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Abstract
In this work, we implement the mortar spectral element method for the biharmonic
problem with a homogeneous boundary condition. We consider a polygonal domain
with corners which relies on the mortar decomposition domain technique. We
propose the Strang and Fix algorithm, which permits to enlarge the discrete space of
the solution by the first singular function. The interest of this algorithm is the
approximation of the solution and the leading singular coefficient which has a
physical significance in the propagation of cracks. We give some numerical results
which confirm the optimality of the order of the error.
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1 Introduction
Consider the fourth order problem with homogeneous boundary conditions called the
biharmonic homogeneous problem

⎧
⎪⎪⎨

⎪⎪⎩

�2ϕ = f in �,

ϕ = 0 on ∂�,
∂ϕ

∂n = 0 on ∂�,

(1)

where � is a polygonal domain of Rd, d = 2, 3 and ∂� is a Lipschitz-continuous boundary
of � [1].

This type of problem is involved in many problems in the mechanics of a continuous
medium for both fluids and solids. Other applications such as some models in control
theory involve fourth order operators. The solution ϕ of this type of problem is composed
of regular and singular parts [2–4]. To weaken the effect of the geometric singularity, we
apply the method of domain decomposition without overlapping. This method is associ-
ated with the mortar method [5] with variational spectral elements discretization. Since
the discrete solution (polynomial) is regular on each sub-domain of the decomposition,
then the non-conformity results in the imposition of an integral matching condition on the
solution and its normal derivative. This matching condition type is weak. It allows great
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geometric flexibility and is perfectly suited to parallel computing. The approximation of a
singular part of the solution using the finite element method is presented in [6, 7]. In [8],
the authors prove an optimal approximation by polynomials using the spectral method.
In this work we will use these results to implement the mortar spectral elements method
for the Strang and Fix algorithm [9] in the case of the biharmonic problem. It consists in
enlarging the discrete space by the first singular function. The polynomial basis of the new
discrete space permits us to approximate the solution and the leading singularity coeffi-
cient. This coefficient has a physical signification in the crack propagation [10–13]. We
begin by writing the matrix system, then we use the conjugate gradient algorithm to solve
it. We illustrate the good convergence of the presented method through numerical error
curves. This work is an extension of the work presented in [14] for the case of domain with
geometric singularity.

An outline of this paper is as follows. In Sect. 2, we present the geometry of the do-
main and a continuous problem, we give singular functions and some regularity results.
In Sect. 3, we present a discrete problem. The error result obtained from the discretization
of the biharmonic problem by the mortar spectral method is showed in Sect. 4. Section 5
is devoted to the implementation of the mortar spectral element method. We describe the
matrix system and its resolution algorithm. Finally, we present some numerical results
which confirm the interest in the method.

2 Continuous problem
We decompose the domain � into K rectangles �k , 1 ≤ k ≤ K , such that

� =
K⋃

k=1

�k and �k ∪ �l = ∅, 1 ≤ k �= l ≤ K .

We designate by �
k,j, 1 ≤ j ≤ 4, the sides of the sub-domain �k , 1 ≤ k ≤ K , and

γ kl = �k ∩ �l, 1 ≤ k �= l ≤ K

the interface of the decomposition.
The skeleton of the decomposition is defined as follows:

S =
K⋃

k=1

4⋃

j=1

�
k,j.

We denote by V the set of vertices of the sub-domain for our decomposition. Let �k(m),j(m)

be an open set of segments disjoint two by two for an integer m in a set M. Then

S =
⋃

m∈M
�

k(m),j(m).

We called mortars the segments �k(m),j(m), m ∈ M. The intersection of a sub-domain �k ,
1 ≤ k ≤ K , with the boundary ∂� is reduced to an element of V .

We suppose that the singular angles are π
2 , 3π

2 , or 2π . For its importance in the fluid
mechanics and in mechanic (cracks propagation), we will handle specially the cases 3π

2 and
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2π . Since the treatment of singularities is local, we reduce our study to a single geometric
vertex v and ω the associated angle. We suppose that the sides of sub-domains are parallel
to the scale axis of origin v. We consider (r, θ ) the polar coordinates with r the distance
from a point to the vertex v and the line θ = 0 contains a side of ∂�.

We need the following conformity hypothesis for our analysis later.

Assumption 1 Let � be the union of sub-domains which contain the vertex v. We sup-
pose that the decomposition of the domain � is geometric conforming (for �k and �l

included in �, �̄k ∩ �̄l = �kl, k �= l, �kl is an edge of both �k and �l).

Problem (1) is equivalent to the following variational formulation:
For f ∈ H–2(�), find ϕ ∈ H2

0 (�) for all ψ ∈ H2
0 (�)

a(ϕ,ψ) = 〈f ,ψ〉, (2)

where a(ϕ,ψ) =
∫

�
�ϕ : �ψ dx dy and 〈·, ·〉 is the duality product between H–2(�) and

H2
0 (�).
According to the Lax–Milgram theorem, problem (2) has a unique solution, since the

bilinear form a(·, ·) is continuous in H2
0 (�) × H2

0 (�) and coercive in H2
0 (�). We consider

the following stability condition:

‖ϕ‖H2(�) ≤ C‖f ‖H–2(�),

where C is a positive constant which is dependent just on � [15, 16].
For handling the singularities, we consider the bi-Laplacian characteristic equation

sin(ωz)2 = z2 sin
(
ω2) (3)

[2, 3] and

η(ω) = inf
{

Real(z), z is solution of (3), z �= ±1
}

.

