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Abstract
In this paper, several different conserving compact finite difference schemes are
developed for solving a class of nonlinear Schrödinger equations with wave operator.
It is proved that the numerical solutions are bounded and the numerical methods
can achieve a convergence rate ofO(τ 2 + h4) in the maximum norm. Moreover, by
applying Richardson extrapolation, the proposed methods have a convergence rate
ofO(τ 4 + h4) in the maximum norm. Finally, several numerical experiments are
presented to illustrate the theoretical results.
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1 Introduction
This paper is concerned with the construction of several conservative compact schemes
for the following generalized nonlinear Schrödinger equation (NLSE) with wave opera-
tor:

utt – uxx + iαut + β(x)f
(|u|2)u = 0, x ∈ (0, L), t ∈ (0, T), (1.1)

u(x, 0) = φ0(x), ut(x, 0) = φ1(x), x ∈ [0, L], (1.2)

u(0, t) = u(L, t) = 0, t ∈ [0, T], (1.3)

where u(x, t) is a complex function, α is a real constant, β and f are given real functions,
and i2 = –1. NLSE is one of the most important mathematical models with many applica-
tions in different fields such as plasma physics [1], nonlinear optics [2–5], and bimolecular
dynamics [6–8]. One remarkable feature of the model is its conservation law having the
form of

E(t) = ‖ut‖2
L2 + ‖ux‖2

L2 +
∫ L

0
β(x)F

(|u|2)dx = E(0), (1.4)

where F(s) =
∫ s

0 f (z) dz.
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In the past several years, much attention has been paid to developing effective numer-
ical methods to solve the NLSE. For example, Bao and Cai [9] established uniform error
estimates of finite difference methods for NLSEs with wave operator. Sun and Wang [10]
investigated linearized finite difference methods for solving the NLSE. Chang et al. [11]
presented several linearized finite difference schemes by applying an extrapolation tech-
nique to the real coefficient of the nonlinear term. Goubet and Hamraoui [12] presented
both numerical and theoretical invariability of energy and mass with finite time for two-
dimensional cubic nonlinear Schrödinger equations with a radial defect. Generally speak-
ing, the computational cost can be reduced by applying the linearized numerical methods.
As a result, the linearized methods have been extensively investigated for many different
nonlinear differential equations, e.g., [13–21]. However, the nonconservative linearized
schemes may give blow-up solutions [22].

Recently, many numerical methods have been developed based on the conservation laws
of (1.1). For example, Brugnano et al. [23] considered a class of energy-conserving Hamil-
tonian boundary value methods for the equations. In [24], Zhang and Chang proposed a
four-level explicit and conservative scheme. Wang and Zhang [25] developed some differ-
ent conservative schemes based on some special techniques on the nonlinear terms. Hu
and Chan [26] further considered a conservative difference scheme for two-dimensional
NLSE. In [24, 26], the proposed methods have second order accuracy in spatial direc-
tion. In order to improve accuracy in spatial direction, Guo et al. [27] and Cao et al. [28]
introduced the energy conserving LDG methods and obtained optimal convergence or su-
perconvergence of the method. Li et al. [29, 30] introduced the compact finite difference
methods and investigated fully discrete numerical schemes for cubic NLSE with wave op-
erator (i.e., f (s) = s). As far as we know, there are few results on construction of conser-
vative compact finite difference methods for the generalized NLSE with wave operator
(1.1).

In this study, several compact finite difference schemes are developed for solving the
generalized NLSE with wave operator (1.1). It is shown that the fully discrete numerical
methods conserve the discrete energy. Then, the boundedness of numerical solutions and
the stability of numerical methods are obtained. It is also proved that the numerical meth-
ods can attain a convergence rate of O(τ 2 + h4) in the maximum norm. Here and below, τ
and h are respectively the temporal and spatial stepsizes. Besides, by applying the Richard-
son extrapolation algorithm, the proposed methods have a convergence rate of O(τ 4 + h4)
in the maximum norm. Finally, several numerical experiments are proposed to illustrate
all the theoretical results.

The rest of the paper is organized as follows. In Sect. 2, a compact difference scheme
is given. In Sect. 3, the discrete conservation law of the compact scheme is obtained. In
Sect. 4, the boundedness of numerical solutions is obtained. In Sect. 5, stability and con-
vergence are proved. In Sect. 6, several conservative compact schemes are constructed for
the nonlinear Schrödinger equation with wave operator. Moreover, the Richardson ex-
trapolation technique is used. In the last section, numerical experiments are presented to
support theoretical results.

