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Abstract
In this paper, a numerical scheme based on the three-dimensional block-pulse
functions is proposed to solve the three-dimensional fractional Poisson type
equations with Neumann boundary conditions. The differential operational matrices
of fractional order of the three-dimensional block-pulse functions are derived from
one-dimensional block-pulse functions, which are used to reduce the original
problem to solve a system of linear algebra equations. In addition, the convergence
analysis of the proposed method is deeply investigated. Lastly, several numerical
examples are presented and the numerical results obtained show that our method is
effective and feasible.
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1 Introduction
Fractional calculus is a branch of mathematics which deals with derivatives and integrals
of non-integer orders. In recent years, numerous applications of fractional-order ordinary
and partial differential equations have appeared in physics and engineering [1–8]. How-
ever, since the kernel of these differential equations is fractional, it is extremely difficult
to obtain exact solutions. Therefore, extensive research has been performed on the devel-
opment of numerical methods for fractional differential equations such as the Chebyshev
collocation method [9, 10], the Laplace transform method [11, 12], DTM [13, 14], ADM
[15, 16], the operational matrices method [17–20], and the wavelets method [21–23].

In this paper, we consider the three-dimensional fractional Poisson type equations of
the following form:

∂αu(x, y, z)
∂xα

+
∂βu(x, y, z)

∂yβ
+

∂γ u(x, y, z)
∂zγ

= g(x, y, z),

(x, y, z) ∈ [0, τ1) × [0, τ2) × [0, τ3), (1)
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where ∂α

∂xα , ∂β

∂yβ , ∂γ

∂zγ denotes the Caputo derivative, g(x, y, z) is a known function and
u(x, y, z) is the solution function to be determined. It is subject to the Neumann boundary
conditions:

u(x, y, 0) = f1(x, y), u(x, 0, z) = f2(x, z), u(0, y, z) = f3(y, z),

∂u
∂z

∣
∣
∣
(x,y,τ3)

= f4(x, y),
∂u
∂y

∣
∣
∣
(x,τ2,z)

= f5(x, z),
∂u
∂x

∣
∣
∣
(τ1,y,z)

= f6(y, z).
(2)

So far, only few numerical methods were proposed to obtain the approximate solutions
of the three-dimensional fractional PDEs and integral equations. In [24], Caratelli and
Ricci discussed the Robin problem for the Laplace equation in a three-dimensional star-
like domain. Lin Liu and Hong Zhang applied the single layer regularized meshless method
for three-dimensional Laplace problems in [25]. In [26–28], the authors utilized the three-
dimensional block-pulse functions and Jacobi polynomials to obtain the numerical solu-
tions of three-dimensional integral equations. Based on the above research, a numerical
technique based three-dimensional block-pulse functions in our study is proposed to solve
three-dimensional fractional Poisson type equations with Neumann boundary conditions.

The paper is organized as follows: In Sect. 2, some basic definitions of fractional calculus
are introduced. In Sect. 3, we introduced the three-dimensional block-pulse functions and
their properties. The convergence analysis of the three-dimensional block-pulse functions
are discussed in Sect. 4. In Sect. 5, we applied the three-dimensional block-pulse functions
to solve the three-dimensional fractional Poisson type equations. The numerical solutions
are obtained by several examples in Sect. 6. Lastly, a concluding remark is provided in
Sect. 7.

2 Basic definitions
In this section we present some necessary definitions and mathematical preliminaries of
the fractional calculus theory which are required for establishing our results.

Definition 2.1 A real function f (x), x > 0, is said to be in the space Cμ,μ ∈ � if there exists
a real number p (> μ) such that f (x) = xpf1(x), where f1(x) ∈ C[0, +∞] and it is said to be
in the space Cn

μ if f (n) ∈ Cμ, n ∈ N+.