The solution of problem (1) is decomposed into the form ϕ = ϕR + λS1 such that ϕR ∈
Hs+2(�), s < 1 + η(ω) and

‖ϕR‖Hs+2(�) + |λ1| ≤ C‖f ‖Hs–2(�),

where C is a positive constant, λ1 is the first singular coefficient and

S1(r, θ ) = r1+η(ω)φ(θ ). (4)

• If ω = 3π
2 , we have η(ω) = 0.54484, s < 1.544, and φ(θ ) = 2.093(cos(0.459θ )–cos(1.544θ ))+

1.093(2.193 sin(0.459θ ) – sin(1.544θ )).
However, if f ∈ Hs–2(�) with s < 2.908, we can still push the decomposition of the solu-

tion of problem (1) as

ϕ = ϕ̃R + λ1S1 + λ2S2. (5)
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The regular part of the solution ϕ̃R is in the space Hs+2(�) such that

‖ϕ̃R‖Hs+2(�) + |λ1| + |λ2| ≤ C‖f ‖Hs–2(�),

where C is a positive constant and λ2 is the second singular coefficient. The second sin-
gularity function is defined as

S2(r, θ ) = r1+η1(ω)ς (θ ), (6)

where η1(ω) is the second real solution of equation (3) in the band 0 < Real(z) < 1(η1( 3π
2 ) �

0.908529) and ς (θ ) = 4.302(cos(0.092θ ) – cos(1.908θ )) – 1.815(10.869 sin(0.092θ ) –
0.524 sin(1.908θ )).

• If ω = 2π , we have η(ω) = 0.5, s < 1.5, and

S1(r, θ ) = r
3
2

((

sin
3
2
θ – 3 sin

θ

2

)

+
(

cos
3
2
θ – cos

θ

2

))

,

S2(r, θ ) = r
5
2

((

sin
5
2
θ – 5 sin

θ

2

)

+
(

cos
5
2
θ – cos

θ

2

))

.

Since f belongs to Hs–2(�), then ϕ̃R belongs to Hs+2(�) for s < 2, 5 such that

‖ϕ̃R‖Hs+2(�) + |λ1| + |λ2| ≤ C‖f ‖Hs–2(�),

where C is a positive constant.

3 Discrete problem
We introduce the discretization parameter δ = (Nk)1≤k≤K , where PNk (�k), 1 ≤ k ≤ K , are
the approximation polynomials with degrees less or equal to Nk in each sub-domain �k .

We define the mortars functions space

Wδ =
{

(�0,�1) ∈ PNk (m)(�k(m)) × PNk (m)(�k(m));�0/γ m = ψδ/�k(m),j(m)

and �1/γ m =
(

∂ψδ

∂n

)/

�k(m),j(m)
∀m ∈M

}

,

where ψδ is a test function.
The Galerkin method with numerical integration is used for spatial discretization. To

take into account boundary conditions of the fourth order studied problem, we choose a
quadrature formula presented in the following lemma.

Lemma 3.1 There exist ξj, 1 ≤ j ≤ N – 1 (N ≥ 2), a set of unique points ρj, 1 ≤ j ≤ N – 1,
a set of unique positive reals ρ+, ρ– such that ∀� ∈ P2N–1(]–1, 1[)

∫ 1

–1
�(x) dx =

N–1∑

j=1

�(ξj)ρj + �(–1)ρ– + �(1)ρ+. (7)

Proof See [17] for the calculation of ρj, ξj; 1 ≤ j ≤ N – 1 (the zeros of the derivative of the
Legendre polynomial LN ) and the proof of (7). �



Abdelwahed et al. Boundary Value Problems  (2018) 2018:39 Page 5 of 19

Definition 3.2 For ϕ, ψ two continuous functions on ¯̂
� = [–1, 1] × [–1, 1] such that ϕ =

ψ = 0 on ∂�, we define
•

(ϕ,ψ)N =
N–1∑

i=1

N–1∑

j=1

ϕ(ξi, ξj)ψ(ξi, ξj)ρiρj

the discrete scalar product.
•

(ϕ,ψ)Nk =
|�k|

4

Nk –1∑

i=1

Nk –1∑

j=1

(
ϕ ◦ Bk)(ξi, ξj)

(
ψ ◦ Bk)(ξi, ξj)ρiρj,

where Bk is the bijection from �̂ to �k .
• Xδ is the space of functions ψδ such that

– ψk
δ = ψδ/�k ∈ PNk (�k), 1 ≤ k ≤ K ,

– ψδ = ∂ψδ

∂n = 0 on ∂�,
– there exist (�0,�1) ∈ Wδ/∀1 ≤ k ≤ K , 1 ≤ j ≤ 4,

∫

�k,j (ψδ – �0)(τ )μ(τ ) dτ = 0 and
∫

�k,j ( ∂ψδ

∂n – �1)(τ )μ(τ ) dτ = 0 ∀μ ∈ PNk –4(�k,j).