Throughout the paper, we set C as a general positive constant independent of mesh
sizes, which may be changed under different circumstances.
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2 Finite difference scheme
Let τ = T

N and h = L
J be the temporal and spatial stepsizes, respectively, where J and N are

given positive integers. Denote tn = nτ (0 ≤ n ≤ N ), xj = jh (0 ≤ j ≤ J), �τ = {tn|0 ≤ n ≤ N},
and �h = {xj|0 ≤ j ≤ J}. Let W0

h = {wn
j |wn

0 = wn
J = 0, j = 1, 2, . . . , J – 1, n = 1, . . . , N – 1} be a

grid function space defined on �h × �τ . Define

δxwn
j =

wn
j+1 – wn

j

h
, δx̄wn

j =
wn

j – wn
j–1

h
,

δ2
x wn

j = δxδx̄wn
j =

1
h2

(
wn

j+1 – 2wn
j + wn

j–1
)
,

δt̂wn
j =

wn+1
j – wn–1

j

2τ
, δt̄wn

j =
wn

j – wn–1
j

τ
,

δtwn
j =

wn+1
j – wn

j

τ
,

δ2
t wn

j = δtδt̄wn
j =

1
τ 2

(
wn+1

j – 2wn
j + wn–1

j
)
,

Ahwn
j =

1
12

(
wn

j–1 + 10wn
j + wn

j+1
)
,

(
wn, vn) = h

J–1∑

j=1

wn
j v̄n

j ,
∥∥wn∥∥ =

√√
√√h

J–1∑

j=1

∣∣wn
j
∣∣2,

∥∥δxwn∥∥ =

√√
√√h

J–1∑

j=0

∣∣δxwn
j
∣∣2,

∥∥wn∥∥∞ = max
1≤j≤J–1

∣∣wn
j
∣∣,

(2.1)

where wn = (wn
1, . . . , wn

J–1)T , vn = (vn
1, . . . , vn

J–1)T .
At the grid point (xj, tn), we define Un

j as the exact solution and un
j as the numerical

solution. We also assume that the exact solution of problem (1.1)–(1.3) satisfies

max
{∥∥Un∥∥,

∥∥δxUn∥∥,
∥∥Un∥∥∞

} ≤ C.

Now, we present a compact difference scheme for problem (1.1)–(1.3) as follows:

Ahδ
2
t un

j – δ2
x un

j + iαAhδt̂un
j + Ah

[
β(xj)

F(|un+1
j |2) – F(|un–1

j |2)
|un+1

j |2 – |un–1
j |2

un+1
j + un–1

j

2

]
= 0,

1 ≤ j ≤ J – 1, 1 ≤ n ≤ N – 1, (2.2)

u0
j = φ0(xj), δt̂u(xj, 0) = φ1(xj), 0 ≤ j ≤ J , (2.3)

un
0 = un

J = 0, 0 ≤ n ≤ N . (2.4)

Denote

un =
(
un

1, . . . , un
J–1

)T ,

G
(∣∣un∣∣2) = diag

(
β(x1)

F(|un+1
1 |2) – F(|un–1

1 |2)
|un+1

1 |2 – |un–1
1 |2 , . . . ,β(xJ–1)

F(|un+1
J–1 |2) – F(|un–1

J–1 |2)
|un+1

J–1 |2 – |un–1
J–1 |2

)T

,
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S =

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

0 1 0 . . . 0 0
1 0 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 1
0 0 0 . . . 1 0

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

(J–1)×(J–1)

, (2.5)

M =
1

12
(10I + S), A =

1
h2 (–2I + S), (2.6)

where I is an identity matrix.
Since M is a symmetric positive definite matrix, there exists a real symmetric positive

definite matrix H such that H = M–1. Then scheme (2.2)–(2.4) can be written in the fol-
lowing vector form:

δ2
t un – HAun + iαδt̂un + G

(∣∣un∣∣2)un+1 + un–1

2
= 0, 1 ≤ n ≤ N – 1, (2.7)

u0
j = φ0(xj), δt̂u0

j = φ1(xj), 0 ≤ j ≤ J , (2.8)

un
0 = un

J = 0, 0 ≤ n ≤ N . (2.9)

3 Discrete conservation law
In this section, we will show that the numerical scheme owns the discrete conservation
law. First of all, we introduce some lemmas, which will assist a lot in the proof of the main
result.