Definition 2.2 The Riemann–Liouville fractional integration operator of order α ≥ 0 of
a function f ∈ Cμ,μ ≥ –1, is defined as

(

Iαf
)

(x) =

⎧

⎨

⎩

1
�(α)

∫ x
0 (x – τ )α–1 dτ , α > 0,

f (x), α = 0.
(3)

Definition 2.3 The fractional derivative operator of order α > 0 in the Caputo sense is
defined as

(

Dα
∗ f

)

(x) =

⎧

⎨

⎩

dnf (x)
dxn , α = n ∈ N+,

1
�(n–α)

∫ x
0 (x – τ )n–α–1f (n)(τ ) dτ , 0 < n – 1 ≤ α < n,

(4)

where n is an integer, x > 0, and f ∈ Cn
1 .
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The useful relation between the Riemann–Liouville operator and Caputo operator is
given by the following expression:

(

IαDα
∗ f

)

(x) = f (x) –
n–1
∑

k=0

f (k)(0+)xk

k!
, x > 0, n – 1 < α ≤ n, (5)

where n is an integer, x > 0, and f ∈ Cn
1 .

For more details as regards fractional calculus see [29].

3 Three-dimensional block-pulse functions (3D-BPFs)
3.1 Definition and properties
The m3-set of 3D-BPFs consists of m3 functions which are defined over district D =
[0, τ1) × [0, τ2) × [0, τ3) as follows [26]:

φi,j,k(x, y, z) =

⎧

⎨

⎩

1, (i – 1)h1 ≤ x < ih1, (j – 1)h2 ≤ y < jh2, (k – 1)h3 ≤ z < kh3,

0, otherwise,
(6)

where m is positive integer, and h1 = τ1
m , h2 = τ2

m , h3 = τ3
m , τ1, τ2, τ3 ∈ N+. Since each 3D-

BPF takes only one value in its sub-region, the 3D-BPFs can be expressed by three one-
dimensional block-pulse functions (1D-BPFs):

φi,j,k(x, y, z) = φi(x)φj(y)φk(z), (7)

where φi(x),φj(y) and φk(z) are the 1D-BPFs related to the variables x, y and z, respectively.
The 3D-BPFs are disjointed with each other:

φi,j,k(x, y, z)φi′ ,j′ ,k′ (x, y, z) =

⎧

⎨

⎩

φi,j,k(x, y, z), i = i′, j = j′, k = k′

0, otherwise
(8)

and are orthogonal to each other:

∫ τ1

0

∫ τ2

0

∫ τ3

0
φi,j,k(x, y, z)φi′ ,j′ ,k′ (x, y, z) dz dy dx =

⎧

⎨

⎩

h1h2h3, i = i′, j = j′, k = k′

0, otherwise.
(9)

We consider the first m3 terms of 3D-BPFs and write them concisely as m3-vector:

	(x, y, z) =
[

φ1,1,1(x, y, z), . . . ,φ1,1,m(x, y, z), . . . ,φ1,m,m(x, y, z), . . . ,φm,m,m(x, y, z)
]T . (10)

3.2 3D-BPFs expansions
A function f (x, y, z) defined over district L2(D) may be expanded by the 3D-BPFs:

f (x, y, z) 	
m

∑

i=1

m
∑

j=1

m
∑

k=1

fi,j,kφi,j,k(x, y, z) = FT	(x, y, z) = 	(x, y, z)T F , (11)

where F is an m3 × 1 vector given by

F = [f1,1,1, . . . , f1,1,m, . . . , f1,m,m, . . . , fm,m,m]T ,
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	(x, y, z) is defined in Eq. (10), and fi,j,k , are obtained as

fi,j,k =
1

h1h2h3

∫ ih1

(i–1)h1

∫ jh2

(j–1)h2

∫ kh3

(k–1)h3

f (x, y, z) dz dy dx. (12)

3.3 Operational matrix of fractional differentiation
In this part, we may simply introduce the operational matrix of fractional integration of
1D-BPFs, a more detailed introduction can be found in Ref. [30].

Let τ1 = τ2 = τ3 = τ . If Iα is fractional integration operator of 1D-BPFs, we can get

Iα	(x) 	 Pα	(x), (13)

where

Pα =
(

τ

m

)α 1
�(α + 2)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ξ1 ξ2 · · · ξm–1

0 1 ξ1 · · · ξm–2

0 0 1 · · · ξm–3
...

...
...

. . .
...

0 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

ξk = (k + 1)α+1 – 2kα+1 + (k – 1)α+1, k = 1, 2, . . . , m – 1.