The discrete problem of continuous problem (1) is as follows.
For f ∈ C(�), find ϕδ ∈ Xδ such that

∀ψδ ∈ Xδ , aδ(ϕδ ,ψδ) = (f ,ψ)δ ,

where aδ(ϕδ ,ψδ) =
∑K

k=1(�ϕk
δ ,�ψk

δ )Nk and (f ,ψδ)δ =
∑K

k=1(f ,ψk
δ )Nk .

We proceed now to the enlargement of the discrete space Xδ to the space

X∗
δ = Xδ + RS1,

using the Strang and Fix algorithm [9], where S1 is the first singular function.
We obtain then for ϕ∗

δ = ϕδ + αS1 and ψ∗
δ = ψδ + βS1 in X∗

δ

a∗
δ

(
ϕ∗

δ ,ψ∗
δ

)
=

K∑

k=1

[
(
�ϕk

δ ,�ψk
δ

)

Nk
+ α

∫

�k

�ψk
δ �S1 dx + β

∫

�k

�ϕk
δ �S1 dx

+ αβ

∫

�k

(�S1)2 dx
]

.

We refer to the appendix of [10] for the algorithm which permits to compute the singular
integral

∫

�k
�ψk

δ �S1 dx.
We consider the following discrete problem:
Find ϕ∗

δ ∈ X∗
δ such that

∀ψ∗
δ ∈ X∗

δ , a∗
δ

(
ϕ∗

δ ,ψ∗
δ

)
=

K∑

k=1

∫

�k

f ψ∗
δk dx, (8)

where ψ∗
δk = ψ∗

δ /�k .
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We define two norms on the space X∗
δ

∥
∥ϕ∗

δ

∥
∥∗1 =

K∑

k=1

(∥
∥ϕk

δ

∥
∥2

H2(�k ) + |α|2‖S1/�k ‖2
H2(�k )

)1/2

and

∥
∥ϕ∗

δ

∥
∥∗2 =

( K∑

k=1

∥
∥ϕ∗

δ

∥
∥2

H2(�k )

)1/2

.

Proposition 3.3 For f ∈ L2(�), the discrete problem (8) has a unique solution ϕ∗
δ in X∗

δ

and

∥
∥ϕ∗

δ

∥
∥∗2 ≤ C‖f ‖L2(�).

Proof To study problem (8), we begin by giving the properties of the bilinear form a∗
δ (·, ·)

(see [18], Prop. 5.2, for the proof ).
There exist two positive functions C1 and C2 independent of δ such that for all ϕ∗

δ , ψ∗
δ

in X∗
δ

∣
∣a∗

δ

(
ϕ∗

δ ,ψ∗
δ

)∣
∣≤ C1

∥
∥ϕ∗

δ

∥
∥∗1

∥
∥ψ∗

δ

∥
∥∗1 (9)

and

a∗
δ

(
ϕ∗

δ ,ψ∗
δ

)≥ C2
∥
∥ϕ∗

δ

∥
∥2

∗2. (10)

Using the fact that ‖ · ‖∗1 and ‖ · ‖∗2 are equivalent with a constant depending on the
parameter δ ([18] Prop 5.1), an inf-sup condition will be showed for the bilinear form
a∗

δ (·, ·) using the norm ‖‖∗1 (see [18], Prop. 5.5, for the proof ). �

4 Error estimate
Proposition 4.1 Let f in Hs–2(�) for s > 0, then, for all ε > 0,

∥
∥ϕ – ϕ∗

δ

∥
∥

L2(�) ≤ C

(

N–2

( K∑

k=1

N–σk
k

))

‖f ‖Hs–2(�),

where σk , 1 ≤ k ≤ K , verifies

σk =

⎧
⎪⎪⎨

⎪⎪⎩

s – 2 if �k does not contain any vertices of �,

inf(s – 2, 2η1( π
2 ) – ε) if �k contains one vertex of � other than v,

inf(s – 2, 2η1(ω) – ε) if �k contains v,

(11)

and N = inf1≤k≤K Nk .

Proof By inf-sup condition on the bilinear form a∗
δ (·, ·), there exists a constant ν such that

∀ψ∗
δ ∈ X∗

δ ; sup
t∗δ ∈X∗

δ

a∗
δ (ψ∗

δ , t∗
δ )

‖t∗
δ ‖∗1

≥ ν
∥
∥ψ∗

δ

∥
∥∗1. (12)
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Using (12) and the Strang lemma, we obtain

‖ϕ – ϕδ∗‖∗1 ≤ C
[

inf
ψ∗

δ ∈X∗
δ

(
∥
∥ϕ – ψ∗

δ

∥
∥∗1 + sup

ω∗
δ ∈X∗

δ

a(ψ∗
δ ,ω∗

δ ) – a∗
δ (ψ∗

δ ,ω∗
δ )

‖ω∗
δ‖∗1

)