Lemma 3.1 (cf. [31]) The eigenvalues λ
j
S of matrix S are 2 cos( jπ

J ) (j = 1, 2, . . . , J – 1). Then

the eigenvalues of matrices H, A, and HA are 12
10+λ

j
S

, –2+λ
j
S

h2 , 12(–2+λ
j
S)

h2(10+λ
j
S)

(j = 1, 2, . . . , J – 1), re-

spectively.

Lemma 3.2 For any mesh function u ∈ W0
h and real symmetric positive definite matrices

H and A, we obtain that –HA is a symmetric positive definite matrix and

–(HAu, u) = ‖Ru‖2, (3.1)

where R is obtained by Cholesky decomposition for –HA, denoted as R = Chol(–HA).

Proof It follows from M = 1
12 (10I + S) and A = 1

h2 (–2I + S) that

MA =
1

12h2 (10I + S)(–2I + S) =
1

12h2

(
–20I + 8S + S2) = AM.

Therefore, AH = HA, which implies that (–AH)T = –AH.
In virtue of Lemma 3.1, we can obtain

0 ≤ λ
j
–HA = –

12(–2 + λ
j
S)

h2(10 + λ
j
S)

≤ 6
h2 (j = 1, 2, . . . , J – 1).

Hence, –HA is a symmetric positive definite matrix. The proof is completed. �
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Define

En =
∥
∥δtun∥∥2 +

1
2
(∥∥Run∥∥2 +

∥
∥Run+1∥∥2) –

τ 2

2
∥
∥Rδtun∥∥2

+
h
2

J–1∑

j=1

βj
[
F
(∣∣un

j
∣∣2) + F

(∣∣un+1
j

∣∣2)]. (3.2)

Then we get the following energy preserving property for the fully discrete numerical
scheme (2.7)–(2.9).

Theorem 3.3 The numerical solutions obtained by the fully discrete numerical scheme
(2.7)–(2.9) admit: for all n ≥ 0, En = E0.

Proof Taking the inner product on both sides of (2.7) with un+1 – un–1 and considering the
real part, we arrive at

Re
(
δ2

t un, un+1 – un–1) =
∥∥δtun∥∥2 –

∥∥δtun–1∥∥2, (3.3)

Re
(
HAun, un+1 – un–1)

= –
1
2
(∥∥Run+1∥∥2 –

∥
∥Run–1∥∥2) +

τ 2

2
(∥∥Rδtun∥∥2 –

∥
∥Rδtun–1∥∥2), (3.4)

Re
(
iαδt̂un, un+1 – un–1) = 0, (3.5)

Re

(
G

(∣∣un∣∣2)un+1 + un–1

2
, un+1 – un–1

)

=
h
2

J–1∑

j=1

βj
[
F
(∣∣un+1

j
∣∣2) – F

(∣∣un–1
j

∣∣2)]. (3.6)

From (3.3)–(3.6), we have

∥
∥δtun∥∥2 –

∥
∥δtun–1∥∥2 +

1
2
(∥∥Run+1∥∥2 –

∥
∥Run–1∥∥2)

–
τ 2

2
(∥∥Rδtun∥∥2 –

∥∥Rδtun–1∥∥2)

+
h
2

J–1∑

j=1

βj
[
F
(∣∣un+1

j
∣∣2) – F

(∣∣un–1
j

∣∣2)] = 0,

which further implies that, for n ≥ 1,

En = En–1.

Therefore, the conclusion holds. �

4 Boundedness of numerical solutions
In this section, we present the boundedness of numerical solutions.
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Lemma 4.1 (see [32]) For any mesh function u, v ∈W0
h , there is the identity

–h
J–1∑

j=1

(
δ2

x uj
)
v̄j = h

J–1∑

j=0

(δxuj)(δxv̄j),

which implies that –(Au, u) = ‖δxu‖2.

