
Zhao and Wang Boundary Value Problems  (2017) 2017:180 
DOI 10.1186/s13661-017-0911-9

R E S E A R C H Open Access

http://dx.doi.org/10.1186/s13661-017-0911-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-017-0911-9&domain=pdf
mailto:jchuphd@126.com


Zhao and Wang Boundary Value Problems  (2017) 2017:180 Page 2 of 14

one of the central topics, and so it has drawn the attention of many researchers. See, for
example, [–] for one-dimensional Dirichlet problems, [, ] for one-dimensional
p-Laplacian problems, [–] for problems of partial differential equations, and [, ,
] for periodic problems. For instance, Agarwal and O’Regan [] showed that the scalar
singular system

{
ü + q(t)f (t,u) = ,  < t < ,
u() = , u() = ,

has at least two nontrivial solutions in some reasonable cases by a well-known fixed point
theorem in cones and the Leray-Schauder alternative principle. The result of [] was ex-
tended in [] to systems.

In this work, we establish existence results for system (.). Our aim is to generalize and
improve the results in [] in the following direction: we do not need each component of the
nonlinear term f (t,u) to be singular at the origin, so that we can work out some systems
that cannot be dealt with in []. To illustrate our new results, we consider two systems

⎧⎪⎨
⎪⎩
ü +

√
(u + w)–α + μ

√
(u + w)β + e(t) = ,

ẅ +
√

(u + w)–α + μ
√

(u + w)β + e(t) = ,
u() = u() = , w() = w() = ,

(.)

and ⎧⎪⎨
⎪⎩
ü +

√
(u + w)–α + e(t) = ,

ẅ + μ
√

(u + w)β + e(t) = ,
u() = u() = , w() = w() = ,

(.)

in which α,β >  and μ ∈R is a parameter. Note that (.) cannot be dealt with the results
used in the literature.

Finally, we give some notation used in this paper. Given u,w ∈ RN , their inner product
is denoted by

〈u,w〉 =
N∑
i=

uiwi.

Let |u|v denote the usual v-norm, that is,

|u|v =
N∑
i=

vi|ui|,

where v ∈ RN
+ is a fixed vector. We will denote by ‖ · ‖ the supremum norm of C([, ],R)

and take X = C([, ],R) × · · · × C([, ],R) (N times). For any u = (u, . . . ,uN ) ∈ X, the
v-norm becomes

|u|v =
N∑
i=

vi‖ui‖ =
N∑
i=

vi · max
t

∣∣ui(t)∣∣.
Obviously, X is a Banach space.
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2 Preliminaries
Let us first recall the following inequality, which can be found in [].

Lemma . Let

A =
{
u ∈ C

(
[, ],R

)
: u(t) ≥ , t ∈ [, ],and u(t) is concave on [, ]

}
.

Then for all u ∈A,

u(t) ≥ t( – t)‖u‖,  ≤ t ≤ .

To prove our main results, we shall apply the following two well-known results.

Lemma . ([]) Assume that � is an open subset of a convex set K in a normed linear
space X and p ∈ �. Let T : � → K be a compact continuous map. Then one of the following
two conclusions holds:

(I) T has at least one fixed point in �.
(II) There exists u ∈ ∂� and  < λ <  such that u = λTu + ( – λ)p.

Let K be a cone in X, and let D be a subset of X. We set DK = D∩K and ∂KD = (∂D) ∩K .

Lemma . ([]) Let X be a Banach space, and let K be a cone in X. Assume that �, �

are open bounded subsets of X with �
K 	= ∅, �

K ⊂ �
K . Let

S : �
K → K

be a continuous and completely continuous operator such that
(i) u 	= λSu for λ ∈ [, ) and u ∈ ∂K�, and

(ii) there exists w ∈ K \ {} such that u 	= Su + λw for all u ∈ ∂K� and all λ > .
Then S has a fixed point in �


K \ �

K .

The following three restricted conditions need to be required throughout this paper. For
a given vector v ∈RN

+ ,

(D) 〈v, f (t,u)〉 : [, ] ×RN \ {} → R+ is continuous;
(D) q(t) ∈C(, ), q(t) >  on (,), and

∫ 
 t( – t)q(t) dt < ∞;

(D) 〈v, e(t)〉 : [, ] →R is continuous, and
∫ 

 t( – t)|〈v, e(t)〉|dt < ∞.

