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Abstract
In this paper, we study the following biharmonic equation:

{
�2u –�u + λV(x)u = α(x)f (u) +μK (x)|u|q–2u in R

N ,

u ∈ H2(RN),

where �2u =�(�u), N > 4, λ > 0, 1 < q < 2 and μ ∈ [0,μ0]. By using Ekeland’s
variational principle and Gigliardo–Nirenberg’s inequality, we prove the existence of
nontrivial solution for the above problem.
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1 Introduction
In this paper, we consider the biharmonic equation as follows:

⎧⎨
⎩�2u – �u + λV (x)u = α(x)f (u) + μK(x)|u|q–2u in R

N ,

u ∈ H2(RN ),
(Bμ)

where �2u = �(�u), N > 4, λ > 0, 1 < q < 2 and μ ∈ [0,μ0], 0 < μ0 < ∞. The continuous
function f verifies the assumptions:

(f1) f (s) = o(|s|) as s → 0;
(f2) f (s) = o(|s|) as |s| → ∞;
(f3) F(u0) > 0 for some u0 > 0, where F(u) =

∫ u
0 f (t) dt.

According to hypotheses (f1)–(f3), the number cf = max
s �=0

| f (s)
s | > 0 is well defined (see [1]).

The continuous functions α and K verify the assumptions:
(α1) 0 < α(x) ∈ L1(RN ) ∩ L∞(RN ) and cf ‖α‖∞ < 1;
(K1) 0 < K(x) ∈ L

2
2–q (RN ) ∩ L∞(RN ).

We require the potential V : RN →R to satisfy the following assumptions:
(V1) V (x) is a nonnegative continuous function on R

N , there exists a constant c0 > 0 such
that the set {V < c0} := {x ∈R

N |V (x) < c0} has finite positive Lebesgue measure;
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(V2) � = int{x ∈ R
N |V (x) = 0} is nonempty and has smooth boundary with � = {x ∈

R
N |V (x) = 0};

(V3) |{V < c0}| <
( 1–cf ‖α‖∞

S2cf ‖α‖∞
) N

4 , where | · | is the Lebesgue measure, and S is the best con-

stant for the Sobolev embedding H2(RN ) ↪→ L2∗ (RN ), 2∗ = 2N
N–4 ;

(V4) There exists R0 > 0 such that inf{V (x)||x| ≥ R0} > c0.
The biharmonic equations can be used to describe some phenomena appearing in

physics and engineering. For example, the problem of nonlinear oscillation in a suspen-
sion bridge [2–4] and the problem of the static deflection of an elastic plate in a fluid [5].
In the last decades, the existence and multiplicity of nontrivial solutions for biharmonic
equations have begun to receive much attention. Under the hypotheses (V1) and (V2),
λV (x) is called the steep potential well whose depth is controlled by the parameter λ. So
far, the steep potential well has been introduced to the study of many types of nonlin-
ear differential equations such as Kirchhoff type equations [6], Hamiltonian systems [7],
Schrödinger–Poisson systems [8], and biharmonic equation [9, 10].

Wang and Zhang [11] studied a class of biharmonic equations without Laplacian as fol-
lows:

⎧⎨
⎩�2u + Vλ(x)u = f (u) in R

N ,

u ∈ H2(RN ),
(1)

where N ≥ 5, Vλ(x) = 1 + λg(x) is a steep potential well. When f (u) is asymptotically linear
at infinity on u and f (u)/|u| is nondecreasing, they obtained the existence of nontrivial
solution for problem (1) with λ being large enough.

Liu et al. [12] studied the following biharmonic equations:

⎧⎨
⎩�2u – �u + λV (x)u = f (x, u) in R

N ,

u ∈ H2(RN ),
(2)

where N ≥ 1. They obtained the existence and multiplicity of nontrivial solutions for prob-
lem (2) when f (x, u) is subcritical and superlinear on u at infinity, and V (x) is steep poten-
tial well, and λ > 0 is large enough. Ye and Tang [13] unified and improved the results in
[12], and proved the existence of infinitely many solutions for problem (2) for λ > 0 large
enough. In [12, 13], by using Brezis–Lieb’s lemma and λ > 0 is sufficiently large, the authors
showed that any bounded Cerami sequence has a convergent subsequence.