Lemma 4.2 (cf. [33]) For any symmetric matrix N, the property of Rayleigh–Ritz ratio is

min[λN ] ≤ (Nx, x)
(x, x)

≤ max[λN ],

where (x, y) indicates the inner product of x and y, min[λN ] and max[λN ] denote the small-
est and largest eigenvalue of matrix N, respectively.

Lemma 4.3 For any mesh function u ∈ W0
h , it holds that –(Au, u) ≤ –(HAu, u). That is,

‖δxu‖ ≤ ‖Ru‖.

Proof It follows from HA = AH and AT = A that A–AH is a symmetric matrix. According
to Sx = λ

j
Sx, we obtain

Hx =
12

10 + λ
j
S

x, Ax =
1
h2

(
–2 + λ

j
S
)
x. (4.1)

Therefore,

(I – H)x =
(

1 –
12

10 + λs
j

)
x =

1
h2

(
1 –

12
10 + λ

j
S

)
(
–2 + λ

j
S
)
A–1x. (4.2)

Then the eigenvalues of A – AH are given by (–2+λ
j
S)2

h2(10+λ
j
S)

. As a result, A – AH is a symmetric

and positive definite matrix.
Further, for u ∈W0

h , we get uT (A – AH)u ≥ 0, which completes the proof. �

Lemma 4.4 (cf. [24]) For any mesh function un ∈W0
h , there is

∥
∥un+1∥∥2 –

∥
∥un∥∥2 ≤ τ

[∥
∥δtun∥∥2 +

1
2
(∥∥un∥∥2 +

∥
∥un+1∥∥2)

]
.

Lemma 4.5 (Discrete Sobolev’s inequality [34]) Suppose that {uj} is mesh functions. Given
ε > 0, there exists a constant C dependent on ε such that

‖u‖∞ ≤ ε‖δxu‖ + C‖u‖.

Lemma 4.6 Suppose that φ0 ∈ H1
0 , φ1 ∈ L2, β(x) ≥ 0, F(s) ≥ 0, s ∈ [0, +∞), β , f ′ ∈ C1(R),

and τ2

h2 < 1
3 . Then the following estimates hold:

∥
∥un∥∥ ≤ C,

∥
∥δxun∥∥ ≤ C,

∥
∥un∥∥∞ ≤ C. (4.3)



Cheng and Wu Boundary Value Problems  (2018) 2018:40 Page 7 of 17

Proof It follows from Theorem 3.3 that there exists a constant C such that

En =
∥∥δtun∥∥2 +

1
2
(∥∥Run∥∥2 +

∥∥Run+1∥∥2) –
τ 2

2
∥∥Rδtun∥∥2

+
h
2

J–1∑

j=1

βj
(
F
(∣∣un

j
∣∣2) + F

(∣∣un+1
j

∣∣2)) = C. (4.4)

Applying Lemma 3.1 and Lemma 4.2, we can deduce that

–
τ 2

2
∥
∥Rδtun∥∥2 ≥ –

3τ 2

h2

∥
∥δtun∥∥2. (4.5)

Substituting (4.5) into (4.4), we obtain that

∥
∥δtun∥∥2 +

1
2
(∥∥Run+1∥∥2 +

∥
∥Run∥∥2) –

3τ 2

h2

∥
∥δtun∥∥2 ≤ C. (4.6)

Furthermore, inequality (4.6) can be rewritten as

(
1 –

3τ 2

h2

)∥
∥δtun∥∥2 +

1
2
(∥∥Run+1∥∥2 +

∥
∥Run∥∥2) ≤ C. (4.7)

Noting that (1 – 3τ2

h2 ) > 0, we have

∥∥δtun∥∥ ≤ C,
∥∥Run∥∥ ≤ C.

Applying Lemma 4.4 to ‖δtun‖ ≤ C, we obtain ‖un‖ ≤ C. Using Lemma 4.3, we have
‖δxun‖ ≤ C. Moreover, by Lemma 4.5, it holds that

∥∥un∥∥∞ ≤ C.

Therefore, the proof is completed. �

5 Convergence and stability of the difference scheme
In this section, we focus on the convergence and stability of the numerical scheme. Firstly,
we define the truncation error Ern

j as

Ern
j = δ2

t Un
j – A–1

h δ2
x Un

j + iαδt̂Un
j

+
[
β(xj)

F(|Un+1
j |2) – F(|Un–1

j |2)
|Un+1

j |2 – |Un–1
j |2

Un+1
j + Un–1

j

2

]
. (5.1)

By Taylor’s expansion, it is easy to check that

∣
∣Ern

j
∣
∣ ≤ C

(
τ 2 + h4).