× sup
ω∗

δ ∈X∗
δ

∑K
k=1
∑K

l=k+1(
∫

γkl
∂(�ϕ)

∂n [ω∗
δ ] dx –

∫

γkl
�ϕ[ ∂ω∗

δ

∂n ] dx)
‖ω∗

δ‖∗1

]

(13)

n is the outside normal and [ω] is the jump of ω on the interfaces.
We will estimate the terms of inequality (13) to obtain the order of convergence. Using

the fact that the singular function S1 is regular in the neighborhood of v, the jump terms
(ω∗

δk – ω∗
δl) (respectively ( ∂ω∗

δk
∂n – ∂ω∗

δl
∂n )) are reduced through each interface γkl to (ωδk – ωδl)

(respectively ( ∂ωδk
∂n – ∂ωδl

∂n )). Furthermore, using the hypothesis of conformity on �, these
obtained quantities vanish. Moreover, ϕ = ϕR on �/�; we obtain then

∫

γkl

∂(�ϕ)
∂n

[ωδ] dx +
∫

γkl

�ϕ

[
∂ωδ

∂n

]

dx

=
∫

γkl

∂(�ϕR)
∂n

(�0 – ωδk) dx +
∫

γkl

∂(�ϕR)
∂n

(�0 – ωδl) dx

+
∫

γkl

(�ϕR)
(

�1 –
∂ωδk

∂n

)

dx +
∫

γkl

(�ϕR)
(

�1 –
∂ωδl

∂n

)

dx,

where �0 (respectively �1) is the mortar function associated with ωδ (respectively ∂ωδ

∂n ).
We then obtain the following [19]:

K∑

k=1

K∑

l=k+1

∫

γkl

∂(�ϕR)
∂n

[ωδ] dx +
∫

γkl

�ϕR

[
∂ωδ

∂n

]

dx

≤ c
K∑

k=1

4∑

j=1

(

inf
ψkj∈PNk –4(�kj)

∥
∥
∥
∥
∂(�ϕR)

∂n
– μkj

∥
∥
∥
∥

(H3/2(�kj))′

+ inf
ψkj∈PNk –4(�kj)

‖�ϕR – μkj‖(H1/2(�kj))′

)

. (14)

We have by definition of X∗
δ

inf
ψ∗

δ ∈X∗
δ

∥
∥ϕ – ψ∗

δ

∥
∥∗1 ≤ C inf

vδ∈X–
δ

‖ϕR – ψδ‖∗1,

where

X–
δ =
{
ψδ ∈ Xδ ;ψδk ∈ PN–1(�k)

}
.

Choosing ψ∗
δ = ψδ ∈ X–

δ and by the exactness of the quadrature formula (7)

sup
ω∗

δ ∈X∗
δ

a(ψ∗
δ ,ω∗

δ ) – a∗
δ (ψ∗

δ ,ω∗
δ )

‖ω∗
δ‖∗1

= 0.
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Finally, by doing the sum of these results, we have

∥
∥ϕ – ϕ∗

δ

∥
∥∗1 ≤ C

[

inf
ψδ∈X–

δ

‖ϕ – ψδ‖∗1 +
K∑

k=1

4∑

j=1

(

inf
ψkj∈PNk –4(�kj)

∥
∥
∥
∥
∂�ϕR

∂n
– μkj

∥
∥
∥
∥

(H3/2(�kj))′

+ inf
μkj∈PNk –4(�kj)

‖�ϕR – μkj‖(H1/2(�kj))′

)]

. (15)

If f ∈ Hs–2(�) for η(ω) < s < η(ω)+2, then ϕR ∈ Hs+2(�) and the trace (respectively the nor-
mal derivative trace) of ϕR ∈ Hs– 1

2 (∂�k) (respectively ∈ Hs– 3
2 (∂�k)); 1 ≤ k ≤ K . Choosing

μkj and χkj, the orthogonal projections on PNk –4(�kj), we deduce

‖�ϕR – μkj‖(H1/2(�kj))′ ≤ CN–s
k ‖ϕR‖Hs+2(�k )

and

∥
∥
∥
∥
∂�ϕR

∂n
– χkj

∥
∥
∥
∥

H–3/2(�kj)
≤ CN–s

k ‖ϕR‖Hs+2(�k ).

Moreover, we obtain

inf
ψδ∈X–

δ

‖ϕ – ψδ‖∗1 ≤ C
K∑

k=1

N–s
k ‖ϕR‖Hs+2(�k ).

If f in Hs–2(�), s < 2 + η1(ω), where η1(ω) is the second real solution of (3), in the band
0 < Real(z) < s, then using (5) and Assumption 1, we show that

∥
∥ϕ – ϕ∗

δ

∥
∥∗1 ≤ C

[

inf
ψδ∈X–

δ

‖ϕR – ψδ‖∗1 +
K∑

k=1

4∑

j=1

(

inf
μkj∈PNk –4(�kj)

∥
∥
∥
∥
∂�ϕ̃R

∂n
– μkj

∥
∥
∥
∥

(H3/2(�kj))′

+ inf
χkj∈PNk –4(�kj)

‖�ϕ̃R – χkj‖(H1/2(�kj))′

)]

.

