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1 Introduction and main result
We consider a semilinear viscoelastic wave system with nonlinear damping and source
terms,

utt – �u +
∫ t

0
g(t – τ )�u(τ ) dτ + |ut|m–1ut = f1(u, v), x ∈ �, t > 0, (1)

vtt – �v +
∫ t

0
h(t – τ )�v(τ ) dτ + |vt|r–1vt = f2(u, v), x ∈ �, t > 0, (2)

subject to null Dirichlet boundary and initial conditions

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0, (3)

u(x, 0) = u0(x), ut(x, 0) = u1(x),

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ �,
(4)

where � ⊂ R
N (N ≥ 1) is a bounded domain with smooth boundary ∂�, m > 1,

r > 1, and the relaxation functions g : R+ → R
+ and h : R+ → R

+ are positive non-
increasing. Problems of this type arise in viscoelasticity and systems governing the
longitudinal motion of a viscoelastic configuration obeying the nonlinear Boltzmann
model.
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During the past decades, there has been much work dealing with the well-posedness
and qualitative properties of solutions for damped viscoelastic wave equation. In this pa-
per, we would like to investigate the blow-up phenomena with high initial energy for a
semilinear damped viscoelastic wave system. To motivate our work, let us recall some
results regarding viscoelastic wave models. For the single viscoelastic wave equation,
we refer the reader to [1, 2] (the case g = 0) and [3–7] (the case g �= 0), where blow-
up solutions with initial negative energy, positive energy and arbitrarily positive energy
are [1–7], respectively. Moreover, for general energy decay estimates on global solu-
tions of a nonlinear abstract viscoelastic equation with variable density and the oscil-
lation criteria and numerical solution of damped wave models, we refer the reader to
[8–10].

Concerning wave systems without viscoelastic term (g = 0), Agre and Rammaha [11]
investigated the following coupled semilinear wave system with nonlinear damping terms:

utt – �u + |ut|m–1ut = (p + 1)
[
a|u + v|p–1(u + v) + b|u| p–3

2 u|v| p+1
2

]
,

vtt – �v + |vt|r–1vt = (p + 1)
[
a|u + v|p–1(u + v) + b|v| p–3

2 v|u| p+1
2

]
,

in � × (0,∞), where � ⊂ R
N (N = 1, 2, 3), m ≥ 1, r ≥ 1, a > 1, b > 0, p ≥ 3. Using the

Galerkin method and the method in [2] different from the concavity method we already
know, that is, differential inequality techniques, they determined local and global existence
of weak solutions and showed that any weak solution with negative initial energy blows up
in finite time. Thereafter, Said-Houari [12] considered the blow-up result for a larger class
of initial data with positive initial energy combining potential well method and differential
inequality techniques ([2]). Pişkin [13] studied a coupled semilinear Klein–Gordon system
with nonlinear damping terms,

utt – �u + m2
1u + |ut|m–1ut = (p + 1)

[
a|u + v|p–1(u + v) + b|u| p–3

2 u|v| p+1
2

]
,

vtt – �v + m2
2v + |vt|r–1vt = (p + 1)

[
a|u + v|p–1(u + v) + b|v| p–3

2 v|u| p+1
2

]
,

in � × (0,∞), where � ⊂ R
N (N = 1, 2, 3), m ≥ 1, r ≥ 1, m1, m2 > 0, a, b > 0, p > 1.

The decay estimates of the solution are established by using Nakao’s inequality. Mean-
while, similar to [2], he also proved the blow-up of the solution in finite time with neg-
ative initial energy, using the technique of appropriate modification for energy func-
tional.

