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Abstract
In this paper, a susceptible-vaccinated-exposed-infectious-recovered (SVEIR)
epidemic model for an infectious disease that spreads in the host population through
horizontal transmission is investigated, assuming that the horizontal transmission is
governed by an unspecified function f (S, I). The role that temporary immunity
(vaccinated-induced) and treatment of infected people play in the spread of disease,
is incorporated in the model. The basic reproduction numberR0 is found, under
certain conditions on the incidence rate and treatment function. It is shown that the
model exhibits two equilibria, namely, the disease-free equilibrium and the endemic
equilibrium. By constructing a suitable Lyapunov function, it is observed that the
global asymptotic stability of the disease-free equilibrium depends onR0 as well as
on the treatment rate. IfR0 > 1, then the endemic equilibrium is globally
asymptotically stable with the help of the Li and Muldowney geometric approach
applied to four dimensional systems. Numerical simulations are also presented to
illustrate our main results.
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1 Introduction
Mathematical modeling enjoys popularity in both preventing and controlling infectious
diseases such as severe acute respiratory syndrome (SARS) [1], human immunodeficiency
virus infection/acquired immune deficiency syndrome (HIV/AIDS) [2], H5N1 (avian flu)
[3] and H1N1 (swine flu)[4]. In recent years, a lot of efforts have been made to develop
realistic diseases and further study the asymptotic behavior of such epidemic models [5].
In the field of studying epidemic model behavior, one of the most important parts is to
analyze steady states together with their stability [6]. In general, there are two distinct
techniques named Lyapunov’s direct method and Li–Muldowney’s geometric approach
to give sufficient conditions of global stability for the equilibrium states (see, for exam-
ple, [7–14]). We would like to mention some related work concerned with the existence
of positive solutions for the discrete fractional boundary value problem [15], the sensitiv-
ity analysis for optimal control problems governed by nonlinear evolution inclusions [16]
and the nonexistence of global in time solution of the mixed problem for the nonlinear
evolution equation with memory generalizing the Voigt–Kelvin rheological model [17].
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It is well known that the rate of incidence plays the main part in modeling infectious
diseases. The rise and fall of epidemics can be influenced by some factors, such as density
of population and life style [18, 19]. Many researchers have adopted different nonlinear
incidence rates in their works. For more details, we refer the reader to [8–14, 20–34] and
the references therein. When it comes to control of a disease, it is generally known that
the spread of many diseases can be prevented by vaccinating. When massive vaccination is
impossible, the second stage of defensive mechanism could be medical treatment. Individ-
uals need to bear in mind that the treatment is an indispensable way to take precautions for
some diseases (for instance, measles, phthisis and influenza). In recent years, many treat-
ment functions have been introduced by several authors to study some epidemic models
under different conditions (see, for instance, [12, 14, 27, 31, 35–38]).

Recently, Dénes and Röst [27] investigated the following SI model:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = μ – f (S, I) – μS,
dI
dt = f (S, I) – g(I),

1 = S + I + R,

(1.1)

where a population of constant size (assumed to be equal to 1) is divided into three com-
partments: susceptible (denoted by S), infected (denoted by I) and recovered (denoted
by R). The transmission of the infection is governed by the incidence rate f (S, I) and μ is
birth rate as well as the death rate of the susceptible class. The nonlinear function g(I) de-
notes the sum of the death rate and the recovery rate for the infected individuals satisfying
g(0) = 0 and g(I) > 0 for I > 0. Using a Dulac function approach, which aims at eliminating
the existence of the periodic solution and proving the global stability by the Poincaré-
Bendixson theorem (see [39], p. 54), they obtained the global stability of the disease-free
equilibrium and the endemic equilibrium for system (1.1).

Very recently, Upadhyay et al.[12] considered the following e-epidemic model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = A – δ0S – αSI

S+I+c + ηV – μS,
dE
dt = αSI

S+I+c – (δ0 + δ1)E,
dI
dt = δ1E – (δ0 + δ2 + δ3)I – βI

I+a ,
dR
dt = δ2I – δ0R + βI

I+a ,
dV
dt = μS – (δ0 + η)V .