We indicate that

inf
ψδ∈X–

δ

‖ϕR – ψδ‖∗1 ≤ C
{

inf
ψδ∈X–

δ

‖ϕ̃R – ψδ‖∗1 + |λ2| inf
ψδ∈X–

δ

‖S2 – ψδ‖∗1

}
.

Using the results of the singular functions approximation through polynomials (see [8]),
we obtain

inf
ψδ∈X–

δ

‖S2 – ψδ‖∗1 ≤ CNε–2η1(ω) ∀ε > 0.

Then

inf
ψδ∈X–

δ

‖ϕR – ψδ‖∗1 ≤ CN2–s(‖ϕ̃R‖Hs(�) + |λ2|
)
,
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therefore

∥
∥ϕ – ϕ∗

δ

∥
∥∗1 ≤ CN2–s‖f ‖Hs–2(�) for s < 2 + η1(ω).

Using these results, we obtain, for f ∈ Hs–2(�), s > 0, and ε > 0,

∥
∥ϕ – ϕ∗

δ

∥
∥∗1 ≤ C

( K∑

k=1

N–σk
k

)

‖f ‖Hs–2(�),

where σk is given by (11).
By the Aubin–Nische duality, we obtain the desired estimation with the L2 norm. �

Remark 4.2 We denote that in the case of the crack (respectively ω = 3π
2 ) the convergence

order is Nε–2 (respectively Nε– 8
3 ). This demonstrates that the method is highly accurate.

5 Numerical implementation and results
In this section we are interested in the implementation of the mortar method for the Strang
and Fix algorithm in the case of a fourth order problem. The implementation is performed
using the spectral elements method with a global algorithm for the resolution. In the spec-
tral discretization the algorithmic aspect is mainly identical despite the diversity of the
problems to be solved. The main ideas behind this algorithm are inspired by the works of
Anagnostou [20] and Belhachmi and Bernardi [21].

The program is written in Matlab, which permits a good memory optimization and pro-
vides a data structure depending on the initial geometry. The program has three modules
corresponding to the three phases of the problem resolution. The first module is about
the geometric aspect. The second module is related to the discretization of the problem
which leads to the linear system. Finally, the last module is the resolution of the linear
system and the exploitation of the results. This three components are programmed in a
relatively general way and as much as possible are independent.

5.1 Choice of the basis
To describe algebraically the discrete problem (8), it is necessary to choose a basis of the
space X∗

δ . This basis is defined naturally through local basis (on each sub-domain) and
therefore relative to the discretization.

For the quadrature formula, the number of equations is greater than the number of un-
knowns. We neglect the first i = 1 and the last i = N – 1 in dimension 1. The basic polyno-
mials for the Gauss–Lobatto quadrature formula are the Hermit interpolation polynomi-
als that are defined on the interval ]–1, 1[ by

⎧
⎨

⎩

hi(ξj) = δij, 2 ≤ j ≤ N – 2, 2 ≤ i ≤ N – 2,

hi(–1) = 0, hi(1) = 0, h′
i(–1) = 0, h′

i(1) = 0, 2 ≤ i ≤ N – 2.
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h1(ξj) = 0, 2 ≤ j ≤ N – 2,

h1(–1) = 1, h1(1) = 0, h′
1(–1) = 1, h′

1(1) = 0,

hN–1(ξj) = 0, 2 ≤ j ≤ N – 2,

hN–1(–1) = hN–1(1) = 0, h′
N–1(–1) = h′

N–1(1) = 0.
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h0(ξj) = 0, 2 ≤ j ≤ N – 2,

h0(–1) = 0, h0(1) = 0, h′
0(–1) = h′

0(1) = 0,

hN (ξj) = 0, 2 ≤ j ≤ N – 2,

hN (–1) = hN (1) = 0, h′
N (–1) = h′

N (1) = 0.

We verify that these polynomials are represented by the formula

hi(x) = ci
(1 – x2)2L′

N (x)
(x – ξ1)(x – ξi)(x – ξN–1)

, 2 ≤ i ≤ N – 2, x ∈ ]–1, 1[,

where the constants ci are given by

ci =
(ξi – ξ1)(ξi – ξN–1)

N(N + 1)(1 – ξi)2LN (ξi)
,

h1(x) = ci
(x – 1)2(ax + b)L′

N (x)
(x – ξ1)(x – ξN–1)

with a = A
2 (1 + p′(–1) – L′

N (–1)
LN (–1) ) and b = A + a, where p(x) = (x – ξ1)(x – ξN–1) and A = p(–1)

4L′
N (–1) .

In a similar way, we have

hN–1(x) =
(x + 1)2(cx + d)L′

N (x)
(x – ξ1)(x – ξN–1)

with c = B
2 (–1 + p′(–1) + L′

N (1)
LN (1) ) and d = B – a, where B = p(1)

4L′
N (1) . Finally,

h0(x) = a
(x – 1)2(x + 1)L′

N (x)
(x – ξ1)(x – ξN–1)

with

a = –
(1 + ξ1)(1 + ξN–1)
2N(N + 1)LN (–1)

and

hN (x) = b
(x + 1)2(x – 1)L′

N (x)
(x – ξ1)(x – ξN–1)

with

b = –
(1 – ξ1)(1 – ξN–1)
2N(N + 1)LN (1)

.