Before the proof of convergence, we introduce discrete Gronwall’s inequality.
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Lemma 5.1 (Discrete Gronwall’s inequality [35]) Suppose that the discrete function wn

satisfies the recurrence formula

wn – wn–1 ≤ aτwn + bτwn–1 + cnτ ,

where a, b and cn (n = 1, . . . , N ) are nonnegative constants. Then

max
1≤n≤N

|wn| ≤
(

w0 + τ

N∑

k=1

ck

)

e2(a+b)T ,

where τ is small such that (a + b)τ ≤ N–1
2N (N > 1).

Theorem 5.2 Suppose that φ0 ∈ H1
0 , φ1 ∈ L2, β(x) ≥ 0, F(s) ≥ 0, s ∈ [0, +∞), β , f ′ ∈ C1(R),

and τ2

h2 < 1
3 , then the solution un of difference problem (2.7)–(2.9) converges to the solution

of problem (1.1)–(1.3) with order O(τ 2 + h4) in the maximal norm.

Proof Let Ern = (Ern
1 , . . . , Ern

J–1)T and en = Un – un. Firstly, subtracting (2.2) from the vector
form of (5.1), the error equations satisfy

Ern = δ2
t en – HAen + iαδt̂en + G

(
Un)Un+1 + Un–1

2
– G

(
un)un+1 + un–1

2

= δ2
t en – HAen + iαδt̂en + G

(
Un)en+1 + en–1

2

+
(
G

(
Un) – G

(
un))un+1 + un–1

2
. (5.2)

Computing the inner product with both sides of (5.2) with δt̂en and considering the real
part, we obtain

Re
(
Ern, δt̂en)

=
1

2τ

(∥∥δten∥∥2 –
∥
∥δten–1∥∥2) +

1
4τ

(∥∥Ren+1∥∥2 –
∥
∥Ren–1∥∥2)

–
τ

4
(∥∥Rδten∥∥2 –

∥
∥Rδten–1∥∥2) + Re

(
G

(
Un)en+1 + en–1

2
, δt̂en

)

+ Re

((
G

(
Un) – G

(
un))un+1 + un–1

2
, δt̂en

)
. (5.3)

Noticing that |G(Un)| ≤ C and f ′(s) ∈ C1, we have

Re
(
Ern, δt̂en) ≤ C

(∥∥Ern∥∥2 +
∥∥δten∥∥2 +

∥∥δten–1∥∥2), (5.4)

Re

(
G

(
Un)en+1 + en–1

2
, δt̂en

)
≤ C

(∥∥en+1∥∥2 +
∥
∥en–1∥∥2 +

∥
∥δten∥∥2 +

∥
∥δten–1∥∥2), (5.5)

Re

((
G

(
Un) – G

(
un))un+1 + un–1

2
, δt̂en

)
≤ C

(∥∥δten∥∥2 +
∥
∥δten–1∥∥2 +

∥
∥en∥∥2). (5.6)

It follows from Lemma 4.4 that

1
τ

(∥∥en∥∥2 –
∥∥en–1∥∥2) ≤ C

(∥∥δten–1∥∥2 +
∥∥en–1∥∥2 +

∥∥en∥∥2). (5.7)
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Substituting (5.4)–(5.6) into (5.3) and combining with (5.7), we obtain

1
2τ

(∥∥δten∥∥2 –
∥∥δten–1∥∥2) +

1
4τ

(∥∥Ren+1∥∥2 –
∥∥Ren–1∥∥2)

+
1
τ

(∥∥en∥∥2 –
∥
∥en–1∥∥2) –

τ

4
(∥∥Rδten∥∥2 –

∥
∥Rδten–1∥∥2)

≤ C
(∥∥Ern∥∥2 +

∥∥δten∥∥2 +
∥∥δten–1∥∥2 +

∥∥en+1∥∥2 +
∥∥en∥∥2 +

∥∥en–1∥∥2). (5.8)