Pα is called the block-pulse operational matrix of fractional integration.
Let Dα be the block-pulse operational matrix for the fractional differentiation. Accord-

ing to the property calculus, DαPα = I , we can easily obtain matrix Dα by inverting the Pα

matrix.

4 Convergence analysis of 3D-BPFs
In this section, we show that the given method in the previous sections, is convergent and
its order of convergence is O( 1

m ). For our purposes we will need the following theorems.

Theorem 1 Assume that

fm(x, y, z) =
m

∑

i=1

m
∑

j=1

m
∑

k=1

fi,j,kφi,j,k(x, y, z),

be the approximate solution of Eq. (1), then

∫ τ1

0

∫ τ2

0

∫ τ3

0

(

f (x, y, z) – fm(x, y, z)
)2 dz dy dx,

achieves its minimum value. Moreover, we have

∫ τ1

0

∫ τ2

0

∫ τ3

0
f 2(x, y, z) dz dy dx =

∞
∑

i=1

∞
∑

j=1

∞
∑

k=1

f 2
i,j,k

∥
∥φ2

i,j,k(x, y, z)
∥
∥

2.
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Proof For the proof, see [31]. �

Theorem 2 ([32]) Assume that fm(x, y, z) is the approximate solution of Eq. (1). If f (x, y, z)
is the exact solution of Eq. (1), then we have

lim
m→∞ fm(x, y, z) = f (x, y, z)

and

∥
∥e(x, y, z)

∥
∥ =

∥
∥f (x, y, z) – fm(x, y, z)

∥
∥ = O

(
1
m

)

.

The proof is in the Appendix.

5 Numerical implementation
In this section, we apply the three-dimensional block-pulse functions for solving three-
dimensional fractional Poisson type equations with Neumann boundary conditions. We
firstly approximate the function u(x, y, z) by 3D-BPFs:

u(x, y, z) 	 	(x, y, z)T U , (14)

where

U = [u1,1,1, . . . , u1,1,m, . . . , u1,m,m, . . . , um,m,m]T
m3×1.

According to Eq. (7) and Eq. (10), we have

	(x, y, z) = 	(x) ⊗ (

	(y) ⊗ 	(z)
)

, (15)

where ⊗ is the Kronecker product, and

	(x) =
[

φ1(x),φ2(x), . . . ,φm(x)
]T , 	(y) =

[

φ1(y),φ2(y), . . . ,φm(y)
]T ,

	(z) =
[

φ1(z),φ2(z), . . . ,φm(z)
]T .

Here 	(x),	(y) and 	(z) are m-vectors. Then we have [18]

∂αu(x, y, z)
∂xα

	 ∂α	(x, y, z)T

∂xα
U

=
{(

∂α	(x)
∂xα

)

⊗ (

	(y) ⊗ 	(z)
)
}T

U

=
{(

Dα	(x)
) ⊗ (

	(y) ⊗ 	(z)
)}T U

= 	(x, y, z)T(

Dα ⊗ I1
)T U , (16)

∂βu(x, y, z)
∂yβ

	 ∂β	(x, y, z)T

∂yβ
U

=
{

	(x) ⊗
((

∂β	(y)
∂yβ

)

⊗ 	(z)
)}T

U
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=
{

	(x) ⊗ ((

Dβ	(y)
) ⊗ 	(z)

)}T U

= 	(x, y, z)T{

I2 ⊗ (

Dβ ⊗ I2
)}T U , (17)

and

∂γ u(x, y, z)
∂zγ

	 ∂γ 	(x, y, z)T

∂zγ
U

=
{

	(x) ⊗
(

	(y) ⊗ ∂γ 	(z)
∂zγ

)}T

U

=
{(

	(x) ⊗ 	(y)
) ⊗ (

Dγ 	(z)
)}T U

= 	(x, y, z)T(

I1 ⊗ Dγ
)T U . (18)

where I1 and I2 are m2 × m2 and m × m identity matrices, respectively. Substituting
Eqs. (16)–(18) into Eq. (1), we have

	(x, y, z)T(

Dα ⊗ I1
)T U + 	(x, y, z)T{

I2 ⊗ (

Dβ ⊗ I2
)}T U + 	(x, y, z)T(

I1 ⊗ Dγ
)T U

= g(x, y, z), (19)

and similar to Eq. (19), we have by Eq. (2)

	(x, y, 0)T U = f1(x, y), 	(x, 0, z)T U = f2(x, z), 	(0, y, z)T U = f3(y, z),

	(x, y, τ3)T(

I1 ⊗ D1)T U = f4(x, y), 	(x, τ2, z)T{

I2 ⊗ (

D1 ⊗ I2
)}T U = f5(x, z),

	(τ1, y, z)T(

D1 ⊗ I1
)T U = f6(y, z).