It follows that for ϕ∗
δ = ϕδ + λ1δS1 in the space X∗

δ , where λ1δ is the approximate value of
the leading singular coefficient λ1,

ϕ∗
δ (x, y)/�k =

N∑

i=0

N∑

j=0

ϕδ ijh
Nk
i (x)hNk

j (y) + λ1δS1/�k
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with ϕδ ij = ϕδ(ξ k
i , ξ k

j ); 2 ≤ i, j ≤ N – 2, hNk
i = hi ◦ Bk–1 and (ξ k

i , ξ k
j ) = Bk(ξi, ξj). The boundary

values are as follows: ϕδ±1j = ϕδ(±1, ξ k
j ) for 1 ≤ j ≤ N – 1 respectively ϕδ i±1 = ϕδ(ξ k

i ,±1)
for 1 ≤ i ≤ N – 1 and

⎧
⎨

⎩

ϕδ0j = ∂ϕ̃δ

∂x (–1, ξj); ϕδNj = ∂ϕ̃δ

∂x (1, ξj), 2 ≤ j ≤ N – 2,

ϕδ i0 = ∂ϕ̃δ

∂y (ξi, –1); ϕδ iN = ∂ϕ̃δ

∂y (ξi, 1), 2 ≤ i ≤ N – 2,

and finally ϕδ00 = ∂2ϕ̃δ

∂x∂y (–1, –1); ϕδ0N = ∂2ϕ̃δ

∂x∂y (–1, 1) and likewise ϕδN0 = ∂2ϕ̃δ

∂x∂y (1, –1); ϕδNN =
∂2ϕ̃δ

∂x∂y (1, 1) with ϕδ = ϕ̃δ ◦ Bk–1.

5.2 The matching matrix Q
Let the following two integral matching conditions hold: there exist (�0,�1) ∈ Wδ/∀1 ≤
k ≤ K , 1 ≤ j ≤ 4,

∫

�k,j
(ϕδ – �0)(τ )μ(τ ) dτ = 0 (16)

and
∫

�k,j

(
∂ϕδ

∂n
– �1

)

(τ )μ(τ ) dτ = 0, ∀μ ∈ PNk –4
(
�k,j). (17)

The conversion of the above conditions in matrix form represents an important step in
solving the discrete problem (8). It is the matrix Q, more precisely its transpose, which
purges the vector of the unknowns from the false degrees of freedom. The calculation of
this matrix is completely local. It is done for each pair side and mortar associated. In our
case, two elementary matrices intervene: one resulting from the condition on the trace Q1,
the other from the condition on the trace of normal derivative Q2. In order to simplify the
formulas, we will take the same degree of polynomials in each sub-domain. We write

ϕδ =
N∑

j=0

ϕδ jhj(r), r ∈ [–1, 1],

�0/γ m = �1/γ m =
N∑

j=0

�
p
j hj(r), r ∈ [–1, 1]

and

∂ϕδ

∂n
=

N∑

j=0

(
∂ϕδ

∂n

)

j
hj(r), r ∈ [–1, 1],

where γ m is the mortar associated with the side �k,l .
On the other hand, to make the explicit calculation, we need to choose a basis of the

space of the polynomialsPN–4(�k,l). As we have (N –1) interior points and we must neglect
two, we obtain

μ/�k,l =
N–2∑

q=2

αqηq(r), r ∈ [–1, 1]
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with

ηq(x) = (–1)N+1–q L′
N (x)

(x – ξq–1)(x – ξq)(x – ξq+1)
, 2 ≤ q ≤ N – 2, x ∈ [–1, 1].

Finally, if � = (�0,�1) the integral matching conditions (16) and (17) are written in matrix
form

Bϕδ = P�.

The matrix Q is defined by Q = B–1P. Remark that the matrix B is quasi-tridiagonal, its
inversion is fast and at lower cost. Note that in the case of problem of fourth order, the
mortar is in fact doubled in order to take into account the values of the solution and its
normal derivative. From the algebraic point of view, Q1 and Q2 are local matrices and Q
is a global matching matrix obtained by the following representation:

⎛

⎜
⎜
⎜
⎝

(ϕk
ij)interior

(ϕk
ij)sides

(∂nϕ
k
ij)sides

λ1δ

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
ϕ∗
δ

=

⎛

⎜
⎜
⎜
⎝

I 0 0 0
0 Q1 0 0
0 0 Q2 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Q

⎛

⎜
⎜
⎜
⎝

(ϕk
ij)interior

�0

�1

λ1δ

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
ϕ̃∗
δ

,

where ϕ∗
δ is the vector of admissible unknowns and ϕ̃∗

δ is the vector of degrees of freedom.