By condition (D) we get that the linear system

{
ü + e(t) = ,  < t < ,
u() = , u() = ,

has a unique solution γ (t), which can be given as

γ (t) =
∫ 


G(t, s)e(s) ds,
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where

G(t, s) =

{
( – t)s,  ≤ s ≤ t ≤ ,
( – s)t,  ≤ t < s≤ ,

is the Green’s function. To simplify the notation, let

�(t) =
〈
v,γ (t)

〉
, 	(t) =

∣∣γ (t)
∣∣
v =

N∑
i=

vi
∣∣γi(t)∣∣,

and

�∗ = min
t

�(t), 	∗ = max
t

	(t).

It is obvious that �∗ ≤ .

3 Main results
In this section, we always assume that (D)-(D) are satisfied and �∗ = .

Theorem . Given a vector v ∈RN
+ , suppose that there exists a constant r >  such that

(H) there exists a continuous nonnegative function φr+	∗ (t) on [, ] such that

〈
v, f (t,u)

〉 ≥ φr+	∗ (t)

for all t ∈ (, ) and u ∈RN
+ with  < |u|v ≤ r + 	∗;

(H) there exist two continuous nonnegative functions g(·) and h(·) on (,∞) such that

 ≤ 〈
v, f (t,u)

〉 ≤ g
(|u|v

)
+ h

(|u|v
)

for all t ∈ (, ) and u ∈ RN
+ with  < |u|v ≤ r + 	∗, where g(·) >  is nonincreasing and

h(·)/g(·) is nondecreasing;
(H) the following inequality is satisfied:

{
 +

h(r + 	∗)
g(r + 	∗)

}
b <

∫ r




g(x)

dx,

where

b = max
{


∫ /


t( – t)q(t) dt, 

∫ 

/
t( – t)q(t) dt

}
.

Then (.) has at least one nontrivial solution u with  < |u – γ |v < r.

Proof First, we show that the system

{
ü + q(t)f (t,u(t) + γ (t)) = ,  < t < ,
u() = , u() = ,

(.)
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has a nontrivial solution u satisfying |u(t) + γ (t)|v >  for t ∈ (, ) and  < |u|v < r. If this
is true, by calculating we get

ü + γ̈ + q(t)f
(
t,u(t) + γ (t)

)
+ e(t) = ,

that is, y(t) = u(t) + γ (t) is a nontrivial solution of (.) with  < |y – γ |v < r.
Since (H) holds, we can choose a positive constant ε with ε < r such that

{
 +

h(r + 	∗)
g(r + 	∗)

}
b <

∫ r

ε


g(x)

dx. (.)

Choose a positive integer n ∈ {, , . . .} such that 
n

< ε
 . Next, we set N = {n,n + , . . .}

and fix n ∈N. To this end, we consider the family of systems

{
ü + λq(t)f n(t,u(t) + γ (t)) = ,  < t < ,
u() = 

n , u() = 
n ,

(.)

where λ ∈ [, ], 
n = ( 

n , . . . , 
n ) ∈ RN

+ , and

f n(t,u) =

{
f (t,u) if |u|v ≥ 

n ,
f (t,u, . . . ,ui–, 

n ,ui+, . . . ,uN ) if |u|v < 
n .

It is immediate that a nontrivial solution of (.) is exactly a fixed point of the operator
equation

u = λTu + ( – λ)p, (.)

where p = 
n , and T stands for the operator

(Tu)(t) =
∫ 


G(t, s)q(s)f n

(
s,u(s) + γ (s)

)
ds + p.

Next, we show that any fixed point u of (.) for all λ ∈ [, ] must satisfy

|u|v 	= r. (.)

Assume on the contrary that there exists λ ∈ [, ] such that u, a fixed point of (.), satis-
fies |u|v = r. We conclude from (.) that, for all t ∈ [, ],

〈
v, ü(t)

〉
=

〈
v, –λq(t)f n

(
t,u(t) + γ (t)

)〉 ≤ .

Then we have 〈v,u(t)〉 ≥ 
n for  ≤ t ≤ . Furthermore, from Lemma . we have

〈
v,u(t)

〉 ≥ t( – t)|u|v,  ≤ t ≤ .
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It is obvious that there exists tn ∈ (, ) such that 〈v, u̇(t)〉 ≥  on (, tn), 〈v, u̇(t)〉 ≤  on
(tn, ), and 〈v,u(tn)〉 = |u|v = r. Hence, for all z ∈ (, ), we have

〈
v, –ü(z)

〉
=

〈
v,λq(z)f n

(
z,u(z) + γ (z)

)〉
= λq(z)

〈
v, f

(
z,u(z) + γ (z)

)〉
≤ q(z)

〈
v, f

(
z,u(z) + γ (z)

)〉
≤ q(z)g

(∣∣u(z) + γ (z)
∣∣
v

){
 +

h(|u(z) + γ (z)|v)
g(|u(z) + γ (z)|v)

}
. (.)