(20)

Here D1 denotes the operational matrix of first order. Equation (19) together with
Eq. (20) constitutes a system of algebraic equations. Take the collocation method to dis-
perse the unknown variables x, y, z in the following form:

xi =
τ1(2i – 1)

2m
, yj =

τ2(2j – 1)
2m

, zk =
τ3(2k – 1)

2m
, i, j, k = 1, . . . , m. (21)

Then we have
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	(xi, yj, zk)T (Dα ⊗ I1)T U + 	(xi, yj, zk)T {I2 ⊗ (Dβ ⊗ I2)}T U

+ 	(xi, yj, zk)T (I1 ⊗ Dγ )T U

= g(xi, yj, zk),

	(xi, yj, 0)T U = f1(xi, yj), 	(xi, 0, zk)T U = f2(xi, zk),

	(0, yj, zk)T U = f3(yj, zk),

	(xi, yj, τ3)T (I1 ⊗ D1)T U = f4(xi, yj),

	(xi, τ2, zk)T {I2 ⊗ (D1 ⊗ I2)}T U = f5(xi, zk),

	(τ1, yj, zk)T (D1 ⊗ I1)T U = f6(yj, zk).

(22)

By solving the linear system of Eq. (22), the coefficient matrix U can be found. Then
substituting it into (14), the unknown solution can be obtained.
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Table 1 The absolute error in some nodes of x, y and z whenm = 16, 32 and 64 for Example 6.1

(x, y, z) Anal. sol. m = 16
(3.56 minutes)

m = 32
(5.23 minutes)

m = 64
(10.76 minutes)

(0, 0, 0) 0 1.639819e–3 8.371991e–5 1.271928e–6
(0.25, 0.25, 0.25) 0.00024414 3.271828e–3 6.371980e–5 1.937183e–6
(0.5, 0.5, 0.5) 0.01562500 5.371910e–3 3.172918e–4 2.742790e–6
(0.75, 0.75, 0.75) 0.17797851 6.371098e–3 4.121930e–4 2.162812e–6
(1, 1, 1) 1.00000000 8.372632e–3 4.730160e–4 4.371090e–6
(1.25, 1.25, 1.25) 3.81469726 9.241787e–3 6.381093e–4 5.238103e–6
(1.5, 1.5, 1.5) 11.39062500 9.482793e–3 8.380931e–5 6.281208e–6
(1.75, 1.75, 1.75) 28.72290039 1.648277e–2 6.310985e–4 2.381082e–5

Table 2 The numerical and analytical solutions withm = 8, 16, 32 at some values of x, y, z for
Example 6.2

(x, y, z) Analytical solution m = 8 m = 16 m = 32

(0, 0, 0) 0 0.00024150 0.00001628 0.00000632
(0.1, 0.1, 0, 1) 0.00685900 0.00826179 0.00712819 0.00686361
(0.2, 0.2, 0, 2) 0.04665600 0.00474215 0.04668360 0.04667235
(0.3, 0.3, 0.3) 0.13265100 0.13537123 0.13269271 0.13265689
(0.4, 0.4, 0.4) 0.26214400 0.26618289 0.26219217 0.26214938
(0.5, 0.5, 0.5) 0.42187500 0.42728151 0.42196216 0.42188594
(0.6, 0.6, 0.6) 0.59270400 0.59821987 0.58276251 0.59271328
(0.7, 0.7, 0.7) 0.75357100 0.75927190 0.75364612 0.75357819
(0.8, 0.8, 0.8) 0.88473600 0.89128921 0.88480127 0.88474026
(0.9, 0.9, 0.9) 0.97029900 0.97823619 0.97037265 0.97030106

6 Numerical examples
To demonstrate the efficiency and the practicability of the proposed method via three-
dimensional block-pulse functions, we consider the following several numerical examples.