5.3 The discrete equation
To put the variational problem (8) in the form of a linear system, we will evaluate the two
members of the equation. It is assumed for simplicity that the sub-domain �k is sent on
the reference square �̂ = ]–1, 1[2 by the homothety Bk–1, then

∫

�k

�ϕk
δ �ψk

δ dx dy =
∫

�̂

�̃ϕk
δ �̃ψk

δ

∣
∣Jk(x̂, ŷ)

∣
∣dx̂ dŷ,

where

�̃ =
[(

∂ x̂
∂x

)2

+
(

∂ x̂
∂y

)2]
∂2

∂ x̂2 + 2
[

∂ x̂
∂x

∂ ŷ
∂x

+
∂ x̂
∂y

∂ ŷ
∂y

]
∂2

∂ x̂∂ ŷ
+
[(

∂ ŷ
∂x

)2

+
(

∂ ŷ
∂y

)2]
∂2

∂ ŷ2 ,

and J is the Jacobian of the transformation

J =
∂x
∂ x̂

∂y
∂ ŷ

–
∂x
∂ ŷ

∂y
∂ x̂

.

Then we obtain

(
�̃ϕk

δ , �̃ψk
δ

)

Nk
=

N∑

i=0

N∑

j=0

[
g1k

ij
(
Dipψ

k
pj
)(

Diqϕ
k
qj
)

+ g2k
ij
(
Djpψ

k
ip
)(

Djqϕ
k
iq
)

+ g3k
ij
((

Dipψ
k
pi
)(

Diqϕ
k
iq
)

+
(
Djpψ

k
ip
)(

Diqϕ
k
qj
))] ρiρj

(Jk
ij )3



Abdelwahed et al. Boundary Value Problems  (2018) 2018:39 Page 13 of 19

and

(
f ,ψk)

Nk
=

N∑

i=0

N∑

j=0

f k
ij ψ

k
ijρiρjJk

ij ,

where

g1,k
ij =

((
Djqyk

iq
)2 +

(
Djqxk

iq
)2)2,

g2,k
ij =

((
Dipyk

pj
)2 +

(
Djpxk

pj
)2)2,

g3,k
ij =

((
Djqyk

iq
)(

Dipyk
pj
)

+
(
Djqxk

iq
)(

Dipxk
pj
))2,

Jk
ij =
((

Dipxk
pj
)(

Djqyk
iq
)

–
(
Djqxk

iq
)(

Dipyk
pj
))

with

Dij = h′′
j (ξi).

5.4 The linear system and algorithm of resolution
The discrete equation leads to the following linear system:

A� = F . (18)

The matrix A is obtained by assembling the bi-Laplacian matrices Ak = (�(hihj);
�(hphq))Nk , 1 ≤ k ≤ K , in the sub-domains. It takes the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(�(hihj);�(hphq))N1 0 · · 0
∫

�1
�S1�(hphq)

0 ·
· ·
· ∫

�N�
�S1�(hphq)

· 0
· ·
· ·
·
0 · · 0 (�(hihj);�(hphq))Nk 0∫

�1
�S1�(hihj) · ∫

�N�
�S1�(hihj) 0 0

∫

�
(�S1)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Naturally this matrix is not explicitly assembled in the effective resolution. � denotes the
vector of the admissible unknowns formed by the values of the solution in all the collo-
cation points of the sub-domains and their respective boundaries. Finally, F is the second
member given by

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(hphq, f )N1

·
·
·
·

(hphq, f )Nk∫

�
fS1 dx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Figure 1 The spectral mesh of the domain when ω = 2π (left) and ω = 3π
2 (right)

We denote that the matrix A is diagonal by block, symmetric, and positive definite. This
permits us to solve the problem using the gradient conjugate algorithm method. However,
it is not system (18) that we solve since it includes false degrees of freedom. The latter are
eliminated by the action of the matrix QT . The global system that we solve is

QT AQ�̃ = QT F , (19)

where �̃ is the vector formed by the unknowns to internal collocation points and the val-
ues of the mortar functions on the skeleton of the decomposition. The matrix Ã = QT AQ
is symmetric and positive definite. The following conjugate gradient algorithm explains
how to solve system (19).

For this, let �̃0 be arbitrary, R0 = QT F – Ã�̃0, T0 = R0, and

αn =
(Rn, Rn)

(Tn, ATn)
,

�̃n+1 = �̃n + αnTn,

Rn+1 = Rn – αnATn,

βn =
(Rn+1, Rn+1)

(Rn, Rn)
,

Tn+1 = Rn+1 + βnTn.

It is clear that all calculations (vector matrix product that is the most expensive, of order
O(N3) for each element, as well as projections by Q and QT ) are made at the local level
(on each sub-domain). Consequently, the code can be parallelized.

5.5 Numerical results
We present in this section some numerical tests to confirm the obtained theoretical re-
sults. The error between the continuous and discrete solutions is studied. We consider the
convergence in the case of both analytical and singular solutions for two domains where
ω = 2π and ω = 3π

2 (Fig. 1).
The polynomial degree in the domain �̄k , 1 ≤ k ≤ K , containing the singular point v is

denoted by N . In the other rectangular sub-domains, the degree of the polynomial is fixed
less than N .