Summing inequalities (5.8) up for n leads to

∥∥δten∥∥2 +
1
2
(∥∥Ren+1∥∥2 +

∥∥Ren∥∥2) + 2
∥∥en∥∥2 –

τ 2

2
∥∥Rδten∥∥2

≤ τC
n∑

i=1

[∥
∥δtei∥∥2 +

1
2
(∥∥Rei+1∥∥2 +

∥
∥Rei∥∥2) + 2

∥
∥ei∥∥2

–
τ 2

2
∥∥Rδtei∥∥2

]
+ CT

(
τ 2 + h4)2. (5.9)

According to Lemma 5.1, it yields that

∥∥δten∥∥2 +
1
2
(∥∥Ren+1∥∥2 +

∥∥Ren∥∥2) + 2
∥∥en∥∥2 –

τ 2

2
∥∥Rδten∥∥2

≤ CT
(
τ 2 + h4)2. (5.10)

Moreover, combining inequality (4.5) and using Lemma 4.2, we get

(
1 –

3τ 2

h2

)∥∥δten∥∥2 +
1
2
(∥∥Ren+1∥∥2 +

∥∥Ren∥∥2) + 2
∥∥en∥∥2

≤ CT
(
τ 2 + h4)2. (5.11)

The rest of the proof of convergence is similar to that of Theorem 4.6. As a result, we have

∥
∥en∥∥∞ ≤O

(
τ 2 + h4). (5.12)

The proof is completed. �

Similarly, we present the stability of difference scheme (2.7)–(2.9).

Theorem 5.3 Under the conditions of Theorem 5.2, the difference scheme (2.7)–(2.9) is
stable for the initial data.

6 Some extensions
In this section, we present several other conservative compact schemes, which conserve
the discrete conservative law. Moreover, we use Richardson extrapolation to improve the
accuracy in the temporal direction.
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6.1 Several conservative compact schemes
In this subsection, the proofs of the boundedness of numerical solutions, the stability and
convergence of numerical schemes are similar to those in the previous sections. We only
list the numerical schemes and the discrete energy conservative laws for all schemes.

Scheme 1

Ahδ
2
t un

j – δ2
x

un+1
j + un–1

j

2
+ iαAhδt̂un

j

+ Ah

[
β(xj)

F(|un+1
j |2) – F(|un–1

j |2)
|un+1

j |2 – |un–1
j |2

un+1
j + un–1

j

2

]
= 0,

1 ≤ j ≤ J – 1, 1 ≤ n ≤ N – 1,

u0
j = φ0(xj), δt̂(xj, 0) = φ1(xj), 0 ≤ j ≤ J ,

un
0 = un

J = 0, 0 ≤ n ≤ N .

The discrete conservative law of Scheme 1 is

En =
∥
∥δtun∥∥2 +

1
2
(∥∥Run∥∥2 +

∥
∥Run+1∥∥2) +

h
2

J–1∑

j=1

βj
[
F
(∣∣un

j
∣
∣2) + F

(∣∣un+1
j

∣
∣2)] = E0.

Scheme 2

Ahδ
2
t un

j – δ2
x

un+1
j + un–1

j

2
+ iαAhδt̂un

j

+ Ah

[
β(xj)

F(
|un+1

j |2+|un
j |2

2 ) – F(
|un

j |2+|un–1
j |2

2 )
|un+1

j |2 – |un–1
j |2

(
un+1

j + un–1
j

)
]

= 0,

1 ≤ j ≤ J – 1, 1 ≤ n ≤ N – 1,

u0
j = φ0(xj), δt̂(xj, 0) = φ1(xj), 0 ≤ j ≤ J ,

un
0 = un

J = 0, 0 ≤ n ≤ N .

The discrete conservative law of Scheme 2 is

En =
∥∥δtun∥∥2 +

1
2
(∥∥Run∥∥2 +

∥∥Run+1∥∥2) + h
J–1∑

j=1

βjF
( |un+1

j |2 + |un
j |2

2

)
= E0.