(1.2)

with initial conditions: S(0) = S0 > 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0 and V (0) =
V0 ≥ 0. All the parameters in model (1.2) are positive and are defined as follows: S, E,
I , R and V represent the number of susceptible nodes, exposed nodes, infectious nodes,
recovered nodes and vaccinated nodes at time t, respectively; A is the recruitment rate
of new nodes, c is the half saturation constant for susceptible nodes S, α is the contact
rate or the rate of transfer of virus from an infectious node to the susceptible node, η is
rate at which the vaccinated nodes lose their immunity and join the susceptible class, β is
the maximal treatment capacity of a network, δ0 is the natural crashing rate of nodes all
classes, a is the half saturation constant for an infected node I , μ is the vaccination rate
coefficient, δ3 is the virus induced crashing rate and δ1, δ2 are the state transition rates.
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Using a Lyapunov function and a geometric approach, they obtained the global stability
of virus-free equilibrium and endemic equilibrium for system (1.2).

As pointed out by Liu and Yang [11], due to the high similarity between computer virus
and biological virus, it is acceptable to establish dynamical models describing biological
virus among a population by modifying an e-epidemic model. Thus, it is interesting and
important to extend model (1.2) to study the biological virus in the infectious disease.

Inspired by these research results above, in this paper, we consider the following system
with five compartments:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = A – δ0S – f (S, I) + ηV – μS,
dE
dt = f (S, I) – (δ0 + δ1)E,
dI
dt = δ1E – (δ0 + δ2 + δ3)I – g(I),
dR
dt = δ2I – δ0R + g(I),
dV
dt = μS – (δ0 + η)V ,

(1.3)

where S(t), E(t), I(t), R(t), V (t) are the number of susceptible population, exposed popula-
tion, infective population, recovered population, vaccinated population, respectively. The
two-variable function f (S, I) represents incidence rate and the nonlinear function g(I) de-
notes the removal rate of infective individuals because of the treatment of infective. The
initial conditions for system (1.3) are as follows:

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,

R(0) = R0 ≥ 0, V (0) = V0 ≥ 0.
(1.4)

Clearly, N = S(t) + E(t) + I(t) + R(t) + V (t) denotes the total number of high-risk human
population at time t.

The model parameters of system (1.3) are described as follows:
A: the rate at which new individuals (including newborns and immigrants) enter the

susceptible population,
δ0: natural death rate of population all classes,
η: the rate at which the vaccinated population lose their immunity and join the suscep-

tible class,
μ: vaccination rate coefficient,
δ1: the rate at which exposed population become infective,
δ2: natural recovery rate of infective population,
δ3: disease-related death rate of infective population.

Model (1.3) involves certain assumptions which consist of the following:
(i) The new individuals enter the population with a constant rate and all the new

individuals are susceptible.
(ii) Susceptible individuals move to exposed class by adequate contact with infective

individuals and after some time (i.e., latency period), they become infectious and
move to infectious class.

(iii) The infectious individuals are assumed to leave the infectious class as a result of
natural death and disease-related death as well as recovery of infected individuals.

(iv) After recovery the individuals become immunized and hence they are no longer
susceptible to it.
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(v) It is assumed that a fraction of susceptible individuals get vaccinated and join the
vaccinated class. A part of vaccinated individuals may lose their immunity and
rejoin the susceptible class.

It is easy to see that system (1.3) includes (1.1) and (1.2) as special cases and so model
(1.3) provides a uniform setting for the computer virus and biological virus studies. Fol-
lowing the classical assumptions [27, 40], it is reasonable to suppose that the transmission
of the infection is governed by an incidence rate f (S, I) in model (1.3). Moreover, as pointed
out by Wang [31], the recovery rate is naturally dependent on the number of infected in-
dividuals provided the health care resources are constrained and so it is natural to use the
nonlinear function g(I) as the treatment function in model (1.3).

The main purpose of this paper is to derive the expression for the basic reproduction
number and further show the global stability of disease-free as well as endemic equilibria
by the aid of Lyapunov function and Li–Muldowney geometric approach applied to four
dimensional systems. This paper is organized as follows. In Sect. 2, some elementary as-
sumptions on the functions f and g will be given, and the basic reproduction number R0

is provided. Also the equilibrium points are discussed. The global stability of disease-free
equilibrium and endemic equilibrium are analyzed in Sects. 3 and 4, respectively. All our
important analytical findings are numerically verified with the help of Mathlab in Sect. 5.
Finally, a brief conclusion is given in Sect. 6.

2 Basic reproduction number and equilibrium
To define the basic reproduction number R0 and indicate the existence of equilibrium, we
give some hypotheses.

