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Abstract
In this paper, a reaction–diffusion system of a predator–prey model with
Beddington–DeAngelis functional response is considered. This model describes a
prey-taxis mechanism that is an immediate movement of the predator u in response
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approaches to prove the global existence-boundedness of classical solutions and
overcome the substantial difficulty of the existence of a nonlinear prey-taxis term.
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1 Introduction
In this paper, we investigate the following reaction–diffusion system of a Beddington–
DeAngelis-type predator–prey model with nonlinear prey-taxis and random diffusion:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – d1�u + ∇ · (uχ (u)∇v) = –au + δuv
βu+v+α

, x ∈ �, t ∈ (0, T),

vt – d2�v = rv – r
K v2 – γ uv

βu+v+α
, x ∈ �, t ∈ (0, T),

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t ∈ (0, T),

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) ≥ 0, x ∈ �,

(1.1)

where � is a bounded domain in R
N (N = 1, 2, 3) with smooth boundary ∂�, 0 < T ≤ +∞,

initial condition u0(x), v0(x) ∈ C2+α(�) compatible on ∂�, constants d1, d2, a, K , r,α,β ,
γ , δ > 0, and ν is the outward directional derivative normal to ∂�.

Differential equations are supposed to be sufficient in modeling of the countless pro-
cesses in all fields of science. Many phenomena in physical sciences, chemistry and bi-
ology are naturally described by Partial Differential Equations (PDEs). In a population
dynamics system, a lot of mathematical models in partial differential equations to study
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the relationship between predators and preys have been proposed by mathematicians, bi-
ologists and ecologists [1, 2]. In fact, there are many well-known predator–prey models
such as ratio-dependent predator–prey models (so-called Michaelis–Menten-type mod-
els) [3, 4], Holling-type models [5], Holling-type II models [6], Ivlev-type models [7],
Lotka–Volterra-type models [8, 9] and so on. To the best of our knowledge, this is the first
study to report that the global boundedness of solutions of the Beddington–DeAngelis-
type predator–prey model with nonlinear prey-taxis.

There is a Beddington–DeAngelis-type functional response contained in the model
(1.1), where u and v describe the population density of the predator and the prey at time
t with diffusion rates d1 and d2, respectively. The parameter a denotes the death rate of
the predator u. As usual, K is called the carrying capacity of the prey v. The constant r is
called the intrinsic growth rate of the prey v. The constants δ, γ are the conversion rate
of the predator and the prey, respectively. The term βu measures the mutual interference
between predators. The reason for the model is that if one takes the parameter β close to
0 then the model can be regarded as a Holling-type II predator–prey model,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – d1�u + u + ∇ · (uχ (u)∇v) = –au + δuv
v+α

, x ∈ �, t ∈ (0, T),

vt – d2�v = rv – r
K v2 – γ uv

v+α
, x ∈ �, t ∈ (0, T),

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t ∈ (0, T),

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) ≥ 0, x ∈ �,

(1.2)

and also if one takes the parameter α close to 0 then the model can be thought of as a
ratio-dependent predator–prey model,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – d1�u + u + ∇ · (uχ (u)∇v) = –au + δuv
βu+v , x ∈ �, t ∈ (0, T),

vt – d2�v = rv – r
K v2 – γ uv

βu+v , x ∈ �, t ∈ (0, T),
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t ∈ (0, T),

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) ≥ 0, x ∈ �.

(1.3)

In the present paper, motivated by [10–13], we will prove the global boundedness of clas-
sical solutions to (1.1). In a reaction–diffusion system of predator–prey model, the prey-
taxis mechanism means a direct movement of the predator u in response to a variation
of the prey v (which results in the aggregation of u), and the involved factor is assumed
to satisfy χ (u) ∈ C1([0, +∞)), χ (u) ≡ 0 for u ≥ M, and |χ ′(u1) – χ ′(u2)| ≤ L|u1 – u2| for
u1, u2 ∈ [0, +∞), with L, M > 0. Here the assumption χ (u) ≡ 0 for u ≥ M says that there is
a threshold value M for the accumulation of u, over which the prey-tactic cross-diffusion
χ (u) vanishes. That is the statement that the author proves.