In the presence of the viscoelastic term (g �= 0), Han and Wang [14] discussed semilinear
coupled viscoelastic wave system with nonlinear damping terms,

utt – �u +
∫ t

0
g(t – τ )�u(τ ) dτ + |ut|m–1ut

= (p + 1)
[
a|u + v|p–1(u + v) + b|u| p–3

2 u|v| p+1
2

]
,

vtt – �v +
∫ t

0
h(t – τ )�v(τ ) dτ + |vt|r–1vt

= (p + 1)
[
a|u + v|p–1(u + v) + b|v| p–3

2 v|u| p+1
2

]
,
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in � × (0,∞), where � ⊂ R
N (N = 1, 2, 3), m ≥ 1, r ≥ 1, a > 1, b > 0, p ≥ 3. They estab-

lished several results concerning the global existence, uniqueness and finite time blow-up
of weak solutions with negative initial energy by utilizing the Galerkin and the concavity
method. Recently, Messaoudi and Said-Hauari [15] dealt with our problem (1)–(4) and im-
proved the result in [12] to a larger class of initial data for which the initial energy can take
positive values. Besides, for the work on quasilinear wave equations, we refer the reader
to [16–18] and the references therein.

In view of the work mentioned above, one can find that research on the blow-up phe-
nomena of the solutions with high initial energy for a semilinear damped viscoelastic wave
system (1)–(4) has not been started yet. Since the viscoelastic terms, nonlinear damp-
ing and source terms are included in the system, the classical method employed in sin-
gle equation cannot be directly used to prove the blow-up result. The main difficulty of
the present paper is to find the technique to deal with nonlinear damping and source
terms. In order to overcome the difficulty, combining an argument of contradiction, prop-
erty of convex function ([7]) and important inequalities in [15] (cf. Lemma 2.1), we con-
sider problem (1)–(4) and prove a blow-up result of certain solutions at a high energy
level.

Firstly, let us present some notations and assumptions used throughout this article.
Taking

f1(u, v) =
[
a|u + v|2(p+1)(u + v) + b|u|pu|v|p+2],

f2(u, v) =
[
a|u + v|2(p+1)(u + v) + b|v|pv|u|p+2], a, b > 0,

one can easily verify that

uf1(u, v) + vf2(u, v) = 2(p + 2)F(u, v), ∀(u, v) ∈R
2,

where

F(u, v) =
1

2(p + 2)
[
a|u + v|2(p+2) + 2b|uv|(p+2)].

For the relaxation functions g(s), h(s) and real number p, we give the following assump-
tions:

(H1) g ∈ C1([0,∞]), h ∈ C1([0,∞]) are nonnegative functions satisfying

g ′(s) ≤ 0, 1 –
∫ ∞

0
g(s) ds = l > 0,

h′(s) ≤ 0, 1 –
∫ ∞

0
h(s) ds = k > 0.

(H2)

–1 < p < ∞, N = 1, 2,

–1 < p ≤ 3 – N
N – 2

, N ≥ 3.
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Remark 1 Condition (H1) is necessary to guarantee the hyperbolicity and well-posedness
of the system (1)–(4).

Note that we easily obtain the following local existence and uniqueness of weak solution
for problem (1)–(4) by using the Faedo–Galerkin approximation methods and the Banach
contraction mapping principle, which is similar to [2] with slight modification. The pro-
cess of this proof is standard, so we omit it here.

Proposition Under the assumptions (H1) and (H2), let the initial data (u0, u1) ∈ H1
0 (�) ×

L2(�) and (v0, v1) ∈ H1
0 (�) × L2(�) are given, then the problem (1)–(4) has a unique local

solution

(u, v) ∈ C
(
[0, T]; H1

0 (�)
) × C

(
[0, T]; H1

0 (�)
)
,

(ut , vt) ∈ C
(
[0, T]; L2(�)

) ∩ Lm+1(� × (0, T)
) × C

(
[0, T]; L2(�)

) ∩ Lm+1(� × (0, T)
)
,

for the maximum existence time T > 0, where T ∈ (0,∞].