(H1) f : R2
+ →R+ is differentiable such that
f (S, 0) = f (0, I) = 0 for all S, I ≥ 0;
f (S, I) > 0 for all S, I > 0;
∂f (S,I)

∂S > 0 for all S ≥ 0 and I > 0;
∂f (S,I)

∂I ≥ 0 for all S, I ≥ 0;
I ∂f (S,I)

∂I – f (S, I) ≤ 0 for all S, I ≥ 0.
(H2) g : R+ →R+ is differentiable such that g(0) = 0, g ′(I) > 0 and g ′′(I) ≤ 0 for I ≥ 0.
(H3) d

dI (log g(I)
fS(I) ) ≥ 0 holds for all S, I > 0, where fS(I) := f (S, I) for S, I > 0.

Remark 2.1
(1) It is easy to check that the classes of f (S, I) satisfying (H1) include incidence rates

such as

f (S, I) =
βSI

1 + aIq , f (S, I) =
βSI

1 + aS + bI
, f (S, I) =

βSI
1 + aS + bI + abSI

,

for β , a, b > 0 and 0 ≤ q ≤ 1.
(2) It is straightforward to show that the classes of g(I) satisfying (H2) include removal

rates such as

g(I) =
rI

1 + bI
, g(I) =

rI
I + a

, g(I) = r arctan I,

for r > 0, a > 0, b > 0.
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(3) By hypothesis (H2), we know that Φ(I) = g(I)
I is a monotone decreasing function on

I > 0.
(4) The assumption (H3) is equivalent to the following inequality:

∂

∂I
f (S, I)g(I) ≤ f (S, I)

d
dI

g(I),

which can be found in [27].
(5) By the assumptions, it is easy to find that system (1.3) always has a disease-free

equilibrium point P0 = (S0, 0, 0, 0, V0), where

S0 =
(δ0 + η)A

δ2
0 + (μ + η)δ0

, V0 =
Aμ

δ2
0 + (μ + η)δ0

.

We shall assume that (H1), (H2) and (H3) hold in the rest of this paper.
Now we define the basic reproduction number R0 for model (1.3) as follows:

R0 =
δ1

m2(m3 + g ′(0))
∂f
∂I

(
A

m1 – μη

m4

, 0
)

,

where

m1 = δ0 + μ, m2 = δ0 + δ1, m3 = δ0 + δ2 + δ3, m4 = δ0 + η.

In order to find the positive equilibria of model (1.3), set

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A – f (S, I) – m1S + ηV = 0,

f (S, I) – m2E = 0,

δ1E – m3I – g(I) = 0,

δ2I – δ0R + g(I) = 0, μS – m4V = 0.

(2.1)

It follows that A – m1S + ηV = m2E = m2
m3I+g(I)

δ1
and V = μS

m4
.

Substituting the above equalities into the second equation in (2.1), one has

f
(A – m2m3I+m2g(I)

δ1

m1 – μη

m4

, I
)

= m2
m3I + g(I)

δ1
.

Let

F(I) = f
(A – m2m3I+m2g(I)

δ1

m1 – μη

m4

, I
)

– m2
m3I + g(I)

δ1
. (2.2)

Then it is easy to see that the positive equilibrium points of system (2.1) are given by zeros
of F in the interval (0, Aδ1

m3m2
].

We denote G(I) = m3I + g(I) – Aδ1
m2

for convenience. Then it is easy to see

G(0) = –
Aδ1

m2
< 0, G

(
Aδ1

m3m2

)

= g
(

Aδ1

m3m2

)

> 0.
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Therefore, we conclude that G(I) has at least one root named Ĩ in the interval (0, Aδ1
m3m2

].
That is, m3 Ĩ + g(Ĩ) = Aδ1

m2
and so

F(Ĩ) = f
(A – m2m3 Ĩ+m2g(Ĩ)

δ1

m1 – μη

m4

, Ĩ
)

– m2
m3 Ĩ + g(Ĩ)

δ1
= –

m2
Aδ1
m2

δ1
= –A < 0.

Since f (S, 0) = 0, we know that ∂f
∂S ( A

m1– μη
m4

, 0) = 0 and so

F ′(0) =
∂f
∂I

(
A

m1 – μη

m4

, 0
)

–
m2

δ1

(
m3 + g ′(0)

)
=

m2

δ1

(
m3 + g ′(0)

)
(R0 – 1).