Since �∗ = , we have

〈
v,u(t)

〉 ≤ 〈
v,u(t) + γ (t)

〉 ≤ ∣∣u(t) + γ (t)
∣∣
v ≤ ∣∣u(t)

∣∣
v +

∣∣γ (t)
∣∣
v ≤ r + 	∗.

Calculating the integral for (.) from t (t ≤ tn) to tn, we have

〈
v, u̇(t)

〉 ≤ g
(∣∣u(z) + γ (z)

∣∣
v

){
 +

h(|u(z) + γ (z)|v)
g(|u(z) + γ (z)|v)

}∫ tn

t
q(z) dz

≤ g
(〈
v,u(t)

〉){
 +

h(r + 	∗)
g(r + 	∗)

}∫ tn

t
q(z) dz.

Thus, for t ≤ tn, we have

〈v, u̇(t)〉
g(〈v,u(t)〉) ≤

{
 +

h(r + 	∗)
g(r + 	∗)

}∫ tn

t
q(z) dz. (.)

Integrating (.) from  to tn, we have

∫ r


n

dx
g(x)

≤
{

 +
h(r + 	∗)
g(r + 	∗)

}∫ tn


tq(t) dt.

Accordingly,

∫ r

ε

dx
g(x)

≤
{

 +
h(r + 	∗)
g(r + 	∗)

}


 – tn

∫ tn


t( – t)q(t) dt. (.)

Applying this calculation method again and integrating (.) from tn to t (t ≥ tn) and then
from tn to , we get

∫ r

ε

dx
g(x)

≤
{

 +
h(r + 	∗)
g(r + 	∗)

}

tn

∫ 

tn
t( – t)q(t) dt. (.)

According to (.) and (.), we have

∫ r

ε

dx
g(x)

≤ b
{

 +
h(r + 	∗)
g(r + 	∗)

}
,

which is a contradiction to (.), and so the assertion is proved.
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Under the assertion above, using Lemma ., we get that

u = Tu (.)

has a fixed point denoted by un. In other words, the system

{
ü + q(t)f n(t,u(t) + γ (t)) = ,  < t < ,
u() = 

n , u() = 
n ,

(.)

has a solution un satisfying |un|v < r. For all t ∈ [, ], since 〈v,un(t)〉 ≥ 
n > , un is certainly

a nontrivial solution of (.).
Next, we claim that 〈v,un(t) +γ (t)〉 has a uniform positive lower bound. To get the claim

above, we need to prove that there exists a constant δ > , independent of n ∈ N, such
that, for any t ∈ [, ],

〈
v,un(t) + γ (t)

〉 ≥ δt( – t).

Since �∗ = , we only need to show that

〈
v,un(t)

〉 ≥ δt( – t) (.)

for all n ∈ N and t ∈ [, ]. Since (H) holds, there exists a continuous nonnegative func-
tion φr+	∗ such that

〈
v, f (t,u)

〉 ≥ φr+	∗ (t)

for all t ∈ (, ) and uwith  < |u|v ≤ r+	∗. Let ur+	∗ be the unique solution of the problem

{
ü + q(t)(t) = ,  < t < ,
u() = , u() = ,

with  = (φr+	∗ , . . . ,φr+	∗ )T . Then we have

〈
v,ur+	∗ (t)

〉
=

∫ 


G(t, s)q(s)

〈
v,φr+	∗ (s)

〉
ds.