The energy related to problem (1)–(4) is

E(t) =
1
2
(‖ut‖2

2 + ‖vt‖2
2
)

+
1
2

(
1 –

∫ t

0
g(s) ds

)
‖∇u‖2

2

+
1
2

(
1 –

∫ t

0
h(s) ds

)
‖∇v‖2

2

+
1
2
[
(g ◦ ∇u) + (h ◦ ∇v)

]
–

∫
�

F(u, v) dx, (5)

where

(g ◦ ∇v)(t) =
∫ t

0
g(t – τ )

∥∥v(t) – v(τ )
∥∥2

2 dτ .

Now we are in a position to state our main result.

Theorem 1 Under the assumptions (H1) and (H2), assume that m > 1, r > 1, 2(p + 2) >
max{m + 1, r + 1}, and

max

{∫ ∞

0
g(s) ds,

∫ ∞

0
h(s) ds

}
<

p + 1
p + 1 + 1

4(p+2)
. (6)

Let (u, v) be a solution of Eqs. (1)–(4), satisfying

∫
�

u(0)ut(0) dx +
∫

�

v(0)vt(0) dx > ME(0) > 0, (7)

then (u, v) blows up in finite time, where

M =
σ

σ + 1

(
1 – ξ

2c0ε0(p + 2)

) 1
σ∗

,
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ε0 ∈ (0, 1) is a root of the equation σ
σ+1 ( 1–ξ

2c0ε0(p+2) )
1

σ∗ = 2(p+2)(1–ε0)
α(ε0) , and

σ = max{m, r}, σ ∗ = min{m, r},

ξ =
2(p + 2) – (σ + 1)

2(p + 2) – 2
, ξ ∗ =

2(p + 2) – (σ ∗ + 1)
2(p + 2) – 2

,

α(ε) = 2

√(
(p + 2)(1 – ε) + 1

)(
k(ε)λ1 –

c0ε(p + 2)ξ ∗

1 – ξ

)
,

k(ε) =
(
(p + 2)(1 – ε) – 1

)
min{k, l} –

1 – min{k, l}
4(p + 2)(1 – ε)

,

λ1 being the first eigenvalue of –�.

The outline of the paper is as follows. In Sect. 2, we introduce three lemmas related to
the study of problem (1)–(4). Section 3 devoted to the proof of our main result.

2 Preliminary results
In the section, we give some lemmas which are useful for the proof of our blow-up result.

Lemma 1 Assume (H1) and (H2) hold. Let (u, v) be a solution of (1)–(4), then E(t) is non-
increasing, that is, E′(t) ≤ 0.

Proof By the multiplier method, multiplying (1), (2) by ut , vt , respectively, and then using
(5), we get

E′(t) = –
(‖ut‖m+1

m+1 + ‖vt‖r+1
r+1

)
–

1
2

g(t)‖∇u‖2
2 –

1
2

h(t)‖∇v‖2
2

+
1
2
[(

g ′ ◦ ∇u
)
(t) +

(
h′ ◦ ∇v

)
(t)

]
,

for t ≥ 0, E′(t) ≤ 0. Moreover, the following energy inequality holds:

E′(t) ≤ –
(‖ut‖m+1

m+1 + ‖vt‖r+1
r+1

)
, ∀t ≥ 0. �

Lemma 2 ([15], Lemma 2.1) There exist two positive constants c0 and c1 such that

c0

2(p + 2)
(|u|2(p+2) + |v|2(p+2)) ≤ F(u, v) ≤ c1

2(p + 2)
(|u|2(p+2) + |v|2(p+2)). (8)

Next, we present the following crucial lemma which repeats the same one of Han and
Wang [14], Theorem 2.4, with slight modification, so we will omit its proof.

Lemma 3 ([14]) Under the assumptions (H1) and (H2), assume that m > 1, r > 1, 2(p + 2) >
max{m + 1, r + 1} and satisfying (6). If ∃t0 ≥ 0 such that E(t0) < 0, then the solution of the
problem (1)–(4) blows up in finite time.

3 Proof of Theorem 1
In the section, using an argument of contradiction and the property of a convex function,
we prove our main result.