Sun et al. [9] studied a class of biharmonic equations with p-Laplacian as follows:

⎧⎨
⎩�2u – β�pu + λV (x)u = f (x, u) in R

N ,

u ∈ H2(RN ),
(3)

where N ≥ 1, V (x) is a steep potential well. They obtained the existence and multiplicity
of nontrivial solution for problem (3) with λ large enough. Specially, they considered the
case of f (x, u) = K(x)|u|q–2u (1 < q < 2), nonlinearity term is a sublinear case (sublinear at
origin and infinity), they obtained two nontrivial solutions with λ large enough and β < 0.

It is natural for us to pose a question as follows:
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• If β = 1 > 0 in problem (3), and λ is just larger than a certain constant �, but λ �∞,
then we would much like to know whether equation (Bμ) admits one nontrivial
solution.

Remark 1 Set hν(x, u) = α(x)f (u) + νK(x)|u|q–2u. 1. Since f (·) is superlinear at the origin,
νK(x)|u|q–2u is sublinear at the origin, so hν(x, ·) is sublinear at the origin; 2. Since both f (·)
and νK(x)|u|q–2u are sublinear at infinity, so hν(x, ·) is sublinear at infinity. For different
kinds of nonlinearity, we refer to for example [14–27] and the references therein.

There is a technical difficulty in applying variational methods directly to equation (Bμ).

Problem 1 Under the assumptions of potential V (x) and λ �∞, we could not obtain the
compactness result. It is difficult to prove that a Cerami sequence is strongly convergent
if we seek solution of equation (Bν) by min–max methods.

For Problem 1. In order to prove that a Cerami sequence is strongly convergent, we
overcome this technical difficulty by Lemma 4 and Lemma 6.

Our main results are as follows.

Theorem 1 Suppose that a continuous function f satisfies (f1)–(f3), then the number cf =
max

s �=0
| f (s)

s | > 0 is well defined.

Theorem 2 Suppose that conditions (f1)–(f3), (V1)–(V3), (α1) and (K1) hold, there exists a
constant � > 0 for all λ ≥ �, then equation (B0) has only the trivial solution.

Theorem 3 Suppose that conditions (f1)–(f3), (V1)–(V4), (α1) and (K1) hold, there exists
a constant a1,� > 0 for all ‖K‖ q

2–q
< a1, λ ≥ � and μ ∈ (0,μ0], then equation (Bμ) has a

nontrivial solution at negative energy, u1 ∈ Eλ and

‖u1‖λ ≤
(

μ0a1(1 + S2|{V < c0}| 4
N )

q
2

1 – cf ‖α‖∞(1 + S2|{V < c0}| 4
N )

) 1
2–q

.

2 Variational framework
The norm of Lr(RN ) (r > 1) is given by ‖u‖r = (

∫
RN |u|r dx) 1

r . The norm of H2(RN ) is

‖u‖2
H2 =

∫
RN

(|�u|2 + |∇u|2 + |u|2)dx.

Let

E =
{

u ∈ H2(
R

N)∣∣∣ ∫
RN

|�u|2 + V (x)u2 dx < ∞
}

.

For λ > 0, the inner product and norm of Eλ are given by

〈u, v〉λ =
∫
RN

(
�u�v + ∇u∇v + λV (x)uv

)
dx, ‖u‖λ = 〈u, u〉 1

2 .

Let us define the energy functional as follows:

Iμ(u) =
1
2
‖u‖2

λ –
∫
RN

α(x)F(u) dx – μ

∫
RN

K(x)|u|q dx
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and

〈
I
′
μ(u), v

〉
=

∫
RN

(
�u�v + ∇u∇v + λV (x)uv

)
dx –

∫
RN

α(x)f (u)v dx

– μ

∫
RN

K(x)|u|q–2uv dx. (4)

3 Proof of Theorems 1 and 2

Proof of Theorem 1. By condition (f1), for ∀ε > 0, there exists δ(ε) > 0, we have

∣∣f (u)
∣∣ ≤ ε|u|, for all |u| < δ(ε).

