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Abstract
Inverse nodal problems for Sturm–Liouville equations associated with boundary
conditions polynomially dependent on the spectral parameter are studied. The
authors show that a twin-dense subsetWB([a,b]) can uniquely determine the
operator up to a constant translation of eigenparameter and potential, where [a,b] is
an arbitrary interval which contains the middle point of the domain of the operator
and B is a subset of N which satisfies some condition (see Theorem 4.2).
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1 Introduction
The inverse problems of the differential operator L := L(q, U0, U1):

⎧
⎪⎨

⎪⎩

lu := –u′′ + q(x)u = λu, x ∈ (0, 1), (1.1)

U0(u) := R01(λ)u′(0,λ) + R00(λ)u(0,λ) = 0, (1.2)

U1(u) := R11(λ)u′(1,λ) + R10(λ)u(1,λ) = 0, (1.3)

are considered, where λ is called the spectral parameter, q is a real-valued L2-function on
(0, 1) and

Rξk(λ) =
rξk∑

l=0

aξklλ
rξk –l, rξ1 = rξ0 = rξ ≥ 0, aξ10 = 1, ξ , k = 0, 1,

are arbitrary polynomials of degree rξ with real coefficients such that Rξ1(λ) and Rξ0(λ)
have no common zeros for ξ = 0, 1. The inverse spectral problem for the Sturm–Liouville
equation with boundary conditions dependent on the spectral parameter was studied in
[1–7] respectively. In particular, Freiling and Yurko [4] studied three inverse spectral prob-
lems for L and showed that this operator L can be recovered either from the Weyl function,

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13661-018-0948-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-018-0948-4&domain=pdf
http://orcid.org/0000-0003-1985-173X
mailto:ctshieh@mail.tku.edu.tw


Wang et al. Boundary Value Problems  (2018) 2018:28 Page 2 of 11

or from discrete spectral data, or from two spectra. Recently, the inverse spectral problem
for L was studied with mixed spectral data in [7–9]. For the case R00(λ) = 1, R01(λ) = –h
in (1.2) and R10(λ) = 1, R11(λ) = H in (1.3), the operator U(q, U0, U1) turns to a classical
Sturm–Liouville problem L(q, h, H). Inverse spectral problems and inverse nodal problems
of L(q, h, H) have been well studied, the readers can refer to [2, 10–21] and the references
therein.

The aim of this article is to investigate the inverse spectral and nodal problems for the
BVP L. We show that the result on the Weyl m-function for L also holds by an alternative
approach, which is a generalization of the result for the classical Sturm–Liouville oper-
ator in [16]. Moreover, the authors show that the operator L(q, U0, U1) can be uniquely
determined up to constant translation by the twin-dense subset in the interior interval.

2 Preliminaries
Let u–(x,λ) and u+(x,λ) be solutions of equation (1.1) with initial conditions

u–(0,λ) = R01(λ), u′
–(0,λ) = –R00(λ),

u+(1,λ) = R11(λ), u′
+(1,λ) = –R10(λ).

Denote λ = ρ2, τ = | Imρ|, for sufficiently large |λ|, we have

u–(x,λ) = λr0

(

cosρx + O
(

eτx

ρ

))

, (2.1)

u′
–(x,λ) = λr0

(
–ρ sinρx + O

(
eτx)), (2.2)

u+(x,λ) = λr1

(

cosρ(1 – x) + O
(

eτ (1–x)

ρ

))

, (2.3)

u′
+(x,λ) = λr1

(
ρ sinρ(1 – x) + O

(
eτ (1–x))). (2.4)

Denote

�(λ) := [u+, u–](x,λ),

where [y, z](x) := y(x)z′(x) – y′(x)z(x) is the Wronskian of y and z. Then

�(λ) = –R01(λ)u′
+(0,λ) – R00(λ)u+(0,λ) = –U0(u+) = U1(u–), (2.5)

which is called the characteristic function of L (see [4]). By virtue of (2.1), (2.2), and (2.5),
we have