Zhao and Wang Boundary Value Problems  (2018) 2018:35 Page 6 of 13

Proof of Theorem 1 Assume (u, v) is a global solution of problem (1)–(4). Multiplying (1),
(2) by u, v, respectively, and integrating over �, we derive that

(utt , u) + ‖∇u‖2
2 –

∫ t

0
g(t – τ )

∫
�

∇u(t)∇u(τ ) dx dτ +
∫

�

|ut|m–1utu dx

=
∫

�

uf1(u, v) dx,

(vtt , v) + ‖∇v‖2
2 –

∫ t

0
h(t – τ )

∫
�

∇v(t)∇v(τ ) dx dτ +
∫

�

|vt|r–1vtv dx =
∫

�

vf2(u, v) dx.

Thus the following equalities are obtained:

d
dt

(u, ut) = ‖ut‖2
2 – ‖∇u‖2

2 +
∫ t

0
g(t – τ )

∫
�

∇u(t)∇u(τ ) dx dτ +
∫

�

uf1(u, v) dx

–
∫

�

|ut|m–1utu dx, (9)

d
dt

(v, vt) = ‖vt‖2
2 – ‖∇v‖2

2 +
∫ t

0
h(t – τ )

∫
�

∇v(t)∇v(τ ) dx dτ +
∫

�

vf2(u, v) dx

–
∫

�

|vt|r–1vtv dx. (10)

Using the Cauchy inequality, we estimate the third terms on the right side of (9) and (10),
for ∀ε ∈ (0, 1),

∫ t

0
g(t – τ )

∫
�

∇u(t)∇u(τ ) dx dτ

=
∫ t

0
g(t – τ )

∫
�

∇u(t)
[∇u(τ ) – ∇u(t)

]
dx dτ +

∫ t

0
g(τ ) dτ‖∇u‖2

2

≥ –
2(p + 2)(1 – ε)

2
(g ◦ ∇u)(t) –

1
4(p + 2)(1 – ε)

∫ t

0
g(τ ) dτ‖∇u‖2

2

+
∫ t

0
g(τ ) dτ‖∇u‖2

2, (11)

∫ t

0
h(t – τ )

∫
�

∇v(t)∇v(τ ) dx dτ

=
∫ t

0
h(t – τ )

∫
�

∇v(t)
[∇v(τ ) – ∇v(t)

]
dx dτ +

∫ t

0
h(τ ) dτ‖∇v‖2

2

≥ –
2(p + 2)(1 – ε)

2
(h ◦ ∇v)(t) –

1
4(p + 2)(1 – ε)

∫ t

0
h(τ ) dτ‖∇v‖2

2

+
∫ t

0
h(τ ) dτ‖∇v‖2

2. (12)

Combining (11) and (12), we derive that

d
dt

(u, ut) +
d
dt

(v, vt) ≥ –
(

1 –
∫ t

0
g(s) ds

)
‖∇u‖2

2 –
(

1 –
∫ t

0
h(s) ds

)
‖∇v‖2

2

+ ‖ut‖2
2 + ‖vt‖2

2 –
2(p + 2)(1 – ε)

2
(
(g ◦ ∇u)(t) + (h ◦ ∇v)(t)

)
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–
∫

�

|vt|r–1vtv dx –
1

4(p + 2)(1 – ε)

∫ t

0
g(τ ) dτ‖∇u‖2

2

–
1

4(p + 2)(1 – ε)

∫ t

0
h(τ ) dτ‖∇v‖2

2 –
∫

�

|ut|m–1utu dx

+ 2(p + 2)
∫

�

F(u, v) dx. (13)

For the right side of (13) to add 2(p + 2)(1 – ε)E(t), one can get

d
dt

(u, ut) +
d
dt

(v, vt)