We begin by showing the efficiency of using the Strang and Fix algorithm with the
method of domain decomposition.
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Figure 2 Error curves for the solution defined from (20)

Figure 3 Error curves for the solution defined from (21)

For the two studied domains, we consider the first singular function as a given solution
• for ω = 3π

2 ,

ϕ∗
δ (r, θ ) = S1(r, θ ) = r1.54484φ(θ )

= r1.54484[2.093
(
cos(0.459θ ) – cos(1.544θ )

)

+ 1.093
(
2.193 sin(0.459θ ) – sin(1.544θ )

)]
, (20)

• if ω = 2π ,

ϕ∗
δ (r, θ ) = S1(r, θ ) = r

3
2

((

sin
3
2
θ – 3 sin

θ

2

)

+
(

cos
3
2
θ – cos

θ

2

))

. (21)

We present in Figs. 2 and 3 the obtained curves of the error respectively for the obtained
solution from (20) and (21). The logarithm of the error with respect on one hand to N and
on the other hand to the logarithm of N to obtain the slope is given. The obtained figures
show that the Strang and Fix algorithm improves the results.

In the second example we choose the stream function

ϕ(x, y) = sin
(
πx2)2 sin

(
πy2)2 (22)



Abdelwahed et al. Boundary Value Problems  (2018) 2018:39 Page 16 of 19

Figure 4 Error curves for the solution from (22), for ω = 3π
2 and ω = 2π

as an analytic function. In this case, the obtained error curves are presented in Fig. 4 for
the two studied domains. We remark that the error is approximately the same. This shows
the non-utility of the use of the Strang and Fix algorithm in the case where the solution is
regular.

We consider now the second singular function as a given solution which is obtained for
each domain:

(i) for ω = 3π
2 ,

ϕ∗
δ (r, θ ) = S2(r, θ ) = r1.908529ς (θ )

= r1.908529[4.302
(
cos(0.092θ ) – cos(1.908θ )

)

– 1.815
(
10.869 sin(0.092θ ) – 0.524 sin(1.908θ )

)]
, (23)

(ii) for ω = 2π ,

ϕ∗
δ (r, θ ) = S2(r, θ ) = r

5
2

((

sin
5
2
θ – 5 sin

θ

2

)

+
(

cos
5
2
θ – cos

θ

2

))

. (24)

The error convergence curves corresponding to these solutions are presented in Fig. 5.
This shows that the convergence is not good with or without the Strang and Fix algorithm.
This is due to the fact that we have to add the second singular function to the discrete space
X∗

δ (difficult to numerically implement) in order to improve the convergence.
We study now two examples of the numerical calculation of the discrete leading singu-

larity coefficient λ1δ with respect to N .

Example 1 ϕ∗
δ (x, y) = sin2 πx2 sin2 πy2 and ω = 3π

2 .

N 15 20 25 30 35 40 50

λ1δ 7.0 10–1 4.453 10–3 –0.951 10–9 –3.041 10–12 1.382 10–13 6.221 10–14 0.329 10–14

Example 2 ϕ∗
δ (r, θ ) = S1(r, θ ) = r1.5(sin(1.5θ ) – 3 sin(0.5θ ) + cos(1.5θ ) – cos(0.5θ )), and ω =

2π .
N 15 20 30 40 45 50 60

λ1δ 0.6976 0.8019 0.9054 0.9893 0.9993 1 1
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Figure 5 Error curves for the solution defined from (23), respectively from (24)

Figure 6 The error on the solution and the leading
singularity coefficient

Figure 7 The isovalues of solution for the cavity problem (left) and problem (25) (right)

Figure 6 shows the error curves in a logarithmic scale of the numerical solution of
the discrete problem (8) (respectively the leading singularity coefficient) with respect to
log(N) in the case of ω = 2π . Using this figure, the convergence order for the leading sin-
gularity coefficient is equal to 1.9986 and is equal to that of the solution. In our precedent
work [22], the optimal order of convergence (3.9986) was obtained by the dual method.

Finally, in Fig. 7 we present an application test corresponding to the discrete solution of
the two biharmonic problems:

• problem (25) for ω = 3π
2 ,

• the singular stream function in the cavity domain (see Fig. 8) for ω = 2π .
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Figure 8 The cavity domain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�2ϕ = 0 in �,

ϕ = x2y2 on ∂�/�̄0,
∂ϕ

∂n = 0 on ∂�/�̄0,

ϕ = 0 on �0,
∂ϕ

∂n = 0 on �0,

(25)

where �0 = {(r, θ ) such that θ = 0 and θ = ω}.

6 Conclusion
In this paper we were interested in the numerical implementation of the mortar spectral
method. We considered the biharmonic problem with a homogeneous boundary condi-
tion. The Strang and Fix algorithm was implemented. It consists in enlarging the space of
the discrete solution by the first singular function. The obtained errors confirm that the
used method permits us to improve the order of convergence. The present work shows
the importance of the Strang and Fix algorithm coupled with the mortar spectral element
method in solving a singular problem in the domain with corner. The mathematical anal-
ysis presented in this work can be adapted to other partial differential equations.
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