Scheme 3

Ahδ
2
t un

j – δ2
x un

j + iαAhδt̂un
j

+ Ah

[
β(xj)

F(
|un+1

j |2+|un
j |2

2 ) – F(
|un

j |2+|un–1
j |2

2 )
|un+1

j |2 – |un–1
j |2

(
un+1

j + un–1
j

)
]

= 0,

1 ≤ j ≤ J – 1, 1 ≤ n ≤ N – 1,

u0
j = φ0(xj), δt̂(xj, 0) = φ1(xj), 0 ≤ j ≤ J ,

un
0 = un

J = 0, 0 ≤ n ≤ N .
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The discrete conservative law of Scheme 3 is

En =
∥∥δtun∥∥2 +

1
2
(∥∥Run∥∥2 +

∥∥Run+1∥∥2) –
τ 2

2
∥∥Rδtun∥∥2

+ h
J–1∑

j=1

βjF
( |un+1

j |2 + |un
j |2

2

)
= E0.

Scheme 4

Ahδ
2
t

un+1
j + un

j

2
– δ2

x
un+1

j + un
j

2
+ iαAhδtun

j

+ Ah

[
β(xj)

F(|un+1
j |2) – F(|un

j |2)
|un+1

j |2 – |un
j |2

un+1
j + un

j

2

]
= 0,

1 ≤ j ≤ J – 1, 1 ≤ n ≤ N – 1,

u0
j = φ0(xj), δt̂(xj, 0) = φ1(xj), 0 ≤ j ≤ J ,

un
0 = un

J = 0, 0 ≤ n ≤ N .

The discrete conservative law of Scheme 4 is

En =
1
2
(∥∥δtun∥∥2 +

∥∥δt̄un∥∥2) –
τ 2

2
∥∥δ2

t un∥∥2

+
∥∥Run∥∥2 + h

J–1∑

j=1

βjF
(∣∣un

j
∣∣2) = E0.

6.2 Richardson extrapolation
In order to improve the accuracy in the temporal direction, we apply Richardson ex-
trapolation, which is given by a linear combination of numerical solutions under dif-
ferent mesh grids. Applying Taylor’s expansion, we obtain that the main term of trun-
cation error Ern

j is O(τ 2 + τ 4 + h4). Hence, we use the following Richardson method
(see [36]):

(uR)n
j =

4
3

u2n
j

(
h,

τ

2

)
–

1
3

un
j (h, τ ),

where un
j (h, τ ) is the numerical solutions at the grid point (xj, tn) with spatial step size h and

temporal step size τ , and u2n
j (h, τ

2 ) is the numerical solutions at the grid point (xj, tn) with
spatial step size h and temporal step size τ

2 . Here, the convergence order of the Richardson
method is O(τ 4 + h4).

7 Numerical experiments
In this section, we use serval numerical experiments to confirm the discrete conservation
law, convergence as well as stability. Due to the implicitness and nonlinearity in scheme
(2.7)–(2.9), the split iterative algorithm [37] is used to resolve this problem. We take 10–8

as the iterative tolerance.
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Example 1 We present some accuracy tests by considering the following equation:

utt – uxx + iut + |u|4u = f (x, t), (x, t) ∈ (0, 1) × (0, 1), (7.1)

u(x, 0) = x(x – 1), ut(x, 0) = –ix(x – 1), x ∈ [0, 1], (7.2)

u(0, t) = u(1, t) = 0, t ∈ [0, 1], (7.3)

where f (x, t) = –2e–it + x5(x – 1)5e–it .
The exact solution of the problem is

u(x, t) = e–it(x – 1)x.

In this example, the maximum norm is defined as follows:

‖err1‖∞ = max
0≤j≤J

0≤n≤N

∣∣u(xj, tn) – un
j
∣∣,

‖errR1‖∞ = max
0≤j≤J

0≤n≤N

∣
∣∣
∣u(xj, tn) –

(
4
3

u2n
j

(
h,

τ

2

)
–

1
3

un
j (h, τ )

)∣
∣∣
∣.

Scheme (2.7)–(2.9) with τ = h2 is applied to solve (7.1)–(7.3). The numerical errors are
plotted in Fig. 1. It indicates that the convergence order of the scheme is O(τ 2 + h4). To
improve temporal accuracy, Richardson extrapolation with τ = h is applied to solve the
problem. The numerical errors are given in Fig. 2. Clearly, it implies that the convergence

Figure 1 The convergence order of scheme
(2.7)–(2.9) for Example 1

Figure 2 The convergence order of Richardson
extrapolation for Example 1
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Figure 3 The long-term behavior of numerical
solutions corresponding to scheme (2.7)–(2.9) from
t = 0 to t = 10 at h = 0.01, τ = h2 for Example 1