Example 6.1 Consider the following three-dimensional fractional-order PDE:

∂1.5u(x, y, z)
∂x1.5 +

∂1.5u(x, y, z)
∂y1.5 +

∂1.5u(x, y, z)
∂z1.5 = g(x, y, z),

(x, y, z) ∈ [0, 2) × [0, 2) × [0, 2), (23)

where g(x, y, z) = 4(x0.5y2z2 + x2y0.5z2 + x2y2z0.5)/
√

π , with the Neumann boundary condi-
tions: u(0, y, z) = u(x, 0, z) = u(x, y, 0) = 0, ∂u

∂x |x=2 = 4yz, ∂u
∂y |y=2 = 4xz, ∂u

∂z |z=2 = 4xy. The ana-
lytical solution for the system is u(x, y, z) = x2y2z2. The absolute errors for m = 16, 32 and
64 in some nodes (x, y, z) are shown in Table 1. Tables 1 and 2 show that our proposed
scheme can achieve a good convergence result as m increases.

Example 6.2 Consider the following fractional three-dimensional Poisson equation:

∂1.75u(x, y, z)
∂x1.75 +

∂1.5u(x, y, z)
∂y1.5 +

∂1.25u(x, y, z)
∂z1.25 = g(x, y, z),

(x, y, z) ∈ [0, 1) × [0, 1) × [0, 1), (24)

where g(x, y, z) = – 2
�(1.25) x0.25yz(2 – y)(2 – z) – 2

�(1.5) xy0.5z(2 – x)(2 – z) – 2
�(1.75) xyz0.75(2 –

x)(2–y), with the Neumann boundary conditions: u(0, y, z) = u(x, 0, z) = u(x, y, 0) = ∂u
∂x |x=1 =
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Figure 1 The approximate solution u(x, y,π ) withm = 16 for Example 6.3

∂u
∂y |y=1 = ∂u

∂z |z=1 = 0. The analytical solution of this problem is u(x, y, z) = xyz(2 – x)(2 – y)(2 –
z). When m = 8, 16, 32, the numerical and analytical solutions at some values of x, y, z are
given in Table 2.

Example 6.3 We consider the following three-dimensional second-order Poisson equa-
tion:

∂2u(x, y, z)
∂x2 +

∂2u(x, y, z)
∂y2 +

∂2u(x, y, z)
∂z2 = g(x, y, z),

(x, y, z) ∈ [0, 2π ) × [0, 2π ) × [0, 2π ), (25)

where g(x, y, z) = –3 sin(x + π
2 ) sin(y + π

2 ) sin(z + π
2 ), subject to the Neumann boundary

conditions: u(0, y, z) = sin(y + π
2 ) sin(z + π

2 ), u(x, 0, z) = sin(x + π
2 ) sin(z + π

2 ), u(x, y, 0) =
sin(x + π

2 ) sin(z + π
2 ), ∂u

∂x |x=2π = ∂u
∂y |y=2π = ∂u

∂z |z=2π = 0. The analytical solution for the system
is u(x, y, z) = sin(x + π

2 ) sin(y + π
2 ) sin(z + π

2 ). When z = π , the graphs of the approximate
solutions for m = 16, 32 and 64 are shown in Figs. 1–3. The graph of the analytical so-
lution is shown in Fig. 4. The graph of the absolute error with m = 64 is shown in Fig. 5.
From Figs. 1–5, it can be concluded that the approximate solutions approach the analytical
solutions well as m grows.