By condition (f2), there exists M > 0, we get

∣∣f (u)
∣∣ ≤ |u|, for all |u| ≥ M.

Since f is a continuous function, f achieves its maximum and minimum on [δ(ε), M], so
there exists a positive number b(ε), we have that

∣∣f (u)
∣∣ ≤ b(ε) ≤ b(ε)

|u|
δ(ε)

= C(ε)|u|, for all δ(ε) ≤ |u| ≤ M.

Then we obtain that

∣∣f (u)
∣∣ ≤ (

1 + ε + C(ε)
)|u|, for all u ∈R.

Hence, the number cf = max
s �=0

| f (s)
s | > 0 is well defined. �

Lemma 4 Assume that (V1) and (V2) hold, for every λ ≥ �, the embedding Eλ ↪→ Lr(RN ),
r ∈ [2, 2∗] is continuous.

Proof By using (V1) and (V2), we have

∫
RN

u2 dx ≤
∫

{V≥c0}
u2 dx +

∫
{V <c0}

u2 dx

≤ 1
c0

∫
{V≥c0}

V (x)u2 dx + S2∣∣{V < c0}
∣∣ 4

N

∫
{V <c0}

|�u|2 dx,

where S is the best constant for the Sobolev embedding H2(RN ) ↪→ L2∗ (RN ). Then we
obtain

‖u‖2
H2 ≤ (

1 + S2∣∣{V < c0}
∣∣ 4

N
)∫

RN
|�u|2 dx

+
∫
RN

|∇u|2 dx +
1
c0

∫
RN

V (x)u2 dx

≤ (
1 + S2∣∣{V < c0}

∣∣ 4
N
)∫

RN
|�u|2 dx +

∫
RN

|∇u|2 dx
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+
∫
RN

(
1 + S2∣∣{V < c0}

∣∣ 4
N
)
λV (x)u2 dx for λ ≥ 1

(1 + S2|{a < c0}| 4
N )c0

≤(
1 + S2∣∣{V < c0}

∣∣ 4
N
)‖u‖2

λ. (5)

This implies that the embedding Eλ ↪→ H2(RN ) is continuous. By using Hölder’s inequal-
ity, we obtain

∫
RN

|u|r dx ≤
(∫

RN
|u|2 dx

) 2N–r(N–4)
8

(∫
RN

|u|2∗ dx
) N(r–2)

4
(N–4)

2N

≤ ‖u‖
2N–r(N–4)

4
2 ‖u‖

N(r–2)
4

2∗

≤ ‖u‖
2N–r(N–4)

4
2 S

N(r–2)
4 ‖�u‖

N(r–2)
4

2

≤ ‖u‖
2N–r(N–4)

4
H2 S

N(r–2)
4 ‖u‖

N(r–2)
4

H2

= S
N(r–2)

4 ‖u‖r
H2

≤ S
N(r–2)

4
[
1 + S2∣∣{V < c0}

∣∣ 4
N

] r
2 ‖u‖r

λ, (6)

where r ∈ [2, 2∗]. We set

�r = S
N(r–2)

4
[
1 + S2∣∣{V < c0}

∣∣ 4
N
] r

2 and � =
1

c0(1 + S2|{V < c0}| 4
N )

.

Thus, for any r ∈ [2, 2∗] and λ ≥ �, there holds

∫
RN

|u|r dx ≤ �r‖u‖r
λ. (7)

This implies that the embedding Eλ ↪→ Lr(RN ), r ∈ [2, 2∗] is continuous. �

Proof of Theorem 2. Let μ = 0, if we choose v = u in (4), we obtain that

‖u‖2
λ =

∫
RN

α(x)f (u)u dx,

we have

‖u‖2
λ ≤ ‖α‖∞

∫
RN

∣∣∣∣ f (u)
u

∣∣∣∣u2 dx

≤ ‖α‖∞cf

∫
RN

u2 dx

≤ ‖α‖∞cf
(
1 + S2∣∣{V < c0}

∣∣ 4
N
)‖u‖2

λ

(
by (7)

)
< ‖α‖∞cf

[
1 + S2

(
1 – cf ‖α‖∞
S2cf ‖α‖∞

)]
‖u‖2

λ

(
by (V3)

)
= ‖u‖2

λ.