≥ (
(p + 2)(1 – ε) – 1

)(
1 –

∫ t

0
g(s) ds

)
‖∇u‖2

2

+
(
(p + 2)(1 – ε) + 1

)(‖ut‖2
2 + ‖vt‖2

2
)

–
∫

�

|ut|m–1utu dx

+
(
(p + 2)(1 – ε) – 1

)(
1 –

∫ t

0
h(s) ds

)
‖∇v‖2

2 –
∫

�

|vt|r–1vtv dx

+ 2(p + 2)ε
∫

�

F(u, v) dx – 2(p + 2)(1 – ε)E(t)

–
1

4(p + 2)(1 – ε)

∫ t

0
g(τ ) dτ‖∇u‖2

2

–
1

4(p + 2)(1 – ε)

∫ t

0
h(τ ) dτ‖∇v‖2

2. (14)

For the third and fifth terms on the right side of (14), Hölder’s and Young’s inequalities
give us

∣∣∣∣
∫

�

|ut|m–1utu dx
∣∣∣∣ ≤ ‖u‖m+1‖ut‖m

m+1 ≤ εm+1
1

‖u‖m+1
m+1

m + 1
+ ε

– m+1
m

1
m

m + 1
‖ut‖m+1

m+1.

By the convexity of the function uy

y in y, for u ≥ 0 and y > 0, we have

‖u‖m+1
m+1

m + 1
≤ θ

‖u‖2
2

2
+ (1 – θ )

‖u‖2(p+2)
2(p+2)

2(p + 2)
,

where θ = 2(p+2)–(m+1)
2(p+2)–2 , then one can get

∣∣∣∣
∫

�

|ut|m–1utu dx
∣∣∣∣ ≤ εm+1

1

(
θ
‖u‖2

2
2

+ (1 – θ )
‖u‖2(p+2)

2(p+2)

2(p + 2)

)
+ ε

– m+1
m

1
m

m + 1
‖ut‖m+1

m+1. (15)

Similarly,

∣∣∣∣
∫

�

|vt|r–1vtv dx
∣∣∣∣ ≤ εr+1

1

(
η
‖v‖2

2
2

+ (1 – η)
‖v‖2(p+2)

2(p+2)

2(p + 2)

)
+ ε

– r+1
r

1
r

r + 1
‖vt‖r+1

r+1, (16)

where η = 2(p+2)–(r+1)
2(p+2)–2 .
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Take

σ = max{m, r}, σ ∗ = min{m, r},

ξ =
2(p + 2) – (σ + 1)

2(p + 2) – 2
,

ξ ∗ =
2(p + 2) – (σ ∗ + 1)

2(p + 2) – 2
.

By (14)–(16) and Lemma 1, we have

d
dt

(
(u, ut) + (v, vt) – ε

– σ∗+1
σ∗

1
σ

σ + 1
E(t)

)

≥ d
dt

(
(u, ut) + (v, vt)

)
+ ε

– σ∗+1
σ∗

1
σ

σ + 1
(‖ut‖m+1

m+1 + ‖vt‖r+1
r+1

)

≥ d
dt

(
(u, ut) + (v, vt)

)
+ ε

– m+1
m

1
m

m + 1
‖ut‖m+1

m+1 + ε
– r+1

r
1

r
r + 1

‖vt‖r+1
r+1

≥ (
(p + 2)(1 – ε) + 1

)(‖ut‖2
2 + ‖vt‖2

2
)

– 2(p + 2)(1 – ε)E(t)

+ 2(p + 2)ε
∫

�

F(u, v) dx

– εm+1
1

(
θ
‖u‖2

2
2

+ (1 – θ )
‖u‖2(p+2)

2(p+2)

2(p + 2)

)
– εr+1

1

(
η
‖v‖2

2
2

+ (1 – η)
‖v‖2(p+2)

2(p+2)

2(p + 2)

)

+
((

(p + 2)(1 – ε) – 1
)(

1 –
∫ t

0
g(s) ds

)
–

1
4(p + 2)(1 – ε)

∫ t

0
g(τ ) dτ

)
‖∇u‖2

2

+
((

(p + 2)(1 – ε) – 1
)(

1 –
∫ t

0
h(s) ds

)
–

1
4(p + 2)(1 – ε)

∫ t

0
h(τ ) dτ

)
‖∇v‖2

2.