Example 6.4 Consider the following three-dimensional fractional-order Poisson equa-
tion:

∂αu(x, y, z)
∂xα

+
∂βu(x, y, z)

∂yβ
+

∂γ u(x, y, z)
∂zγ

= g(x, y, z),

(x, y, z) ∈ [0, 1) × [0, 1) × [0, 1), (26)
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Figure 2 The approximate solution u(x, y,π ) withm = 32 for Example 6.3

Figure 3 The approximate solution u(x, y,π ) withm = 64 for Example 6.3

where g(x, y, z) = 3(ex – 1)(ey – 1)(ez – 1), subject to the Neumann boundary conditions:
u(0, y, z) = u(x, 0, z) = u(x, y, 0) = 0, ∂u

∂x |x=1 = (e – 1)(ey – 1)(ez – 1), ∂u
∂y |y=1 = (e – 1)(ex – 1)(ez –

1), ∂u
∂z |z=1 = (e – 1)(ex – 1)(ey – 1). The analytical solution of this system for α = β = γ = 2 is

u(x, y, z) = (ex – 1)(ey – 1)(ez – 1).
(i) When z = 0.5, the numerical and analytical solutions for m = 64 at y = 0.3, 0.6, 0.9

are shown in Fig. 6.
(ii) When z = 0.5, the absolute errors for m = 64 at y = 0.3, 0.6, 0.9 are shown in Fig. 7.
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Figure 4 Analytical solution u(x, y,π ) for Example 6.3

Figure 5 Absolute error e(x, y,π ) for Example 6.3

Example 6.5 Consider Eq. (26), when m = 32, the graphs of the numerical solutions with
α = β = γ = 1.95,α = β = γ = 1.90,α = β = γ = 1.85 at x = 0.3, y = 0.6 are shown in Fig. 8,
which shows that the approximate solutions are well in agreement with the analytical so-
lution as the fractional orders α,β ,γ gradually approximate 2. The robustness of the pro-
posed method is tested in this example.
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Figure 6 The numerical and analytical solution withm = 64 at y = 0.3, 0.6, 0.9 for Example 6.4

Figure 7 The absolute error withm = 64 at y = 0.3, 0.6, 0.9 for Example 6.4

7 Conclusions
In this paper, we have studied a numerical scheme to solve three-dimensional fractional
Poisson type problems with Neumann boundary conditions. Our approach was based on
the 3D-BPFs and their operational matrix of fractional differentiation together with a set
of suitable collocation nodes. This method reduces the amount of computation of this
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Figure 8 The numerical solutions with different fractional order α,β ,γ whenm = 32 for Example 6.5

problem using the collocation nodes assigned to approximate solution. The typical con-
vergence rate of the method is O( 1

m ) as shown in the numerical results. Moreover, they
show that our proposed method is effective and robust.

Appendix

Proof We assume that f (x, y, z) is a differentiable function on D such that

∥
∥f (x, y, z)

∥
∥ ≤ M.

We define the representation error between f (x, y, z) and its 3D-BPFs expansion,
fm(x, y, z) over every sub-region Di,j,k as follows:

ei,j,k(x, y, z) = f (x, y, z) – fi,j,kφi,j,k(x, y, z) = f (x, y, z) – fi,j,k , (x, y, z) ∈ Di,j,k ,

where

Di,j,k =
{

(i – 1)h1 ≤ x < ih1, (j – 1)h2 ≤ y < jh2, (k – 1)h3 ≤ z < kh3
}

.

It can be shown that

∥
∥ei,j,k(x, y, z)

∥
∥

2 =
∫ ih1

(i–1)h1

∫ jh2

(j–1)h2

∫ kh3

(k–1)h3

e2
i,j,k(x, y, z) dz dy dx

=
∫ ih1

(i–1)h1

∫ jh2

(j–1)h2

∫ kh3

(k–1)h3

(

f (x, y, z) – fi,j,k
)2 dz dy dx

=
τ1τ2τ3

m3

(

f (η1,η2,η3) – fi,j,k
)2; (η1,η2,η3) ∈ Di,j,k , (27)
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where we used mean value theorem for 3D integrals. Using Eq. (12) and the mean value
theorem we have

fi,j,k = m3
∫ ih1

(i–1)h1

∫ jh2

(j–1)h2

∫ kh3

(k–1)h3

f (x, y, z) dz dy dx

= m3 · τ1τ2τ3

m3 f (ξ1, ξ2, ξ3); (ξ1, ξ2, ξ3) ∈ Di,j,k . (28)

Substituting above relation into Eq. (27) and using Theorem 1 we obtain

∥
∥ei,j,k(x, y, z)

∥
∥

2

=
τ1τ2τ3

m3

(

f (η1,η2,η3) – f (ξ1, ξ2, ξ3)
)2 ≤ τ1τ2τ3M2

m3

∣
∣(η1,η2,η3) – (ξ1, ξ2, ξ3)

∣
∣
2

≤ τ1τ2τ3(τ1 + τ2 + τ3)
m5 M2.