Therefore, the inequality gives u = 0. �
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4 Proof of Theorem 3
Lemma 5 Assume that the assumptions of Theorem 3 hold, for every λ ≥ �, then any
Cerami sequence of Iμ is bounded in Eλ.

Proof Let {un} ⊂ Eλ be a Cerami sequence of Iμ satisfying

Iμ(un) being bounded,
(
1 + ‖un‖λ

)
I
′
μ(un) → 0, as n → ∞. (8)

Argue by contradiction, let ‖un‖λ → ∞. Due to (f2), we have that for every ε > 0, there
exists A > 0 such that |F(u)| ≤ ε

2‖α‖∞�2
|u|2 for every |u| > A, we have

∫
RN

α(x)F(u) dx =
∫

|u|>A
α(x)F(u) dx +

∫
|u|≤A

α(x)F(u) dx

≤ ε

2
‖u‖2

λ + ‖α‖1 sup
|u|≤A

∣∣F(u)
∣∣, (9)

and

Iμ(un)

=
1
2
‖un‖2

λ –
∫
RN

α(x)F(un) dx – μ

∫
RN

K(x)|u|q dx

≥ 1
2
‖un‖2

λ –
∫
RN

α(x)F(un) dx –
μ0

q
‖K‖ 2

2–q
�

q
2
2 ‖un‖q

λ

≥
(

1
2

–
ε

2

)
‖un‖2

λ –
μ0

q
‖K‖ 2

2–q
�

q
2
2 ‖un‖q

λ – ‖α‖1 sup
|un|≤A

∣∣F(un)
∣∣. (10)

Since 1 < q < 2, if ε < 1, we have Iμ(un) → ∞ as ‖un‖λ → ∞. There is a contraction with
Iμ(un) bounded. The proof is completed. �

Lemma 6 Assume that the assumptions of Theorem 3 hold, for every λ ≥ �, then any
Cerami sequence of Iμ has a convergent subsequence in Eλ.

Proof Step 1. Let {un} be a Cerami sequence of Iμ and {un} is bounded in Eλ. For any fixed
R > 0, let ξR ∈ C∞(RN ,R) such that

ξR(x) =

⎧⎨
⎩0 for |x| ≤ R

2 ,

1 for |x| > R,
(11)

and

ξR(x) ∈ [0, 1],
∣∣∇ξR(x)

∣∣ ≤ C
R

,
∣∣�ξR(x)

∣∣ ≤ C
R2 . (12)
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Step 2. First, for all n ∈N and R > 2R0, we have

∫
RN

∣∣�(unξR)
∣∣2 dx =

∫
RN

(|�un|2ξ 2
R + 2unξR�un�ξR + u2

n|�ξR|2

+ 4(ξR�un + un�ξR)∇un∇ξR + 4|∇un|2|∇ξR|2)dx

≤
∫
RN

(|�un|2ξ 2
R + 2|ξR�un| · |un�ξR| + u2

n|�ξR|2 + 4|∇un|2|∇ξR|2

+ 4|ξR�un| · |∇un∇ξR| + 4|un�ξR| · |∇un∇ξR|)dx

≤
∫
RN

(
4|�un|2ξ 2

R + 4u2
n|�ξR|2 + 8|∇un|2|∇ξR|2)dx

≤ 4
∫
RN

|�un|2 dx +
4C2

R4

∫
RN

u2
n dx +

8C2

R2

∫
RN

|∇un|2 dx

≤ 4
(

1 +
C2

R4 +
2C2

R2

)∫
RN

(|�un|2 + |∇un|2 + u2
n
)

dx

≤ 4
(

1 +
C2

R4 +
2C2

R2

)(
1 + S2∣∣{V < c0}

∣∣ 4
N
)‖un‖2

λ,

and ∫
RN

∣∣∇(unξR)
∣∣2 dx ≤ 2

∫
RN

(|∇un|2ξ 2
R + u2

n|∇ξR|2)dx

≤ 2
∫
RN

|∇un|2 dx +
2C2

R2

∫
RN

u2
n dx

≤ 2
(

1 +
C2

R2

)∫
RN

(|�un|2 + |∇un|2 + u2
n
)