For the formula above, using Lemma 2 and the Poincaré inequality, we get

d
dt

(
(u, ut) + (v, vt) – ε

– σ∗+1
σ∗

1
σ

σ + 1
E(t)

)

≥ (
(p + 2)(1 – ε) + 1

)(‖ut‖2
2 + ‖vt‖2

2
)

– 2(p + 2)(1 – ε)E(t)

+ c0ε
(‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

)

+
((

(p + 2)(1 – ε) – 1
)
l –

1 – l
4(p + 2)(1 – ε)

)
‖∇u‖2

2

– εm+1
1

(
θ
‖u‖2

2
2

+ (1 – θ )
‖u‖2(p+2)

2(p+2)

2(p + 2)

)

+
((

(p + 2)(1 – ε) – 1
)
k –

1 – k
4(p + 2)(1 – ε)

)
‖∇v‖2

2

– εr+1
1

(
η
‖v‖2

2
2

+ (1 – η)
‖v‖2(p+2)

2(p+2)

2(p + 2)

)

≥ (
(p + 2)(1 – ε) + 1

)(‖ut‖2
2 + ‖vt‖2

2
)

+
(

k1(ε)λ1 –
εm+1

1 θ

2

)
‖u‖2

2
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+
(

k2(ε)λ1 –
εr+1

1 η

2

)
‖v‖2

2 – 2(p + 2)(1 – ε)E(t)

+
(

c0ε –
εm+1

1 (1 – θ )
2(p + 2)

)
‖u‖2(p+2)

2(p+2) +
(

c0ε –
εr+1

1 (1 – η)
2(p + 2)

)
‖v‖2(p+2)

2(p+2), (17)

where k1(ε) = ((p + 2)(1 – ε) – 1)l – 1–l
4(p+2)(1–ε) , k2(ε) = ((p + 2)(1 – ε) – 1)k – 1–k

4(p+2)(1–ε) , λ1

being the first eigenvalue of –�.
Take ε1 = ( 2c0ε(p+2)

1–ξ
)

1
σ∗+1 , we have

d
dt

(
(u, ut) + (v, vt) – ε

– σ∗+1
σ∗

1
σ

σ + 1
E(t)

)

≥ (
(p + 2)(1 – ε) + 1

)(‖ut‖2
2 + ‖vt‖2

2
)

– 2(p + 2)(1 – ε)E(t)

+
(

k1(ε)λ1 –
εm+1

1 θ

2

)
‖u‖2

2 +
(

k2(ε)λ1 –
εr+1

1 η

2

)
‖v‖2

2,

d
dt

(
(u, ut) + (v, vt) –

(
2c0ε(p + 2)

1 – ξ

)– 1
σ∗ σ

σ + 1
E(t)

)

≥ (
(p + 2)(1 – ε) + 1

)(‖ut‖2
2 + ‖vt‖2

2
)

– 2(p + 2)(1 – ε)E(t)

+
(

k1(ε)λ1 –
c0ε(p + 2)θ

1 – ξ

)
‖u‖2

2 +
(

k2(ε)λ1 –
c0ε(p + 2)η

1 – ξ

)
‖v‖2

2.

(18)

Since

max

{∫ ∞

0
g(s) ds,

∫ ∞

0
h(s) ds

}
<

p + 1
p + 1 + 1

4(p+2)
,

δ1 =
(
2(p + 2) – 2

)
l –

1 – l
2(p + 2)

> 0,

δ2 =
(
2(p + 2) – 2

)
k –

1 – k
2(p + 2)

> 0.