Moreover, for t ∈ [, ],

〈
v, u̇r+	∗

(t)
〉
=

∫ 

t
( – s)q(s)

〈
v,φr+	∗ (s)

〉
ds

–
∫ t


sq(s)

〈
v,φr+	∗ (s)

〉
ds

and

〈
v,ur+	∗

()
〉

= ,
〈
v,ur+	∗

()
〉
= .
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Assume that there exists a constant k = 〈v, u̇r+	∗ ()〉 =
∫ 

 ( – s)q(s)〈v,φr+	∗ (s)〉ds, and
if not, then 〈v, u̇r+	∗ ()〉 = ∞. Regardless of the two cases above, there exists a positive
constant δ independent of n such that 〈v, u̇r+	∗ ()〉 ≥ δ. Hence, there exists a positive
constant ε such that 〈v,ur+	∗ (t)〉 ≥ δt( – t) for all t ∈ [, ε]. Analogously, there exists a
positive constant δ, independent of n, and ε >  such that 〈v,ur+	∗ (t)〉 ≥ δt( – t) for all
t ∈ [ – ε, ].

Besides, for t ∈ [ε,  – ε], it is easily seen that

〈v,ur+	∗ (t)〉
t( – t)

is continuous.

Then there exists a positive constant δ, independent of n, such that

〈
v,ur+	∗

(t)
〉 ≥ δt( – t).

So, if we choose a positive constant δ = min{δ, . . . , δN }, then (.) is true.
To pass from the solution un of (.) to that of (.), it is necessary to prove that

{un}n∈N is bounded and equicontinuous on [, ]. (.)

Recalling the argument to establish (.) and applying it again with u replaced by un, we
obtain the inequalities

〈v, u̇n(t)〉
g(〈v,un(t)〉) ≤

{
 +

h(r + 	∗)
g(r + 	∗)

}∫ tn

t
q(z) dz (.)

and

–
〈v, u̇n(t)〉

g(〈v,un(t)〉) ≥
{

 +
h(r + 	∗)
g(r + 	∗)

}∫ t

tn
q(z) dz.

Accordingly,

|〈v, u̇n(t)〉|
g(un(t))

≤
{

 +
h(r + 	∗)
g(r + 	∗)

}∣∣∣∣
∫ tn

t
q(z) dz

∣∣∣∣. (.)

Under this claim, we have to show that there exist two constants a, b satisfying  < a <
b <  such that

a < inf{tn,n ∈N} ≤ sup{tn,n ∈N} < b. (.)

Hence, we just need to prove the following two inequalities: inf{tn,n ∈ N} >  and
sup{tn,n ∈ N} < . First, assume that the inequality inf{tn,n ∈ N} >  is incorrect. Let
A be a subsequence of N with tn →  as n → ∞ in A. Integrating (.) from  to tn, we
have

∫ 〈v,un(tn)〉



dx
g(x)

≤
{

 +
h(r + 	∗)
g(r + 	∗)

}∫ tn


tq(t) dt +

∫ 
n



dx
g(x)



Zhao and Wang Boundary Value Problems  (2017) 2017:180 Page 9 of 14

for n ∈ A. Since tn →  as n → ∞ in A, from this inequality we get that un(tn) →  as
n→ ∞ inA. Furthermore, 〈v, u̇(tn)〉 = , and un has a local maximum at tn. Then we obtain
that un →  in C[, ] as n→ ∞ in A, which contradicts our claim. So, inf{tn,n ∈N} > .
Analogously, we can also prove that sup{tn,n ∈N} < .

According to (.) and (.), we obtain that

|〈v, u̇n(t)〉|
g(〈v,un(t)〉) ≤

{
 +

h(r + 	∗)
g(r + 	∗)

}
V (t),

where

V (t) =
∫ max{t,b}

min{t,a}
q(z) dz.

Obviously, V ∈ L[, ]. Let us define I : [,∞) → [,∞) by

I(z) =
∫ z




g(x)

dx.

Note that g(x) >  is nonincreasing on (,∞). Then the map I : [,∞) → [,∞) is increas-
ing, and I(∞) = ∞. Analogously, for any D > , the map I is continuous. Furthermore, we
have

∣∣I(un(t)
)

– I
(
un(s)

)∣∣ =
∣∣∣∣
∫ t

s

〈v, u̇n(z)〉
g(〈v,un(z)〉) dz

∣∣∣∣
≤

{
 +

h(r + 	∗)
g(r + 	∗)

}∣∣∣∣
∫ t

s
V (z) dz

∣∣∣∣,
which implies that

{
I(un)

}
n∈N

is bounded and equicontinuous on [, ].

Due to the uniform continuity of the inverse map I– on [, I(r + 	∗)] and the equality

∣∣un(t) – un(s)
∣∣ =

∣∣I–(I(un(t)
))

– I–(I(un(s)
))∣∣,

we have that (.) is certainly true.
Now the Arzelà-Ascoli theorem guarantees that {un}n∈N has a subsequence that con-

verges uniformly on [, ] to a function u ∈ C[, ]. It is easy to verify that

ü(t) + q(t)f
(
t,u(t) + γ (t)

)
= .