dx

≤ 2
(

1 +
C2

R2

)(
1 + S2∣∣{V < c0}

∣∣ 4
N
)‖un‖2

λ,

then ∫
RN

(∣∣�(unξR)
∣∣2 +

∣∣∇(unξR)
∣∣2 + λV (x)(unξR)2)dx

≤
(

6 +
4C2

R4 +
10C2

R2

)(
1 + S2∣∣{V < c0}

∣∣ 4
N

)‖un‖2
λ +

∫
RN

λV (x)(unξR)2 dx

≤
(

6 +
4C2

R4 +
10C2

R2

)(
1 + S2∣∣{V < c0}

∣∣ 4
N

)‖un‖2
λ +

∫
RN

λV (x)u2
n dx, (13)

which implies that

‖unξR‖λ ≤
[

1 +
(

6 +
4C2

R4 +
10C2

R2

)(
1 + S2∣∣{V < c0}

∣∣ 4
N
)] 1

2 ‖un‖λ. (14)

According to (8), we know that ‖I ′
μ(un)‖E–1

λ
‖un‖λ → 0 as n → ∞. For any ε > 0, there exists

n(ε) such that

∥∥I
′
μ(un)

∥∥
E–1

λ
‖un‖λ ≤ ε

[1 + (6 + 4C2

R4 + 10C2

R2 )(1 + S2|{V < c0}| 4
N )] 1

2
, (15)
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for all n ≥ n(ε). Hence, applying (14) and (15), we know

∣∣〈I ′
μ(un), unξR

〉∣∣ ≤ ∥∥I
′
μ(un)

∥∥
E–1

λ
‖unξR‖λ ≤ ε, (16)

for all R > 2R0 and n ≥ n(ε).
(ii) Choosing R > 2R0, by the result of (i), 〈I ′

μ(un), unξR〉 = o(1), that is,

o(1) =
∫
RN

(|�un|2 + λV (x)u2
n + |∇un|2

)
ξR dx +

∫
RN

un∇un∇ξR dx

+
∫
RN

un�un�ξR dx + 2
∫
RN

�un∇un∇ξR dx

–
∫
RN

α(x)f (un)unξR dx – μ

∫
RN

K(x)|un|qξR dx. (17)

Firstly, we estimate the fifth term in (17)

∣∣∣∣
∫
RN

α(x)
f (un)

un
|un|2ξR dx

∣∣∣∣
≤ cf ‖α‖∞

∫
|x|≥ R

2

u2
nξR dx

≤ cf ‖α‖∞
(∫

{V≥c0}∩{|x|≥ R
2 }

u2
nξR dx +

∫
{V <c0}∩{|x|≥ R

2 }
u2

nξR dx
)

≤ cf ‖α‖∞
(

1
c0

∫
{V≥c0}∩{|x|≥ R

2 }
V (x)u2

nξR dx +
∫

{V <c0}∩{|x|≥ R
2 }

u2
nξR dx

)
. (18)

By using (V1), (V4), and R > 2R0, we have {V < c0} ∩ {|x| ≥ R
2 } = ∅. Then

∣∣∣∣
∫
RN

α(x)f (un)unξR dx
∣∣∣∣ ≤ cf ‖α‖∞

c0

∫
{V≥c0}∩{|x|≥ R

2 }
V (x)u2

nξR dx

≤ cf ‖α‖∞
c0

∫
|x|≥ R

2

V (x)u2
nξR dx. (19)

Next, we estimate the others in (17), we obtain
∣∣∣∣
∫
RN

un∇un∇ξR dx
∣∣∣∣

≤ C
R

∫
R≥|x|≥ R

2

|un||∇un|dx
(
by using (12)

)