�(λ) = λr0+r1
(
–ρ sinρ + ω cosρ + o

(
eτ

))
. (2.6)

Define the Weyl m-function m±(x,λ) by

m–(x,λ) = –
u′

–(x,λ)
u–(x,λ)

, m+(x,λ) =
u′

+(x,λ)
u+(x,λ)

,
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then

m–(x,λ) = iρ + o(1)
(
resp. m+(x,λ) = iρ + o(1)

)
, (2.7)

1
m–(x,λ)

= –
i
ρ

+ o
(

1
ρ2

) (

resp.
1

m+(x,λ)
= –

i
ρ

+ o
(

1
ρ2

))

(2.8)

uniformly in x ∈ [δ, 1] (resp. x ∈ [0, 1 – δ]) for |λ| → ∞ in any sector ε < arg(λ) < π – ε for
ε > 0, where δ ∈ (0, 1).

Denote the spectrum σ (L) := {λn}∞n=0 of L, σ (L) consisting of the zeros (counting with
multiplicities) of the entire function �(λ). For n sufficiently large, λn are real and simple
and satisfy the asymptotic formulae (see [4])

ρn :=
√

λn = (n – r0 – r1)π +
ω

nπ
+

κn

n
, {κn} ∈ l2, (2.9)

where

ω =
1
2

∫ 1

0
q(t) dt – a000 + a100. (2.10)

3 Inverse spectral problems
For convenience, let L̃ = L(̃q, Ũ0, Ũ1), where L(̃q, Ũ0, Ũ1) is the operator of the same form
as L. If a certain symbol γ denotes an object related to L, then the corresponding symbol
γ̃ denotes the analogous object related to L̃ and γ̂ = γ – γ̃ .

The following two theorems on the Weyl m-function of the BVP L are derived from [4],
and they are generalizations of the analogical results for the classical Sturm–Liouville in
[16].

Theorem 3.1 Let m–(a0,λ) be the Weyl m-function of the BVP L. Then m–(a0,λ) can
uniquely determine functions R0k(λ) for k = 0 and 1 as well as q (a.e.) on the interval [0, a0],
0 < a0 ≤ 1.

Proof Denote by LD the boundary value problem (1.1), (1.2) together with �D(λ) :=
u–(a0,λ) = 0 and {μa0,n}∞n=1, the zeros (counting with multiplicities) of the entire function
�D(λ) (see [10]). Then μa0,n is real and simple for sufficiently large n and

u–(a0,λ) = λr0

(

cos(a0ρ) + ω1
sin(a0ρ)

ρ
+ o

(
ea0τ

ρ

))

for |ρ| � 1, (3.1)

where ω1 = 1
2
∫ a0

0 q(x) dx – a000. Thus we have

√
μa0,n =

π

a0

(

n – r0 +
1
2

+
ω1

nπ
+ o

(
1
n

))

for n � 1.

By virtue of Hadamard’s factorization theorem,

u–(a0,λ) = Ca0,0λ
m0

∏

μa0,n 
=0

(

1 –
λ

μa0,n

)

, (3.2)
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where Ca0,0 is a constant and m0 ≥ 0. Let Gδ0 := {λ : |ρ – π
a0

(k – r0 + 1
2 )| > δ0, k ∈ Z}, where

δ0 is sufficiently small, then there exists a constant Ca0,δ0 (see [10, 11]) such that

∣
∣�D(λ)

∣
∣ ≥ Ca0,δ0 |ρ|2r0 ea0τ , ∀λ ∈ Gδ0 and |λ| � 1. (3.3)

Similarly, denote by LN the boundary value problem (1.1), (1.2) together with �N (λ) :=
u′

–(a0,λ) = 0 and λa0,n, the zeros (counting with multiplicities) of the entire function �N (λ).
Then {μa0,n}∞n=1 are real and simple for sufficiently large n and

u′
–(a0,λ) = λr0

(
–ρ sin(a0ρ) + c0 cos(a0ρ) + o

(
ea0τ

))
, (3.4)

where c0 = 2r0 + ω1. Therefore we have

√
λa0,n =

π

a0

(

n – r0 +
ω1

nπ
+ o

(
1
n

))

.