Moreover, we have 〈v,u()〉 = 〈v,u()〉 = ,  < |u|v ≤ r, and 〈v,u(t)〉 ≥ δt( – t) for all  ≤
t ≤ . Then u is a nontrivial solution of (.) satisfying  < |u|v < r. �

Theorem . Suppose that (H)-(H) hold. Assume further that

(H) there exist two continuous nonnegative functions g(·), h(·) on (,∞) such that

〈
v, f (t,u)

〉 ≥ g
(|u|v

)
+ h

(|u|v
)
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for all t ∈ (, ) and u ∈ RN
+ , where g(·) >  is nonincreasing, and h(·)/g(·) is nonde-

creasing;
(H) there exists a positive constant R > r such that

R
g(R + 	∗)( + h(σR)

g(σR) )
≤

∫ –a

a
G(ξ , s)q(s) ds,

where a ∈ (, 
 ) is fixed, σ = a( – a), and  ≤ ξ ≤  is such that

∫ –a

a
G(ξ , s)q(s) ds = sup

≤t≤

∫ –a

a
G(t, s)q(s) ds.

Then (.) has a nontrivial solution u with r < |u – γ |v ≤ R.

Proof First, we return to the beginning of the proof of Theorem .. Similarly, we only
need to prove that (.) has a nontrivial solution u, which satisfies r < |u|v ≤ R and
〈v,u(t) + γ (t)〉 >  for all t ∈ (, ).

Since (H) holds, we can choose a positive constant ε with ε < r such that inequality
(.) holds. Obviously, there exists a positive integer n ∈ {, , . . .} such that


n

< min
{

ε


,σR

}
.

Let N = {n,n + , . . .}. Fix n ∈N. Let us reconsider system (.) and define the set

K =
{
u ∈ X :

〈
v,u(t)

〉 ≥ t( – t)|u|v for t ∈ [, ]
}

.

We can easily see that K is a cone in X. Set

� =
{
u ∈ X : |u|v < r

}
, � =

{
u ∈ X : |u|v < R

}
.

Define the operator S : �
K \ �

K → K as

(Su)(t) =
∫ 


G(t, s)q(s)f n

(
s,u(s) + γ (s)

)
ds + p.

A standard argument shows that the operator S : �
K \ �

K → X is continuous and com-
pletely continuous. It is easily seen that the operator S : �

K \ �
K → K is well defined by

Lemma .. To get the desired result, we need to make the following two assertions:
(i) u 	= λSu for λ ∈ [, ] and u ∈ ∂K�, and

(ii) there exists a vector w ∈ K \ {} such that u 	= Su + λw for all λ >  and all u ∈ ∂K�.
We start with (i). Assume that there exiss λ ∈ [, ] and u ∈ ∂K� such that u = λSu.

Suppose that λ 	= . Now u = λSu can lead to a contradiction following the same ideas in
proving (.), and so (i) holds. We omit the details.

Next, we consider assertion (ii). Let w(t) = (, , . . . , )T. Then w ∈ K \ {}. Let us prove
that u 	= Su + λw for all u ∈ ∂K� and λ > . If not, there would exist u ∈ ∂K� and λ > 
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such that u = Su+λw. Now since u ∈ ∂K�, we have that |u|v = R. It is obvious that 〈v,u(t)〉
is concave on [, ]. By Lemma ., for all t ∈ [, ], we have

〈
v,u(t)

〉 ≥ t( – t)R.

We suppose that there exists t ∈ [a,  – a] such that

σR = a( – a)R≤ 〈
v,u(t)

〉 ≤ R.

Hence, for t ∈ [a,  – a], we have

σR≤ 〈
v,u(t) + γ (t)

〉 ≤ R + 	∗.