Theorem 1.1 Suppose that χ (u) satisfies:
(i) χ (u) ∈ C1([0, +∞));

(ii) χ (u) ≡ 0 for u ≥ M, with M > 0;
(iii) |χ ′(u1) – χ ′(u2)| ≤ L|u1 – u2| for u1, u2 ∈ [0, +∞), with L > 0,

then we see that the solutions to (1.1) are global and uniformly bounded in time.

The remainder of this paper is organized as follows. In Sect. 2, we propose some pre-
liminary results, which are essential to the proof of Theorem 1.1. Section 3 illustrates the
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proof of our main theorem, the global boundedness of solutions, based, mainly, on the use
of the standard Moser iterative technique.

2 Preliminaries
In this section we state the following lemmas which are essential in the proofs of Theo-
rem 1.1. The first is the global existence of classical solutions to (1.1).

Lemma 2.1 Under the assumptions for χ (u) and initial data in the paper, there exists a
unique solution (u, v) ∈ (C2+α,1+ α

2 (� × (0, T)))2 of (1.1) for any given T > 0.

The proof of Lemma 2.1 is similar to the proof of Theorem 3.5 in [14]. Hence, we omit
it. The second is on the boundedness of v.

Lemma 2.2 Let (u, v) ∈ (C2+α,1+ α
2 (� × (0, T)))2 be a solution of (1.1). Then u ≥ 0 and 0 ≤

v ≤ K0 = max{max� v0(x), K}.

The proof of the lemma is based on the comparison principle of Ordinary Differential
Equations (ODEs). Refer to the proof of Lemma 3.1 in [14] for the details.

The next lemma is the well-known classical Lp –Lq estimate for the Neumann heat semi-
group on bounded domains.

Lemma 2.3 Suppose (et�)t>0 is the Neumann heat semigroup in �, and λ1 > 0 denotes
the first nonzero eigenvalue of –� in � under Neumann boundary conditions. Then the
following Lp – Lq estimates hold with C1, C2 > 0 only depending on �:

(i) if 1 ≤ q ≤ p ≤ +∞, then

∥
∥∇et�w

∥
∥

Lp(�) ≤ C1
(
1 + t– 1

2 – n
2 ( 1

q – 1
p ))e–λ1t‖w‖Lp(�), t > 0

for all w ∈ Lq(�);
(ii) if 2 ≤ q ≤ p < +∞, then

∥
∥∇et�w

∥
∥

Lp(�) ≤ C2
(
1 + t– n

2 ( 1
q – 1

p ))e–λ1t‖∇w‖Lp(�), t > 0

for all w ∈ W 1,q(�).

Lemma 2.4 Suppose that T ∈ (0,∞] and that � ⊂ R
n, n ≥ 1, is a bounded domain, and

that D, f and g comply with D ∈ C1(� × [0, T) × [0,∞)) and D ≥ 0, f ∈ C0((0, T); C0(�) ∩
C1(�)) and g ∈ C0(� × (0, T)) with f · v ≤ 0 on ∂� × (0, T). Moreover, assume that
D(x, t, s) ≥ δsm–1, f ∈ L∞((0, T); Lq1 (�)) and g ∈ L∞((0, T); Lq2 (�)) for all x ∈ �, t ∈ (0, T),
δ > 0 and s ≥ s0 and for some δ > 0, m ∈ R and s0 ≥ 1, and some q1 > n + 2 and q2 > n+2

2 .
Then if u ∈ C0(� × [0, T)) ∩ C2,1(� × [0, T)) is a nonnegative function satisfying

⎧
⎨

⎩

ut ≤ ∇ · (D(x, t, u)∇u) + ∇ · f (x, t) + g(x, t), x ∈ �, t ∈ (0, T),

∂νu(x, t) ≤ 0, x ∈ ∂�, t ∈ (0, T),

and if u ∈ L∞((0, T); Lp0 (�)) is valid for some p0 ≥ 1 fulfilling

p0 > 1 – m · (n + 1)q1 – (n + 2)
q1 – (n + 2)
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and

p0 > 1 –
m

1 – nq2
(n+2)(q2–1)

as well as

p0 >
n(1 – m)

2
,

then there exists C > 0, only depending on m, δ, �, ‖f ‖L∞((0,T);Lq1 (�)), ‖g‖L∞((0,T);Lq2 (�)),
‖u‖L∞((0,T);Lq0 (�)) and ‖u(0)‖L∞(�), such that

∥
∥u(t)

∥
∥

L∞(�) ≤ C

for all t ∈ (0, T).