Let Gδ1 := {λ : |ρ – (k–r0)π
a0

| > δ1, k ∈ Z}, where δ1 is sufficiently small, then there exists a
constant Ca0,δ1 such that, for sufficiently large |λ|,

∣
∣�N (λ)

∣
∣ ≥ Ca0,δ1 |ρ|2r0+1ea0τ , ∀λ ∈ Gδ1 . (3.5)

Thus we have

u′
–(a0,λ) = Ca0,1λ

m1
∏

λa0,n 
=0

(

1 –
λ

λa0,n

)

, (3.6)

where m1 ≥ 0, Ca0,1 is a constant. Under the assumption m–(a0,λ) = m̃–(a0,λ), we obtain

u′
–(a0,λ)

u–(a0,λ)
=

ũ′
–(a0,λ)

ũ–(a0,λ)
. (3.7)

Since u–(a0,λ) and u′
–(a0,λ) (resp. ũ–(a0,λ) and ũ′

–(a0,λ)) have no common zeros, ũ–(a0,λ)
u–(a0,λ)

and ũ′
–(a0,λ)

u′–(a0,λ) are two entire functions in λ and

ũ–(a0,λ)
u–(a0,λ)

=
ũ′

–(a0,λ)
u′

–(a0,λ)
. (3.8)

By virtue of (3.8) together with (2.1), (2.10), (2.2), and (3.4), this yields

∣
∣
∣
∣
ũ–(a0,λ)
u–(a0,λ)

∣
∣
∣
∣ ≤ O(1), ∀λ ∈ Gδ0 ,

∣
∣
∣
∣
ũ′

–(a0,λ)
u′

–(a0,λ)

∣
∣
∣
∣ ≤ O(1), ∀λ ∈ Gδ1 .

Using the maximum modulus principle and Liouville’s theorem, we have

⎧
⎨

⎩

ũ–(a0,λ)
u–(a0,λ) ≡ c, ∀λ ∈C,
ũ′

–(a0,λ)
u′–(a0,λ) ≡ c, ∀λ ∈C.

(3.9)
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Letting ρ = iy → ∞, then either the first formula in (3.9) together with (2.3) or the second
formula in (3.9) together with (2.4) implies

c = ±1. (3.10)

By virtue of (2.1), (2.2), and (3.10), we have

c = 1.

Therefore,

u–(a0,λ) = ũ–(a0,λ), and u′
–(a0,λ) = ũ′

–(a0,λ) ∀λ ∈C.

This implies

u–(x,λ) = ũ–(x,λ), ∀x ∈ [0, a0]. (3.11)

Thus (3.11) shows

q(x) a.e.= q̃(x) on [0, a0] and R0k(λ) = R̃0k(λ), k = 0, 1.

Therefore the proof of Theorem 3.1 is completed. �

Analogously, we prove the following theorem on the Weyl m-function m+(a0,λ).

Theorem 3.2 Let m+(b0,λ) be the Weyl m-function of the BVP L. Then m+(b0,λ) can
uniquely determine functions R1k(λ) for k = 0, 1 as well as q (a.e.) on the interval [b0, 1],
0 ≤ b0 < 1.