≤ C
2R

∫
R≥|x|≥ R

2

(|∇un|2 + u2
n
)

dx

≤ C
2R

∫
R≥|x|≥ R

2

(|�un|2 + |∇un|2 + u2
n
)

dx

≤ C
2R

∫
{V≥c0}∩{R≥|x|≥ R

2 }

(
|�un|2 + |∇un|2 +

λV (x)
�c0

u2
n

)
dx

+
C
2R

∫
{V <c0}∩{R≥|x|≥ R

2 }

(|�un|2 + |∇un|2 + u2
n
)

dx
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≤ C
2R

(
1 + S2∣∣{V < c0}

∣∣ 4
N
)∫

R≥|x|≥ R
2

(|�un|2 + |∇un|2 + λV (x)u2
n
)

dx

≤ C1

2R
(20)

and
∣∣∣∣
∫
RN

�un∇un∇ξR dx
∣∣∣∣

≤ C
R

∫
R≥|x|≥ R

2

|�un||∇un|dx

≤ C
2R

∫
R≥|x|≥ R

2

(|�un|2 + |∇un|2
)

dx

≤ C
2R

∫
R≥|x|≥ R

2

(|�un|2 + |∇un|2 + u2
n
)

dx

≤ C
2R

∫
{V≥c0}∩{R≥|x|≥ R

2 }

(
|�un|2 + |∇un|2 +

λV (x)
�c0

u2
n

)
dx

+
C
2R

∫
{V <c0}∩{R≥|x|≥ R

2 }

(|�un|2 + |∇un|2 + u2
n
)

dx

≤ C1

2R
(21)

and
∣∣∣∣
∫
RN

un�un�ξR dx
∣∣∣∣

≤ C
R2

∫
R≥|x|≥ R

2

|un||�un|dx ≤ C
2R2

∫
R≥|x|≥ R

2

(|�un|2 + u2
n
)

dx

≤ C
2R2

∫
{V≥c0}∩{R≥|x|≥ R

2 }

(
|�un|2 + |∇un|2 +

λV (x)
�c0

u2
n

)
dx

+
C

2R2

∫
{V <c0}∩{R≥|x|≥ R

2 }

(|�un|2 + |∇un|2 + u2
n
)

dx

≤ C
2R2

(
1 + S2∣∣{V < c0}

∣∣ 4
N

)∫
R≥|x|≥ R

2

(|�un|2 + |∇un|2 + λV (x)u2
n
)

dx

≤ C2

R2 (22)

and
∣∣∣∣
∫
RN

K(x)|un|qξR dx
∣∣∣∣

≤ ‖K‖
L

2
2–q (Bc(0, R

2 ))
‖u‖q

L2(Bc(0, R
2 ))

≤ (
1 + S2∣∣{V < c0}

∣∣ 4
N

) q
2 ‖K‖

L
2

2–q (Bc(0, R
2 ))

‖un‖q
Eλ(Bc(0, R

2 ))

(
by using (7)

)
≤ C3‖K‖

L
2

2–q (Bc(0, R
2 ))

. (23)
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It follows from (17), (19)–(23) that

∫
|x|≥R

(
|�un|2 +

(
� –

cf ‖α‖∞
c0

)
V (x)u2

n + |∇un|2
)

dx

≤
∫

|x|≥R

(
|�un|2 +

(
λ –

cf ‖α‖∞
c0

)
V (x)u2

n + |∇un|2
)

dx

≤
∫

|x|≥ R
2

(
|�un|2 +

(
λ –

cf ‖α‖∞
c0

)
V (x)u2

n + |∇un|2
)

ξR dx

≤ C1

R
+

C2

R2 + C3‖K‖
L

2
2–q (Bc(0, R

2 ))
. (24)

Since {un} is bounded in Eλ, by using conditions (V1) and (V4) again, we have {V < c0} ∩
{|x| ≥ R} = ∅. Hence V (x) ≥ c0 in {|x| ≥ R}, we know

∫
|x|≥R

V (x)u2
n dx ≥

∫
|x|≥R

c0u2
n dx. (25)

By using (24), for any ε > 0, there exists R > 0 such that, for n large enough, we get

ε ≥
∫

|x|≥R

(
|�un|2 + |∇un|2 +

(
� –

cf ‖α‖∞
c0

)
V (x)u2

n

)
dx

≥
∫

|x|≥R

(
|�un|2 + |∇un|2 +

(
� –

cf ‖α‖∞
c0

)
c0u2

n

)
dx

(
by using (25)

)

≥ min
(
1, c0� – cf ‖α‖∞

)∫
|x|≥R

(|�un|2 + |∇un|2 + u2
n
)

dx.