Refer to the proof of Lemma A.1 in [15] for the details.

3 Proof of main result
In this section, we will deal with the proof of the main result of the paper.

Proof of Theorem 1.1 The proof consists of four parts.
Part 1: Boundedness of ‖u‖L1(�).
Integrate the sum of the γ times of the first equation and the δ times of the second

equation in (1.1) on � by parts,

d
dt

∫

�

γ u +
d
dt

∫

�

δv = –aγ

∫

�

u + rδ
∫

�

v –
rδ
K

∫

�

v2. (3.1)

Employing Young’s inequality, we have

2rδ
∫

�

v ≤ rδ
K

∫

�

v2 + Krδ|�|.

Setting the last inequality into (3.1), we obtain

d
dt

∫

�

γ u +
d
dt

∫

�

δv = –aγ

∫

�

u + rδ
∫

�

v –
rδ
K

∫

�

v2

≤ –aγ

∫

�

u – rδ
∫

�

v + Krδ|�|. (3.2)

Define

y1(t) =
∫

�

γ u +
∫

�

δv, t > 0.

Then

y′
1(t) + k1y1(t) ≤ k2
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for all t > 0 by (3.2) with k1 = min{a, r} and k2 = Krδ|�|. This ensures

y1(t) ≤ C1 = max

{

y1(0),
k2

k1

}

for all t > 0 by the comparison principle of ordinary differential equations.
Part 2: Boundedness of ‖u‖Lp(�) with p > 2.
Multiplying the first equation in (1.1) by up–1 and integrate on � by parts. Since v ≤ K0

by Lemma 2.1, we have

∫

�

ut · up–1 –
∫

�

d1�u · up–1 = –a
∫

�

up + δ

∫

�

upv
βu + v + α

.

Now, we need to prove the following inequality:

(p – 1)
∫

�

χ (u)up–1∇u · ∇v ≤ d1(p – 1)
2

∫

�

up–2|∇u|2 +
p – 1
2d1

∫

�

χ2(u)up|∇v|2.

By simplifying the problem, we only need to prove

χ (u)up–1∇u · ∇v ≤ d1

2
up–2|∇u|2 +

1
2d1

χ2(u)up|∇v|2.

Applying Young’s inequality with ε (ab ≤ ε
p ap + ε

– q
p

q bq) and setting p = q = 2, ε = d1,
a = u

p–2
2 ∇u and b = χ (u)u

p
2 ∇v, we obtain

χ (u)up–1∇u · ∇v = χ (u)u
p–2

2 + p
2 ∇u · ∇v =

(
u

p–2
2 ∇u

) · (χ (u)u
p
2 ∇v

)

≤ d1

2
up–2|∇u|2 +

1
2d1

χ2(u)up|∇v|2.

Multiplying the inequality by (p – 1) and integrating on � by parts yield

(p – 1)
∫

�

χ (u)up–1∇u · ∇v ≤ d1(p – 1)
2

∫

�

up–2|∇u|2 +
p – 1
2d1

∫

�

χ2(u)up|∇v|2.

Multiply the first equation of u in (1.1) by up–1 and integrate on � by parts. Since v ≤ K0

by Lemma 2.1, we have

∫

�

ut · up–1 –
∫

�

d1�u · up–1 +
∫

�

∇ · (uχ (u)∇v
) · up–1

= –a
∫

�

up + δ

∫

�

upv
βu + v + α

.

According to

∫

�

ut · up–1 =
1
p

∫

�

pup–1 · ut =
1
p

∫

�

d
dt

up =
1
p

d
dt

∫

�

up,
∫

�

d1 · ∇ · (∇u · up–1) = d1

∫

�

�u · up–1 + d1(p – 1)
∫

�

up–2|∇u|2 = 0,
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and
∫

�

∇ · (uχ (u)∇v
) · up–1 + (p – 1)

∫

�

χ (u)up–1∇u · ∇v = 0,

we have

1
p

d
dt

∫

�

up + d1(p – 1)
∫

�

up–2|∇u|2

= –a
∫

�

up + δ

∫

�

upv
βu + v + α

+ (p – 1)
∫

�

χ (u)up–1∇u · ∇v

≤ –a
∫

�

up + δ

∫

�

upv
v + α

+
d1(p – 1)

2

∫

�

up–2|∇u|2 +
p – 1
2d1

∫

�

χ2(u)up|∇v|2

≤
(

–a +
δK0

α + K0

)∫

�

up +
d1(p – 1)

2

∫

�

up–2|∇u|2 +
p – 1
2d1

∫

�

χ2(u)up|∇v|2.