4 Inverse nodal problems
By virtue of Lemma 3.1 in [22], we see that, for n � 1, the eigenfunction u–(x,λn) has
exactly n – r0 – r1 zeros 0 < x1

n < x2
n < · · · < xj

n < · · · < xn–r0–r1
n < 1 inside the interval (0, 1)

and satisfy the following asymptotic formula:

xj
n =

j – 1
2

n – r0 – r1
–

(j – 1
2 )ω

n(n – r0 – r1)2π2 +
1
2
∫ xj

n
0 q(t) dt – a000

(n – r0 – r1)2π2 + O
(

1
n3

)

(4.1)

for 0 < j < n – r0 – r1, where w is as that in (2.10). Denote x0
n = 0, xn–r0–r1+1

n = 1. Note that
σ (L) might contain non-real eigenvalues, hence we write

σ (L) = σR(L) ∪ σC(L),

where σR(L) consists of real eigenvalues of L. Denote by X the collection of all zeros of
all eigenfunctions of L. Let B = {nk}∞k=1 be a strictly increasing sequence in N, where λnk ∈
σR(L). For 0 ≤ a < b ≤ 1, we call the subset WB([a, b]) of X ∩ [a, b] an interior twin-dense
nodal subset on the interval [a, b] if the following conditions hold:

(1) For all nk ∈ B, there exists some jk such that xjk
nk ∈ WB([a, b]).
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(2) The nodal subset WB([a, b]) is twin on the interval [a, b], i.e., if xjk
nk ∈ WB([a, b]),

then xjk +1
nk ∈ WB([a, b]) or xjk –1

nk ∈ WB([a, b]).
(3) The nodal subset WB([a, b]) is dense on the set [a, b], i.e., W B([a, b]) = [a, b], where

W B([a, b]) denotes the closure of W B([a, b]).
The following Lemma 4.1 is necessary for us to prove our main results.

Lemma 4.1 (Theorem 3.2 [8]) If WB([a, b]) = W̃B̃([a, b]), then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r0 + r1 = r̃0 + r̃1, (4.2)
q(x) – q̃(x) a.e.= 2ω̂ on [a, b], (4.3)
λnk – λ̃ñk = 2ω̂, ∀nk ∈ B, (4.4)
nk = ñk except for a finite number of k. (4.5)

Let SB = {λnk : nk ∈ B}. For any sequence S = {xn}∞n=0 of positive real numbers, we define

NS(t) = #
{

n ∈N∪ {0} : xn < t
}

.

The following theorem is our main result which concerns the unique determination of the
operator from a twin-dense nodal subset and a partial spectrum.

Theorem 4.2 0 < a < 1
2 < b < 1. Suppose WB([a, b]) = W̃B̃([a, b]) and

NSB (t) ≥ 2a1NσR(L)(t) + 2(1 – a1)
(

r0 + r1 +
1
2

)

+ 2a1k0 – 1, t � 1 (4.6)

for a1 = a and 1 – b, where k0 is the number of elements in σc(L). Then

q̃(x) a.e.= q(x) – c on [0, 1] and R̃ξk(λ) = Rξk(λ + c) for ξ , k = 0, 1,

and some constant c.

Proof From Lemma 4.1, we have r0 + r1 = r̃0 + r̃1, and r0 + r1 can be reconstructed from
(4.1). By virtue of (3.2), one can reconstruct ω by

lim
k→∞

nk
(√

λnk – (nk – r0 – r1)π
)

= lim
k→∞

(ω + κnk ) = ω, (4.7)

lim
k→∞

nk
(√

λ̃nk – (nk – r0 – r1)π
)

= lim
k→∞

(ω + κnk ) = ω̃, (4.8)

and

{
q(x) – q̃(x) a.e.= 2ŵ on [a, b], (4.9)

λnk – λ̃ñk = 2ŵ, ∀nk ∈ B. (4.10)

Denote

F(x, u–, ũ–,λ) = u–(x,λ)̃u′
–(x,λ – 2ŵ) – u′

–(x,λ)̃u–(x,λ – 2ŵ).
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Then

F(a, u–, ũ–,λ) = u–(a,λ)̃u′
–(a,λ) – u′

–(a,λ)̃u–(a,λ)

= u′
–(a,λ)̃u′

–(a,λ – 2ŵ)
(
m–1

– (a,λ) – m̃–1
– (a,λ – 2ŵ)

