥

,�

+
μ

π

+∞∑

n=

ξn

∫ +∞

r
σ Gn(R,σ ) ·

{[∥∥� k–
 – � k–

h
∥∥

,�

(∫ π


cos nθ̂ dθ̂

) 


+ ε
∥∥(� k–

 – � k–
h
)∥∥

,�‖� cos nθ̂‖
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+ τ ( – β)γ
∥∥∇(� k–

 – � k–
h
)∥∥

,�‖∇ cos nθ̂‖

]
cos nθ

+
[∥∥� k–

 – � k–
h
∥∥

,�

(∫ π


sin nθ̂ dθ̂

) 


+ ε
∥∥(� k–

 – � k–
h
)∥∥

,�‖� sin nθ̂‖

+ τ ( – β)γ
∥∥∇(� k–

 – � k–
h
)∥∥

,�‖∇ sin nθ̂‖

]
sin nθ

}
dσ

≤ Ch + Ch μ

π

+∞∑

n=

εn

∫ +∞

r
σ Gn(R,σ )(sin nθ + cos nθ ) dσ

≤ Ch. ()

From (), we immediately gain (). This finishes the proof of Theorem . �

For the fully discretized NBE format, Problem IV, we have the following conclusion.

Theorem  If f k ∈ L(�c), g ∈ L(�), and ϑ ∈ H(�c), Problem IV has a unique solution
� k

h ∈ Sh(�) satisfying

∥∥� k
h
∥∥

 ≤ C

[
∥∥u

h
∥∥

,� +
k∑

i=

(∥∥gi∥∥
,� + τβ

∥∥f i∥∥
,�c

)
]

· exp
(
( + ε + βγ )T

)
, ()

where u
h = Phu(x). This signifies that the solutions of Problem IV are steady and consec-

utively rely on the source function f , boundary value function g , and initial value function
ϑ. Furthermore, when τ = O(h), we have the error estimates.

∥∥� (tk) – � k
h
∥∥

,�c ≤ C
(
τ + h), k = , , . . . , N . ()

Proof Due to B̂(·, ·) being symmetrical, continuous, and positive definitive on H 
 (�) ×

H 
 (�) (see [, ]), by the Lax-Milgram theorem (see [, , ]), we know that Problem IV

has a unique set of solutions.
Then, by taking νk

h = � k
h in () and using the Hölder inequality, we have

M
∥∥� k

h
∥∥

,� ≤ ∣∣B̂
(
� k

h,� k
h
)∣∣ =

∣∣〈gk(r, θ ) + N
(
μ, r; f̃ k , θ

)
,� k

h
〉∣∣

≤
[
∥∥gk∥∥

,� +

∥∥∥∥∥
μ

π

+∞∑

n=

ξn

∫ +∞

r
Ḡn(μ, r;σ )

{∫ π



[(
–(I – ε�)

– τ ( – β)γ�
)
� k–

h – τ ( – β)f k– – τβf k] · cos nθ̂ dθ̂ cos nθ

+
∫ π



[(
–(I – ε�) – τ ( – β)γ�

)
� k–

h

– τ ( – β)f k– – τβf k] sin nθ̂ dθ̂ sin nθ

}
dσ

∥∥∥∥∥
,�

]
∥∥� k

h
∥∥

,�

≤ C
[
( + ε + βτ )

∥∥� k–
h
∥∥

,� + τβ
∥∥f k∥∥

,�c +
∥∥gk∥∥

,�

]∥∥� k
h
∥∥

,� . ()
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Furthermore, we have

∥∥� k
h
∥∥

 ≤ C
(
( + ε + βτ )

∥∥� k–
h
∥∥

 +
∥∥gk∥∥

,� + τβ
∥∥f k∥∥

,�c
)
. ()

By summing () from  to k and using Gronwall’s lemma (see [, ]), we get

∥∥� k
h
∥∥

 ≤ C

[

‖u‖,� +
k∑

i=

(∥∥gi∥∥
,� + τβ

∥∥f i∥∥
,�c

)
]

· exp
(
( + ε + βγ )T

)
. ()

By using the triangle inequality,

∥∥� (tk) – � k
h
∥∥

,�c ≤ ∥∥� (tk) – � k∥∥
,�c + C

∥∥� k – � k
h
∥∥

,∞,�c , ()

and combining () and () with (), we can acquire (). This finishes the proof of The-
orem . �

4 Some numerical experiments
At the moment, we utilize some numerical experimentations to validate that the numerical
computational conclusions coincide with the theoretical ones and that the NBE format is
effective and feasible for solving the Sobolev equation in the D unbounded domain.

Let �c be the external region outside the unit circle. The source term is chosen as

f (x, t) = 
[(

R– – .πR– – R–) sin(.πR) + .πR– cos(.πR)
]

cos(t)

+
[
R– – .πR– sin(.πR) – .πR– cos(.πR)

]
sin(t),

where R = |x| =
√

x + y ≥  and take ε = γ = . The boundary and initial functions are,
respectively, chosen as g(x, t) = – sin(t) and u(x) =  as in []. We approximately re-
place

∑+∞
n= with

∑M
n= and adopt the numerical integral to calculate N (μ, r; f̃ k , θ ) and

F (μ, r; f̃ k , R, θ ) in our numerical experimentations.
We divide the circumference � into  arc paragraphes with side length �θ = π/,

which satisfies usual regular conditions, and take M =  and the time step size τ =
.. We find exact solution � k

 and numerical solutions � k
h at time t = , , , ,

, , , which are shown in Photo (a)’s and (b)’s of Figs. -, severally. Whereas the
errors between the exact solution and numerical solutions at t = , , , , , , 
are exhibited graphically in Photo (c)’s of Figs. -, severally. From each group of photos in

Figure 1 The exact and NBE solutions and the error between them at t = 1. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.
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Figure 2 The exact and NBE solutions and the error between them at t = 10. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

Figure 3 The exact and NBE solutions and the error between them at t = 30. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

Figure 4 The exact and NBE solutions and the error between them at t = 60. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

Figure 5 The exact and NBE solutions and the error between them at t = 90. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

Figs. -, we can clearly see that the exact solutions are basically the same as the numeri-
cal solutions. In particular, the error photos indicated that the numerical computing con-
sequences are consistent with the theoretical ones since both theoretical and numerical
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Figure 6 The exact and NBE solutions and the error between them at t = 120. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

Figure 7 The exact and NBE solutions and the error between them at t = 180. Photos (a) and (b) are
severally the exact and NBE solutions and Photo (c) is the error between them.

errors are O(–). Especially, it is super-convergent about time accuracy. Even if t = ,
the numerical solution still converges and maintains accuracy O(–). These sufficiently
signify that the NBE method is very effective and feasible for solving the Sobolev equation
in the D unbounded domain.

5 Conclusions
In this article, we have established the semi-discretized format about time for the Sobolev
equation in the D unbounded domain by the Newmark method and gained the error es-
timates of super-convergence of the semi-discretized solutions about time. Especially, we
have built the fully discretized NBE format and analyzed the errors between the analytical
solution and the fully discretized NBE solutions. We have also provided some numeri-
cal experiments to validate that our method is effective and feasible. The most important
thing is that the NBE method applied to solve the Sobolev equation in the D unbounded
domain is first presented, it is new and original. Moreover, the method can also solve many
practical problems.
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