Consequently, together with χ (u) ≤ M1 due to χ (u) ∈ C1 and χ ≡ 0 for u ≥ M, we have

1
p

d
dt

∫

�

up +
d1(p – 1)

2

∫

�

up–2|∇u|2

≤
(

–a +
δK0

α + K0

)∫

�

up +
p – 1
2d1

∫

�

χ2(u)up|∇v|2

≤
(

–a +
δK0

α + K0

)∫

�

up +
(p – 1)M2

1Mp

2d1

∫

�

|∇v|2. (3.3)

Multiply the second equation of v in (1.1) by –�v, and integrate on � by parts to obtain

d
dt

∫

�

|∇v|2 + 2d2

∫

�

|�v|2

= 2r
∫

�

|∇v|2 –
4r
K

∫

�

v|∇v|2 + 2γ

∫

�

uv
βu + v + α

�v

≤ 2r
∫

�

|∇v|2 + 2γ

∫

�

uv
βu + v + α

�v

≤ 2r
∫

�

|∇v|2 + 2γ

∫

�

uv
βu + v + α

|�v|

≤ 2r
∫

�

|∇v|2 + 2γ

∫

�

uv
v + α

|�v|

≤ 2r
∫

�

|∇v|2 +
2γ K0

K0 + α

∫

�

u|�v|.

Employing Young’s inequality, we have

2γ K0

K0 + α

∫

�

u|�v| ≤ ε

2

∫

�

|�v|2 +
2γ 2K2

0
ε(K0 + α)2

∫

�

u2.

Setting ε = 2d2, we obtain

d
dt

∫

�

|∇v|2 + d2

∫

�

|�v|2 ≤ 2r
∫

�

|∇v|2 γ 2K2
0

d2(K0 + α)2

∫

�

u2. (3.4)



Luo Boundary Value Problems  (2018) 2018:33 Page 7 of 11

According to

d1(p – 1)
∫

�

up–2|∇u|2 = d1(p – 1)
∫

�

u
p–2

2 ·2|∇u|2

=
4d1(p – 1)

p2

∫

�

(
p
2

)2

u( p
2 –1)·2|∇u|2

=
4d1(p – 1)

p2

∫

�

∣
∣∇u

p
2
∣
∣2,

for p > 2, we know from (3.4) and the last equality by Young’s inequality that

1
p

d
dt

∫

�

up +
d
dt

∫

�

|∇v|2 +
2d1(p – 1)

p2

∫

�

∣
∣∇u

p
2
∣
∣2 + d2

∫

�

|�v|2

≤
(

–a +
δK0

α + K0

)∫

�

up +
(p – 1)M2

1Mp

2d1

∫

�

|∇v|2

+ 2r
∫

�

|∇v|2 +
γ 2K2

0
d2(K0 + α)2

∫

�

u2

≤
(

–a +
δK0

α + K0
+ 1

)∫

�

up +
(

2r +
(p – 1)M2

1Mp

2d1

)∫

�

|∇v|2 + k3 (3.5)

with k3 = γ 2K2
0 M2|�|

d2(K0+α)2 > 0.
For

∫

�
|∇v|2, applying the Sobolev interpolation inequality,

∥
∥Djv

∥
∥

p,� ≤ ε
∥
∥Dkv

∥
∥

p,� + C‖v‖p,�,

setting j = 1, k = 2, p = 2, and integrating on � by parts, it is easy to see that

∫

�

|∇v|2 ≤ ε1

∫

�

|�v|2 + k4

∫

�

|v|2 ≤ ε1

∫

�

|�v|2 + k4K2
0 |�| = ε1

∫

�

|�v|2 + k5 (3.6)

depending on ε1.
For

∫

�
up, by the Gagliardo–Nirenberg inequality with u ≥ 0, we obtain

∫

�

up =
∫

�

∣
∣u

p
2
∣
∣2 ≤ k6

(∥
∥∇u

p
2
∥
∥

2Np–2N
Np–N+2
2 · ∥∥u

p
2
∥
∥

4
Np–N+2
2
p

+
∥
∥u

p
2
∥
∥2

2
p

)