)
. (4.11)

From (2.2), (2.8), and (4.11), we obtain

∣
∣F(a, u–, ũ–, ix)

∣
∣ = o

(|y|r0+r̃0 e|2 Im
√

ix|a) for |x| � 1, x ∈R. (4.12)

Moreover, we can choose {xjnk
nk } ∈ WB([a, b]) and apply Green’s formula to obtain

(
ũ(x, λ̃nk )u′(x,λnk ) – ũ′(x, λ̃nk )u(x,λnk )

)∣
∣x

jnk
nk

a

= –
∫ x

jnk
nk

a

[
λnk – λ̃nk –

(
q(x) – q̃(x)

)]
u(x,λnk )̃u(x, λ̃nk ) dx = 0,

i.e.,

F(a, u–, ũ–,λnk ) = 0 for all nk ∈ B. (4.13)

Define the functions

GB(λ) =
∏

nk∈B

(

1 –
λ

λnk

)

, (4.14)

�R(λ) =
∏

λn∈σR(L)

(

1 –
λ

λn

)

, (4.15)

and

�C(λ) =
∏

λn∈σC (L)

(

1 –
λ

λn

)

. (4.16)

Then we know �C(λ) is a polynomial of degree k0 and

�(λ) = K�C(λ)�R(λ)

for some constant K .
Next, we shall use the technique in Appendix B of [15] to get an estimate of |GSB (ix)|.

Without loss of generality, we may assume λ > 1 for λ ∈ σR(L) (it can be done by a shift of
the parameter λ in L). Then NSB(t) = NσR(L)(t) = 0 for t ≤ 1, and

ln
∣
∣G(ix)

∣
∣ =

∞∑

k=1

1
2

ln

(

1 +
x2

λ2
nk

)

=
1
2

∫ ∞

1
ln

(

1 +
x2

t2

)

dNSB (t)

=
1
2

(

ln

(

1 +
x2

t2

)

NSB (t)
∣
∣
∣
∣

∞

0
–

∫ ∞

1
NSB (t)

d
dt

(

ln

(

1 +
x2

t2

))

dt
)

= –
1
2

∫ ∞

1
NSB (t)

d
dt

(

ln

(

1 +
x2

t2

))

dt =
∫ ∞

1

(
x2

t3 + tx2

)

NSB (t) dt. (4.17)
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Hence

ln
|G(ix)|

|�R(ix)|2a =
∫ ∞

1

(
x2

t3 + tx2

)
(
NSB (t) – 2aNσR(L)

)
dt. (4.18)

By (4.6), we know that there exist a t0 and a positive number K so that

⎧
⎨

⎩

NSB (t) – 2a1NσR(L)(t) ≥ –K for 1 ≤ t ≤ t0,

NSB (t) – 2a1NσR(L)(t) ≥ 2(1 – a1)(r0 + r1 + 1
2 ) + 2a1k0 – 1 for t > t0,

for a1 = a or 1 – b. This leads to

ln
|G(ix)|

|�R(ix)|2a1
≥

∫ t0

1

[
(K + L)/2

] d
dt

(

ln

(

1 +
x2

t2

))

dt

+ L
∫ ∞

t0

(–1/2)
d
dt

(

ln

(

1 +
x2

t2

))

dt,

where L = [2(1 – a1)(r0 + r1 + 1
2 ) + 2a1k0 – 1]. Hence

∣
∣G(ix)

∣
∣ = O

(∣
∣�R(ix)

∣
∣2a1 ∣∣�C(ix)

∣
∣2a1 ∣∣�C(ix)

∣
∣–2a1 |x|2(1–a1))(r0+r1+ 1

2 )+2a1k0–1)

= O
(|x|(2a1)(r0+r1+1/2)e2a1| Im

√
ix||x|–2a1k0 |x|2(1–a1)(r0+r1+ 1

2 )+2a1k0–1)