So, we have

∫
|x|≥R

(|�un|2 + |∇un|2 + u2
n
)

dx ≤ ε. (26)

Since {un} is bounded in Eλ, we may assume that for some u ∈ Eλ, up to a subsequence,
un ⇀ u in Eλ, by embedding from H2(RN ) into Lr

loc(RN ), r ∈ [2, 2∗) is compact, and com-
bining with (26), we know

un → u in Lr(
R

N)
, r ∈ [2, 2∗). (27)

(iii) Since 〈I ′
μ(un), un〉 = o(1) and 〈I ′

μ(un), u〉 = o(1), we have

o(1) =
〈
I
′
μ(un), un

〉
=

∫
RN

(|�un|2 + |∇un|2 + λV (x)u2
n
)

dx

–
∫
RN

α(x)f (un)un dx – μ

∫
RN

K(x)|un|q dx (28)

and

o(1) =
〈
I
′
μ(un), u

〉
=

∫
RN

(
�un�u + ∇un∇u + λV (x)unu

)
dx
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–
∫
RN

α(x)f (un)u dx – μ

∫
RN

K(x)|un|q–2unu dx. (29)

Since un ⇀ u in Eλ, that is,

∫
RN

(
�un�u + ∇un∇u + λV (x)unu

)
dx = ‖u‖λ + o(1). (30)

By (27), we obtain

∫
RN

α(x)f (un)u dx –
∫
RN

α(x)f (un)un dx

≤
∫
RN

α(x)
∣∣f (un)

∣∣|u – un|dx

≤ cf ‖α‖∞
∫
RN

|un||u – un|dx

≤ cf ‖α‖∞‖un‖2‖u – un‖2 → 0 (31)

and

∫
RN

K(x)|un|q–2unu dx –
∫
RN

K(x)|un|q dx

≤
∫
RN

K(x)|un|q–1|u – un|dx

≤ ‖K‖ 2
2–q

‖un‖q–1
2 ‖u – un‖2 → 0. (32)

Combining (28)–(32), we get

o(1) =
〈
I
′
μ(un), un

〉
–

〈
I
′
μ(un), u

〉
= ‖un‖2

λ – ‖u‖2
λ –

∫
RN

α(x)f (un)un dx +
∫
RN

α(x)f (un)u dx

– μ

∫
RN

K(x)|un|q dx + μ

∫
RN

K(x)|un|q–2unu dx

= ‖un‖2
λ – ‖u‖2

λ + o(1).

Therefore, {un} converges strongly in Eλ and the Cerami condition holds for Iμ. The proof
is completed. �

Lemma 7 Assume that the assumptions of Theorem 2 hold, for every λ ≥ �, then Iμ is
bounded from below on Eλ, there holds

Iμ(u) ≥ G := –
�(2 – q)

q

(μ0‖K‖ 2
2–q

�
q
2
2

2�

) 2
2–q

– ‖α‖1 sup
|u|≤A

∣∣F(u)
∣∣.
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Proof By (9) and Lemma 5, fixing ε < 1 and � := (1 – ε)/2, we get

Iμ(u) ≥ �‖u‖2
λ –

μ0

q
‖K‖ 2

2–q
�

q
2
2 ‖u‖q

λ – ‖α‖1 sup
|u|≤A

∣∣F(u)
∣∣

≥ –
�(2 – q)

q

(μ0‖K‖ 2
2–q

�
q
2
2

2�

) 2
2–q

– ‖α‖1 sup
|u|≤A

∣∣F(u)
∣∣.

We have that Iμ is bounded from below on Eλ and G < 0. �

Lemma 8 Under the assumptions of Theorem 2, there exist a1 > 0 and ρ > 0 such that, for
all K with ‖K‖ 2

2–q
< a1,

Iμ(u) > 0, for u ∈ Eλ with ‖u‖λ = ρ.