Therefore, for t ∈ [a,  – a], we obtain f n(u(s) + γ (s)) = f (u(s) + γ (s)). Consequently, from
(H) we have

R ≥ 〈
v,u(ξ )

〉
=

〈
v, (Su)(ξ )

〉
+ 〈v,λw〉

=
∫ 


G(ξ , s)q(s)

〈
v, f n

(
s,u(s) + γ (s)

)〉
ds + 〈v,p〉 + 〈v,λw〉

≥
∫ 


G(ξ , s)q(s)

〈
v, f

(
s,u(s) + γ (s)

)〉
ds

≥
∫ 


G(ξ , s)q(s)

[
g

(∣∣u(s) + γ (s)
∣∣
v

)
+ h

(∣∣u(s) + γ (s)
∣∣
v

)]
ds

≥
∫ 


G(ξ , s)q(s)g

(∣∣u(s) + γ (s)
∣∣
v

){
 +

h(|u(s) + γ (s)|v)
g(|u(s) + γ (s)|v)

}
ds

≥ g
(
R + 	∗){ +

h(σR)
g(σR)

}∫ –a

a
G(ξ , s)q(s) ds,

which is a contradiction to (H). So assertion (ii) is proved.
Now it follows from Lemma . that S has at least one fixed point un ∈ �


K \ �

K with
r ≤ |un|v ≤ R. By assertion (i) we can further get that |un|v > r. Therefore, system (.)
has a solution un with 〈v,un(t)〉 ≥ 

n for all t ∈ [, ], which implies that system (.) has a
nontrivial solution un with

〈
v,un(t)

〉 ≥ 
n

,  ≤ t ≤ , r < |un|v ≤ R,

and

〈
v,un(t)

〉 ≥ t( – t)r,  ≤ t ≤ .

Now, using a similar argument as in the proof of Theorem ., we can show that

{un}n∈N is bounded and equicontinuous on [, ],



Zhao and Wang Boundary Value Problems  (2017) 2017:180 Page 12 of 14

and the Arzelà-Ascoli theorem guarantees that {un}n∈N has a subsequence that converges
uniformly on [, ] to a function u ∈C[, ], which is a nontrivial solution of

ü(t) + q(t)f
(
t,u(t) + γ (t)

)
= 

and satisfies r < |u|v ≤ R. �

The following multiplicity result is a direct consequence of Theorems . and ..

Theorem . Assume that (H)-(H) are satisfied. Then (.) has at least two nontrivial
solutions u, ũ with 〈v,u(t)〉 > , 〈v, ũ(t)〉 >  for t ∈ (, ) and |u – γ |v < r < |ũ – γ |v ≤ R.

Corollary . Suppose α > , β ≥ , �∗ = , and e, e ∈C([, ],R).
(i) For each μ > , system (.) has at least one nontrivial solution if β < .

(ii) For each  < μ < μ, system (.) has at least one nontrivial solution if β ≥ , where
μ is a positive constant.

(iii) For each  < μ < μ, system (.) has at least two nontrivial solutions if β > .

Proof We will apply Theorem .. Let v = (, )T. Let

g(y) = + α
 y–α , h(y) = μyβ , g(y) = y–α , h(y) = – β

 μyβ .

Then it is easily seen that (H) and (H) are satisfied by using the inequalities

(|u| + |w|)


≤ u + w ≤ (|u| + |w|) for all u,w ∈ R.

Note that

b = max
{


∫ /


t( – t) dt, 

∫ 

/
t( – t) dt

}
=




.

Now condition (H) holds if there exists a positive constant r such that

μ <
rα+ – (α + ) ·  α



(α + )(r + 	∗)α+β
,

which can be deduced to

 < μ < μ := sup
r>

rα+ – (α + ) ·  α


(α + )(r + 	∗)α+β
.

Notice that μ = ∞ since β <  and μ < ∞ since β ≥ . We have (i) and (ii). The other
existence condition (H) becomes

μ ≥ R(R + 	∗)α – L

L · – β
 (σR)α+β

, (.)

where

L = max
≤t≤

∫ 





G(t, s) ds.
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Since β > , we obtain that the right-hand side of (.) tends to zero as R→ +∞. There-
fore, for any  < μ < μ, we can find R large enough such that inequality (.) is satisfied.
Therefore, system (.) has another nontrivial solution. �

Similarly, we can prove the following result for system (.).

Corollary . Suppose that α > , β > , �∗ = , and e, e ∈C([, ],R). Then there exists
a positive constant μ such that system (.) has at least two nontrivial solutions for each
 < μ < μ.

4 Conclusions
In this paper, we established the multiplicity of nontrivial solutions for a second-order
Dirichlet system by a well-known fixed point theorem in cones and the Leray-Schauder
alternative principle. Some recent results in the literature are generalized and improved.
We do not need each component of the nonlinear term f (t,u) to be singular at the origin,
and therefore we can deal with some new systems.
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