= k6
(∥
∥∇u

p
2
∥
∥2θ

2 · ∥∥u
p
2
∥
∥2(1–θ )

2
p

+
∥
∥u

p
2
∥
∥2

2
p

)
(3.7)

with k6 > 0 and 0 < θ = Np–N
Np–N+2 < 1. Applying Young’s inequality yields

∥
∥∇u

p
2
∥
∥2θ

2 · ∥∥u
p
2
∥
∥2(1–θ )

2
p

≤ εθ
∥
∥∇u

p
2
∥
∥2

2 + ε
θ

θ–1 (1 – θ )
∥
∥u

p
2
∥
∥2

2
p
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with ε > 0. Setting the last estimate into (3.7), we see that

∫

�

up =
∫

�

∣
∣u

p
2
∣
∣2 ≤ k6

(∥
∥∇u

p
2
∥
∥2θ

2 · ∥∥u
p
2
∥
∥2(1–θ )

2
p

+
∥
∥u

p
2
∥
∥2

2
p

)

≤ k6
(
εθ

∥
∥∇u

p
2
∥
∥2

2 + ε
θ

θ–1 (1 – θ )
∥
∥u

p
2
∥
∥2

2
p

+
∥
∥u

p
2
∥
∥2

2
p

)

= k6εθ
∥
∥∇u

p
2
∥
∥2

2 + k6ε
θ

θ–1 (1 – θ )
∥
∥u

p
2
∥
∥2

2
p

+ k6
∥
∥u

p
2
∥
∥2

2
p

= k6εθ
∥
∥∇u

p
2
∥
∥2

2 + k6
[
ε

θ
θ–1 (1 – θ ) + 1

]∥
∥u

p
2
∥
∥2

2
p

= ε2
∥
∥∇u

p
2
∥
∥2

2 + k7
∥
∥u

p
2
∥
∥2

2
p

= ε2
∥
∥∇u

p
2
∥
∥2

2 + k7‖u‖p
1

for any ε2 > 0, with k7 > 0 depending on ε2. Because of ‖u‖1 ≤ A1 by Step 1, we know that

∫

�

up ≤ ε2
∥
∥∇u

p
2
∥
∥2

2 + k7Ap
1 = ε2

∥
∥∇u

p
2
∥
∥2

2 + k8 (3.8)

with k8 = k7Ap
1 > 0.

Now, we need to consider the value of ε1 and ε2. Fix them with

(

2r +
(p – 1)M2

1Mp

2d1

)

ε1 =
d2

2

and
(

δK0

α + K0
+ 1

)

ε2 =
2d1(p – 1)

p2 .

We have from (3.5), (3.6) and (3.8) that

1
p

d
dt

∫

�

up +
d
dt

∫

�

|∇v|2 +
(

δK0

α + K0
+ 1

)

ε2

∫

�

∣
∣∇u

p
2
∣
∣2

+ 2
(

2r +
(p – 1)M2

1Mp

2d1

)

ε1

∫

�

|�v|2

≤
(

–a +
δK0

α + K0
+ 1

)∫

�

up +
(

2r +
(p – 1)M2

1Mp

2d1

)∫

�

|∇v|2 + k3

≤ –a
∫

�

up +
(

δK0

α + K0
+ 1

)

ε2
∥
∥∇u

p
2
∥
∥2

2 +
(

δK0

α + K0
+ 1

)

k8

+
(

2r +
(p – 1)M2

1Mp

2d1

)

ε1

∫

�

|�v|2 +
(

2r +
(p – 1)M2

1Mp

2d1

)

k5 + k3.

Obviously,

1
p

d
dt

∫

�

up +
d
dt

∫

�

|∇v|2

≤ –a
∫

�

up –
(

2r +
(p – 1)M2

1Mp

2d1

)

ε1

∫

�

|�v|2
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+
[(

δK0

α + K0
+ 1

)

k8 +
(

2r +
(p – 1)M2

1Mp

2d1

)

k5 + k3

]

= –a
∫

�

up –
(

2r +
(p – 1)M2

1Mp

2d1

)(

ε1

∫

�

|�v|2 + k5

)

+
[(

δK0

α + K0
+ 1

)

k8 + 2
(

2r +
(p – 1)M2

1Mp

2d1

)

k5 + k3

]