This leads to

∥
∥e(x, y, x)

∥
∥

2

≤
∫ τ1

0

∫ τ2

0

∫ τ3

0
e2(x, y, z) dz dy dx

=
∫ τ1

0

∫ τ2

0

∫ τ3

0

( m
∑

i=1

m
∑

j=1

m
∑

k=1

ei,j,k(x, y, z)

)2

dz dy dx

=
∫ τ1

0

∫ τ2

0

∫ τ3

0

m
∑

i=1

m
∑

j=1

m
∑

k=1

e2
i,j,k(x, y, z) dz dy dx

+ 2
∑

i<i′

∑

j<j′

∑

k<k′

∫ τ1

0

∫ τ2

0

∫ τ3

0
ei,j,k(x, y, z)ei′ ,j′ ,k′ (x, y, x) dz dy dx.

Since for i < i′; j < j′; k < k′,

Di,j,k ∩ Di′ ,j′ ,k′ = {·},

we have

∥
∥e(x, y, z)

∥
∥

2 =
m

∑

i=1

m
∑

j=1

m
∑

k=1

∫ τ1

0

∫ τ2

0

∫ τ3

0
e2

i,j,k(x, y, z) dz dy dx

=
m

∑

i=1

m
∑

j=1

m
∑

k=1

‖ei,j,k‖2 ≤ m3 τ1τ2τ3(τ1 + τ2 + τ3)
m5 M2, (29)

hence ‖e(x, y, z)‖ = O( 1
m ). Now suppose that f (x, y, z) is approximated by

fm(x, y, z) =
m

∑

i=1

m
∑

j=1

m
∑

k=1

fi,j,k(x, y, z)φi,j,k(x, y, z),
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whereas we find f̄i,j,k , the approximation of fi,j,k , and

f̄m(x, y, z) =
m

∑

i=1

m
∑

j=1

m
∑

k=1

f̄i,j,kφi,j,k(x, y, z),

then for (x, y, z) ∈ Di,j,k we have

∥
∥f̄i,j,kφi,j,k(x, y, z) – f (x, y, z)

∥
∥

=
∥
∥f̄i,j,kφi,j,k(x, y, z) – f (x, y, z) + fi,j,kφi,j,k(x, y, z) – fi,j,kφi,j,k(x, y, z)

∥
∥

≤ ∥
∥fi,j,kφi,j,k(x, y, z) – f (x, y, z)

∥
∥ +

∥
∥f̄i,j,kφi,j,k(x, y, z) – fi,j,kφi,j,k(x, y, z)

∥
∥. (30)

We have

∥
∥f̄i,j,kφi,j,k(x, y, z) – fi,j,kφi,j,k(x, y, z)

∥
∥

=
(∫ ih1

(i–1)h1

∫ jh2

(j–1)h2

∫ kh3

(k–1)h3

(

f̄i,j,kφi,j,k(x, y, z) – fi,j,kφi,j,k(x, y, z)
)
) 1

2

≤ |f̄i,j,k – fi,j,k|
(∫ ih1

(i–1)h1

∫ jh2

(j–1)h2

∫ kh3

(k–1)h3

dz dy dx
) 1

2

=
(τ1τ2τ2) 1

2 ‖f̄i,j,k – fi,j,k‖
m 3

2
≤ (τ1τ2τ2) 1

2 ‖f̄i,j,k – fi,j,k‖∞
m 3

2
. (31)

Having Eqs. (29)–(31), we find the following error bound:

∥
∥f̄i,j,kφi,j,k(x, y, z) – f (x, y, z)

∥
∥

≤ [τ1τ2τ3(τ1 + τ2 + τ3)] 1
2 M

m
+

(τ1τ2τ2) 1
2 ‖f̄i,j,k – fi,j,k‖∞

m 3
2

, (32)

and finally from (32), we get

lim
m→∞ fm(x, y, z) = f (x, y, z). �
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