Then we can take ε small enough such that

k1(ε)λ1 –
c0ε(p + 2)θ

1 – ξ
> 0,

k2(ε)λ1 –
c0ε(p + 2)η

1 – ξ
> 0.

The Cauchy inequality gives us

(
(p + 2)(1 – ε) + 1

)‖ut‖2
2 +

(
k1(ε)λ1 –

c0ε(p + 2)θ
1 – ξ

)
‖u‖2

2

≥ 2

√(
(p + 2)(1 – ε) + 1

)(
k1(ε)λ1 –

c0ε(p + 2)θ
1 – ξ

)
(u, ut), (19)

(
(p + 2)(1 – ε) + 1

)‖vt‖2
2 +

(
k2(ε)λ1 –

c0ε(p + 2)η
1 – ξ

)
‖v‖2

2

≥ 2

√(
(p + 2)(1 – ε) + 1

)(
k2(ε)λ1 –

c0ε(p + 2)η
1 – ξ

)
(v, vt). (20)
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Combining (19) and (20), we get

d
dt

(
(u, ut) + (v, vt) –

(
2c0ε(p + 2)

1 – ξ

)– 1
σ∗ σ

σ + 1
E(t)

)

≥ α1(ε)(u, ut) + α2(ε)(v, vt) – 2(p + 2)(1 – ε)E(t)

≥ α(ε)
(

(u, ut) + (v, vt) –
2(p + 2)(1 – ε)

α(ε)
E(t)

)
, (21)

where

α1(ε) = 2

√(
(p + 2)(1 – ε) + 1

)(
k1(ε)λ1 –

c0ε(p + 2)θ
1 – ξ

)
,

α2(ε) = 2

√(
(p + 2)(1 – ε) + 1

)(
k2(ε)λ1 –

c0ε(p + 2)η
1 – ξ

)
,

α(ε) = 2

√(
(p + 2)(1 – ε) + 1

)(
k(ε)λ1 –

c0ε(p + 2)ξ ∗

1 – ξ

)
,

k(ε) =
(
(p + 2)(1 – ε) – 1

)
min{k, l} –

1 – min{k, l}
4(p + 2)(1 – ε)

.

It is easy to see that

α(ε) → √
2(p + 3) min{δ1, δ2}λ1,

(
2c0ε(p + 2)

1 – ξ

)– 1
σ∗ σ

σ + 1
→ +∞,

2(p + 2)(1 – ε)
α(ε)

→ 2(p + 2)√
2(p + 3) min{δ1, δ2}λ1

, as ε → 0+.
(22)

On the other hand, by the definition of k(ε), we have

k(ε) → –∞, k(ε)λ1 –
c0ε(p + 2)ξ ∗

1 – ξ
→ –∞, as ε → 1–,

k(ε)λ1 –
c0ε(p + 2)ξ ∗

1 – ξ
→ min{δ1, δ2}λ1

2
, as ε → 0+.

Hence, there exists ε∗ ∈ (0, 1) such that

α(ε∗) = 0 and α(ε) > 0, ∀ε ∈ (0, ε∗).

This implies that

α(ε) → 0,
2(p + 2)(1 – ε)

α(ε)
→ +∞,

(
2c0ε(p + 2)

1 – ξ

)– 1
σ∗ σ

σ + 1
→

(
2c0ε∗(p + 2)

1 – ξ

)– 1
σ∗ σ

σ + 1
, as ε → ε–

∗ .

(23)
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Using (22), (23) and the continuity in ε of 2(p+2)(1–ε)
α(ε) and ( 2c0ε(p+2)

1–ξ
)– 1

σ∗ σ
σ+1 , there exists ε0 ∈

(0, ε∗) ⊂ (0, 1) such that

(
2c0ε0(p + 2)

1 – ξ

)– 1
σ∗ σ

σ + 1
=

2(p + 2)(1 – ε0)
α(ε0)

.