Figure 4 The long-term behavior of numerical
solutions corresponding to Richardson
extrapolation from t = 0 to t = 10 at h = 0.01, τ = h2

for Example 1

Figure 5 The movement of |u| of scheme
(2.7)–(2.9) at t = 2, 5, 10 for Example 1

order of the method is O(τ 4 + h4). We also numerically solve the problem with h = 0.01,
τ = h2, and T = 10. Figs. 3 and 4 indicate the long-term behavior of numerical solutions
with respect to scheme (2.7)–(2.9) and Richardson extrapolation, respectively. Figs. 5 and
6 further show the movement of |u| at different times, i.e., t = 2, 5, 10. These figures further
imply that the numerical schemes are effective.

Example 2 In order to further confirm the theoretical results, we present the following
tests by considering the following equation:

utt – uxx + iut + |u|2u = 0, (x, t) ∈ (–40, 40) × (0, 1),

u(x, 0) = (1 + i)xe–10(1–x)2
, ut(x, 0) = 0, x ∈ [–40, 40].
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Figure 6 The movement of |u| of Richardson
extrapolation at t = 2, 5, 10 for Example 1

Figure 7 The convergence order of scheme
(2.7)–(2.9) for Example 2

Figure 8 The convergence order of Richardson
extrapolation for Example 2

The maximum norm in this test is defined as follows:

‖err2‖∞ = max
0≤j≤J

0≤n≤N

∣∣u(xj, tn) – un
j
∣∣,

‖errR2‖∞ = max
0≤j≤J

0≤n≤N

∣∣
∣∣u(xj, tn) –

(
4
3

u2n
j

(
h,

τ

2

)
–

1
3

un
j (h, τ )

)∣∣
∣∣.

Since the exact solution of the problem is unknown, we take the numerical solution
with h = 0.0125, τ = h2 as the reference solution. To numerically solve problem, we still
apply scheme (2.7)–(2.9) with τ = h2 and Richardson extrapolation with τ = h. The nu-
merical errors with different methods are shown in Figs. 7 and 8. Again, the numerical
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Figure 9 The wave propagation of scheme
(2.7)–(2.9) at h = 0.1, τ = h2 for Example 2

Figure 10 The wave propagation of Richardson
extrapolation at h = 0.1, τ = h2 for Example 2

Figure 11 The movement of |u| of scheme
(2.7)–(2.9) at t = 2, 5, 10 for Example 2

results indicate that the convergence order of scheme (2.7)–(2.9) is O(τ 2 + h4) and the
convergence order of the scheme with Richardson extrapolation is O(τ 4 + h4). Moreover,
Figs. 9 and 10 display the wave propagation of scheme (2.7)–(2.9) and Richardson extrap-
olation with h = 0.1, τ = h2, and T = 10, respectively. Figs. 11 and 12 show the move-
ment of |u| of scheme (2.7)–(2.9) and Richardson extrapolation at t = 2, 5, 10, respectively.
In order to further confirm the discrete conservation law, we choose h = 0.05, τ = h2 to
compute the numerical solution from t = 0 to t = 10. The discrete energy is listed in Ta-
ble 1. Clearly, it confirms the energy-conserving property of the fully discrete numerical
scheme.
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Figure 12 The movement of |u| of Richardson
extrapolation at t = 2, 5, 10 for Example 2

Table 1 The discrete energy E at different time with h = 0.05, τ = h2 for Example 2

t E t E

1 9.123106257391363 6 9.123106257330761
2 9.123106257374163 7 9.123106257328724
3 9.123106257358231 8 9.123106257329276
4 9.123106257345416 9 9.123106257332394
5 9.123106257336049 10 9.123106257338352

8 Conclusion
In this work, we presented several conservative compact schemes for solving a class of
nonlinear Schrödinger equations with wave operator. By the energy method, it was proved
that the numerical solution is bounded and numerical scheme (2.7)–(2.9) is convergent
and stable. The convergence rate is O(τ 2 + h4) in l∞ norm. Furthermore, the order of
scheme (2.7)–(2.9) is improved to O(τ 4 + h4) by applying Richardson extrapolation. Fi-
nally, all the numerical results show that difference scheme (2.7)–(2.9) and Richardson
extrapolation are efficient.
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