Proof By conditions (f1)–(f3) and α(x) ∈ L1(RN )∩L∞(RN ), for any ε̃ > 0, there exists Cε̃ > 0,
for every u ∈R, we have

∣∣f (u)
∣∣ ≤ ε̃

‖α‖∞�2
|u| + Cε̃|u|s–1 (33)

and

∣∣F(u)
∣∣ ≤ ε̃

2‖α‖∞�2
|u|2 +

Cε̃

s
|u|s (34)

for s ∈ (2, 2∗). Fixing ε̃ < 1 and �̃ := (1 – ε̃)/2, we have the following inequality:

Iμ(u) ≥ 1
2
‖u‖2

λ –
μ0

q
‖K‖ 2

2–q
�

q
2
2 ‖u‖q

λ –
∫
R3

α(x)
(

ε̃

2‖α‖∞�2
|u|2 +

Cε̃

s
|u|s

)
dx

≥ �̃‖u‖2
λ –

μ0

q
‖K‖ 2

2–q
�

q
2
2 ‖u‖q

λ –
Cε�

s
s

s
‖α‖∞‖u‖s

λ

≥
(

�̃ –
μ0

q
‖K‖ 2

2–q
�

q
2
2 ‖u‖q–2

λ –
Cε�

s
s

s
‖α‖∞‖u‖s–2

λ

)
‖u‖2

λ.

Let

g(t) = �̃ –
μ0

q
‖K‖ 2

2–q
�

q
2
2 tq–2 –

Cε�
s
s

s
‖α‖∞ts–2 for t > 0.

Since 1 < q < 2 < s < 2∗, it is easy to see that the function g(t) achieves its maximum on
(0, +∞) at some t0 > 0. Moreover, there exists a1 > 0 such that, for ‖K‖ 2

2–q
< a1, the maxi-

mum

g(t0) = max
t∈(0,∞)

g(t) > 0.

Take ρ = t0 such that the conclusion holds. �

Proof of Theorem 3. For ρ > 0 given by Lemma 8, we define

B(0,ρ) :=
{

u ∈ Eλ|‖u‖λ ≤ ρ
}

, ∂B(0,ρ) :=
{

u ∈ Eλ|‖u‖λ = ρ
}

(35)
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and

Iμ|∂B(0,ρ) > 0. (36)

By Lemma 7, Iμ is bounded from below on B(0,ρ). Let c1 := inf{Iμ|u ∈ B(0,ρ)} > –∞. By
using condition (K1) and 1 < q < 2, it is easy to check that

Iμ(tu) < 0 for t small. (37)

Thus c1 < 0. By (36), Lemma 5, Lemma 6, and Ekeland’s variational principle, c1 can be
achieved at some inner point u1 ∈ B(0,ρ) and u1 is a critical point of Iμ at negative energy.

The norm estimate of u1. By (4), we know

0 = ‖u1‖2
λ –

∫
RN

α(x)f (u1)u1 dx – μ

∫
RN

K(x)|u1|q dx

≥ ‖u1‖2
λ – cf ‖α‖∞‖u1‖2

2 – μ0a1‖u1‖q
2

≥ ((
1 – cf ‖α‖∞�2

)‖u1‖2–q
λ – μ0a1�

q
2
2
)‖u1‖q

λ. (38)

By using condition (V3), we get

1 = cf ‖α‖∞
(

1 +
1 – cf ‖α‖∞

cf ‖α‖∞

)

> cf ‖α‖∞
(
1 + S2∣∣{V < c0}

∣∣ 4
N
)

= cf ‖α‖∞�2. (39)

Hence, we have

‖u1‖2–q
λ ≤ μ0a1�

q
2
2

1 – cf ‖α‖∞�2
=

μ0a1(1 + S2|{V < c0}| 4
N )

q
2

1 – cf ‖α‖∞(1 + S2|{V < c0}| 4
N )

. (40)
�

5 Conclusion
Biharmonic equations with steep potential well have attracted much attention in recent
years. This paper considers a class of sublinear biharmonic equations with steep potential
well.

Equation (Bμ) has different solutions when μ ∈ [0,μ0] takes different values, where 0 <
μ0 < ∞. When μ = 0, Equation (Bμ) has only the trivial solution. When μ ∈ (0,μ0], it has
a nontrivial solution u1 at negative energy, and

‖u1‖λ ≤
(

μ0a1(1 + S2|{V < c0}| 4
N )

q
2

1 – cf ‖α‖∞(1 + S2|{V < c0}| 4
N )

) 1
2–q

.
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