Then (21) can be rewritten as

d
dt

(
(u, ut) + (v, vt) –

(
2c0ε0(p + 2)

1 – ξ

)– 1
σ∗ σ

σ + 1
E(t)

)

≥ α(ε0)
(

(u, ut) + (v, vt) –
(

2c0ε0(p + 2)
1 – ξ

)– 1
σ∗ σ

σ + 1
E(t)

)
. (24)

Now, setting H(t) = (u, ut) + (v, vt) – ( 2c0ε0(p+2)
1–ξ

)– 1
σ∗ σ

σ+1 E(t). Then we exploit (7), this tells us
that

H(0) =
∫

�

u(0)ut(0) dx +
∫

�

v(0)vt(0) dx –
(

2c0ε0(p + 2)
1 – ξ

)– 1
σ∗ σ

σ + 1
E(0) > 0

and

d
dt

H(t) ≥ α(ε0)H(t). (25)

A simple integration of (25) over (0, t) then yields

H(t) ≥ eα(ε0)tH(0), ∀t ≥ 0.

Since (u, v) is global, by Lemma 2 and Lemma 3, for t ≥ 0, we have 0 ≤ E(t) ≤ E(0). Hence,
we obtain

(u, ut) + (v, vt) ≥ eα(ε0)tH(0).

So, we get the estimate

‖ut‖2
2 + ‖vt‖2

2 =
∥∥u(0)

∥∥2
2 +

∥∥v(0)
∥∥2

2 + 2
∫ t

0

[
(u, ut) + (v, vt)

]
dτ

≥ ∥∥u(0)
∥∥2

2 +
∥∥v(0)

∥∥2
2 + 2

∫ t

0
eα(ε0)tH(0) dτ

≥ ∥∥u(0)
∥∥2

2 +
∥∥v(0)

∥∥2
2 +

2
α(ε0)

(
eα(ε0)t – 1

)
H(0). (26)

On the other hand, by Lemma 1, Lemma 3 and the Hölder inequality, we derive

‖ut‖2 + ‖vt‖2 ≤ ∥∥u(0)
∥∥

2 +
∥∥v(0)

∥∥
2 +

∫ t

0

∥∥ut(τ )
∥∥

2 dτ +
∫ t

0

∥∥vt(τ )
∥∥

2 dτ

≤ ∥∥u(0)
∥∥

2 +
∥∥v(0)

∥∥
2 + C0

(∫ t

0

∥∥ut(τ )
∥∥

m+1 dτ +
∫ t

0

∥∥vt(τ )
∥∥

r+1 dτ

)
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≤ ∥∥u(0)
∥∥

2 +
∥∥v(0)

∥∥
2 + C0t

m
m+1

∫ t

0

∥∥ut(τ )
∥∥m+1

m+1 dτ
1

m+1

+ C0t
r

r+1

∫ t

0

∥∥vt(τ )
∥∥r+1

r+1 dτ
1

r+1

≤ ∥∥u(0)
∥∥

2 +
∥∥v(0)

∥∥
2 + Ct

σ
σ+1

∫ t

0

(∥∥ut(τ )
∥∥m+1

m+1 +
∥∥vt(τ )

∥∥r+1
r+1

)
dτ

1
σ∗+1

≤ ∥∥u(0)
∥∥

2 +
∥∥v(0)

∥∥
2 + Ct

σ
σ+1

(
E(0) – E(t)

) 1
σ∗+1

≤ ∥∥u(0)
∥∥

2 +
∥∥v(0)

∥∥
2 + Ct

σ
σ+1 E(0)

1
σ∗+1 .

This contradicts (26) and we get the finite time blow-up result. �

4 Conclusion
We prove the finite time blow-up of some solutions for a semilinear viscoelastic wave
system with nonlinear weak damping and source terms whose initial data have arbitrarily
high initial energy. We point out that the methods for a single equation in [6, 7] are not
necessarily applicable to our system. We also notice that the result in Theorem 1 extends
the results for the system in [14, 15].
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