≤ –a
∫

�

up –
(

2r +
(p – 1)M2

1Mp

2d1

)∫

�

|∇v|2 + k9

with k9 = ( δK0
α+K0

+ 1)k8 + 2(2r + (p–1)M2
1Mp

2d1
)k5 + k3 > 0. Therefore, we define the function

y2(t) =
1
p

∫

�

up +
∫

�

|∇v|2, t > 0,

satisfies

y′
2(t) + k10y2(t) ≤ k9

for all t > 0 with k10 = min{2r + (p–1)M2
1Mp

2d1
, pa}. This also ensures

y2(t) ≤ C2 = max

{

y2(0),
k9

k10

}

for all t > 0 by the comparison principle of ordinary differential equations.
Part 3: Boundedness of ‖∇v‖Lp(�) with p > 2.
We can define f (u, v) = rv – r

K v2 – γ uv
βu+v+α

. It follows from Part 2 and Lemma 2.3 that there
exists C3 > 0 such that

sup
t>0

∥
∥f (u, v)

∥
∥

Lp(�) ≤ C3 < +∞.

By the variation-of-constants formula for v, we have

v(·, t) = ed2t�v0 +
∫ t

0
ed2(t–s)�f

(
u(s), v(s)

)
ds, t > 0.

Because of Lemma 2.3, we can draw the conclusion that

‖∇v‖Lp(�)

=
∥
∥
∥
∥∇ed2t�v0 +

∫ t

0
∇ed2(t–s)�f

(
u(s), v(s)

)
ds

∥
∥
∥
∥

Lp(�)

≤ ∥
∥∇ed2t�v0

∥
∥

Lp(�) +
∥
∥
∥
∥

∫ t

0
∇ed2(t–s)�f

(
u(s), v(s)

)
ds

∥
∥
∥
∥

Lp(�)

≤ C2
(
1 + d2t– n

2 ( 1
q – 1

p ))e–λ1d2t‖∇v0‖Lp(�) +
∫ t

0

∥
∥∇ed2(t–s)�f

(
u(s), v(s)

)∥
∥

Lp(�) ds

≤ 2C2e–λ′
1t‖∇v0‖Lp(�) + C1

∫ t

0

(
1 + d– 1

2
2 (t – s)– 1

2
)
e–λ′

1(t–s)∥∥f
(
u(s), v(s)

)∥
∥

Lp(�) ds
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≤ 2C2e–λ′
1t‖∇v0‖Lp(�) + C1C3

∫ t

0

(
1 + d– 1

2
2 s– 1

2
)
e–λ′

1s ds

≤ 2C2‖∇v0‖Lp(�) + C1C3

(
1
λ′

1
+ d– 1

2
2

(

2 +
1
λ′

1

))

for all t > 0. Therefore, ‖∇v‖Lp(�) is global bounded.
Part 4: Global boundedness.
Based on Part 2, Part 3 and Lemma 2.4, the global boundedness of solutions can be

proved by using the standard Moser iterative technique. The proof is complete. �

If we take the parameter β close to 0 then the model can be regarded as a Holling-type II
predator–prey model (1.2). Therefore, we can obtain the following corollary.

Corollary 3.1 Under the assumptions for χ (u) and initial data described above, the
unique nonnegative classical solution of (1.2) is globally bounded.

On the other hand, if we take the parameter α close to 0 then the model can be though
of a ratio-dependent predator–prey model (1.3). That is the statement of the corollary we
are trying to illustrate.

Corollary 3.2 Under the assumptions for χ (u) and initial data described above, the
unique nonnegative classical solution of (1.3) is globally bounded.

Remark 3.3 It is well known that the global boundedness of solutions in a reaction–
diffusion system is a comparatively effortless outcome to the corresponding predator–
prey model. The existence of a prey-taxis term in (1.1) makes it massively hard to obtain
the global boundedness, and even the global existence of solutions. In addition, the prey-
taxis term ∇ · (uχ (u)∇v) contained in the corresponding predator–prey model means that
χ (u) ≡ 0 whenever u ≥ M, where the maximal density M serves as a switch to repulsion
at high densities of the predator population, extremely similar to the prevention of over-
crowding for chemotaxis or volume-filling effect. Therefore, the global boundedness of
solutions in a reaction–diffusion system of Beddington–DeAngelis-type predator–prey
model with prey-taxis established by way of Theorem 1.1 should be reasonable and natu-
ral.
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