= O
(|x|2(r0+r1)e2a1| Im(

√
ix)|),

i.e.,

∣
∣GSB (ix)

∣
∣ ≥ c|x|2(r0+r1)e2a1 Im

√
i|x| 1

2 for |x| � 1 (4.19)

and a1 = a and 1 – b, where c is a constant. Therefore

K1(λ) :=
F(a, u,ũ,λ)

G(λ)
(4.20)

is an entire function and

K1(ix) → 0 as |x| → ∞. (4.21)

In addition, we easily prove that the following formula

inf|λ|=Rk

∣
∣GSB (λ)

∣
∣ ≥ c0 exp–C0R

1+ε0
2

k

holds for sufficiently large Rk , some 0 < ε0 < 1, c0 and C0 are two positive constants. Thus,
we have

sup
|λ|=Rk

∣
∣K1(λ)

∣
∣ ≤ c0 expC0R

1+ε0
2

k (4.22)
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for sufficiently large Rk → ∞ as k → +∞. By virtue of (4.21) and (4.22) (see [11], Propo-
sition B.6), we obtain

K1(λ) = 0, ∀λ ∈C. (4.23)

Therefore, we get

F(a, u–, ũ–,λ) = 0, ∀λ ∈C.

This implies

m–(a,λ) = m̃–(a,λ – 2ŵ). (4.24)

By Theorem 3.1 together with (4.24), we get

q̃(x) a.e.= q(x) – 2ŵ on [0, a], and R̃0k(λ) = R0k(λ + 2ŵ), k = 0, 1. (4.25)

Similarly, we can define

H(x, u+, ũ+,λ) = u+(x,λ)̃u′
+(x,λ – 2ŵ) – u′

+(x,λ)̃u+(x,λ – 2ŵ).

Then one can repeat the same arguments as above on H(b, u+, ũ+,λ) to show

H(b, u+, ũ+,λ)
GB(λ)

= 0.

This leads to H(b, u+, ũ+,λ) = 0 and

m+(b,λ) = m̃+(b,λ – 2ŵ). (4.26)

Hence

q̃(x) a.e.= q(x) – 2ŵ on [b, 1], and R̃1k(λ) = R1k(λ + 2ŵ), k = 0, 1. (4.27)

(4.9), (4.25), and (4.27) imply

q̃(x) a.e.= q(x) – 2ŵ on [0, 1] and R̃ξk(λ) = Rξk(λ + 2ŵ), ξ , k = 0, 1.

This completes the proof of Theorem 4.2. �

Corollary 4.3 Under the assumptions of Theorem 4.2, if λnk = λ̃nk for nk � 1, then q(x) =
q̃(x) and Rij(λ) = R̃i,j(λ) for i, j = 0, 1.

Remark The readers might be interested in the inverse nodal problem for a more general
equation

⎧
⎪⎪⎨

⎪⎪⎩

u′′ + A(λ)u = 0, x ∈ (0, 1),

R01(λ)u′(0) + R00u(0) = 0,

R11(λ)u′(1) + R10u(1) = 0,

(4.28)
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where d2

dx2 + A(λ) is an operator on H2(a, b). Some of such problems arise from PDE (please
refer to [23, 24] for details). Same arguments for Theorem 4.2 seem to work for (4.28) if
A(λ) is an appropriate operator.

5 Conclusion
In this paper, the authors show that a twin-dense subset WB([a, b]), 0 < a < 1/2 < b < 1, can
uniquely determine (up to a constant translation on both boundary conditions and po-
tential) the Sturm–Liouville operator associated with boundary conditions polynomially
dependent on the spectral parameter. The theorem leads to the same conclusion for clas-
sical Sturm–Liouville equation when the coefficient polynomials Rij(λ) are all of degree 0
(refer to [25]), but the translation effect on boundary conditions only appears when one
of Rij(λ) is a non-trivial polynomial.
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