If R0 > 1, then system (2.1) has a positive equilibrium point P∗ = (S∗, E∗, I∗, R∗, V ∗), where

S∗ =
A – m2m3I∗+m2g(I∗)

δ1

m1 – μη

m4

, E∗ =
m3I∗ + g(I∗)

δ1
,

R∗ =
δ2I∗ + g(I∗)

δ0
, V ∗ =

μS∗

m4
.

In the following, we show that P∗ is the unique positive equilibrium point of system
(2.1). For any positive equilibrium point P∗, by (2.2) and hypotheses (H1) and (H2), we
have

F ′(I∗) =
∂f (S∗, I∗)

∂S
(–m2)(m3 + g ′(I∗))

δ1(m1 – μη

m4
)

+
∂f (S∗, I∗)

∂I

–
m2(m3 + g ′(I∗))

δ1
. (2.3)

Since m1m4 = (δ0 + μ)(δ0 + η) > μη and hypotheses (H1) and (H2) hold, we have

∂f (S∗, I∗)
∂S

1
m1 – μη

m4

(

–
1
δ1

)
(
m2m3 + m2g ′(I∗)) < 0. (2.4)

Since g(0) = 0 and g is differentiable on R+, there exists ξ ∈ (0, I∗) such that g(I∗)
I∗ = g ′(ξ ).

By using hypotheses (H2) and (H3), one has

∂f (S∗, I∗)
∂I

–
m2

δ1

(
m3 + g ′(I∗)) =

∂f (S∗, I∗)
∂I

–
f (S∗, I∗)

m3I∗ + g(I∗)
(
m3 + g ′(I∗))

<
f (S∗, I∗)g ′(I∗)

g(I∗)
–

f (S∗, I∗)(m3 + g ′(I∗))
m3I∗ + g(I∗)

= f
(
S∗, I∗)

[
g ′(I∗)
g(I∗)

–
m3 + g ′(I∗)

m3I∗ + g(I∗)

]

= f
(
S∗, I∗)m3I∗g ′(I∗) – m3g(I∗)

g(I∗)[m3I∗ + g(I∗)]

= f
(
S∗, I∗)m3I∗[g ′(I∗) – g(I∗)

I∗ ]
g(I∗)[m3I∗ + g(I∗)]
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= f
(
S∗, I∗)m3I∗[g ′(I∗) – g ′(ξ )]

g(I∗)[m3I∗ + g(I∗)]
< 0. (2.5)

Thus, it follows from (2.3), (2.4) and (2.5) that F ′(I∗) < 0.
Suppose that there exists another positive equilibrium point P1 = (S1, E1, I1, R1, V1). Then

F ′(I1) ≥ 0 due to the property of continuous function. This is a contradiction. Therefore,
system (2.1) has a unique endemic equilibrium P∗ when R0 > 1. It can be stated as follows.

Theorem 2.1 System (1.3) has a disease-free equilibrium P0 as follows:

P0 =
(

(δ0 + η)A
δ2

0 + (μ + η)δ0
, 0, 0, 0,

Aμ

δ2
0 + (μ + η)δ0

)

,

which exists for all parameter values. For R0 > 1, the endemic equilibrium P∗ admits the
unique positive equilibrium point for system (1.3).

Remark 2.2 From the proof of the existence of endemic equilibrium P∗, it is not difficult to
arrive at such a conclusion that the nonlinear treatment function g(I) has an upper bound
Aδ1
m2

, which is reasonable for limited medical resources in our daily life.

Proposition 2.1 The set

Ω =
{

(S, E, I, R, V ) ∈ R5
+, 0 < S, E, I, R, V , S + E + I + R + V ≤ A

δ0

}

is a positively invariant and attracting region for the disease transmission model given by
system (1.3) with initial conditions (1.4).

Proof Summing up the five equations in system (1.3) and denoting

N(t) = S(t) + E(t) + I(t) + R(t) + V (t),

we get

dN(t)
dt

= A – δ0N – δ3I ≤ A – δ0N ,

i.e.,

dN(t)
dt

+ δ0N ≤ A.

Now integrating both sides of the above inequality and using the theory of differential
inequality [41], we obtain

0 < N ≤
(

N(0)e–δ0t +
A
δ0

(
1 – e–δ0t)

)

.

Clearly, 0 < N ≤ A
δ0

as t → ∞. If N(0) ≤ A
δ0

, then N(t) ≤ A
δ0

. Thus, the set Ω is positive-
invariant, that is, all initial solutions belong to Ω remain in Ω for all t > 0. �
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3 Global stability of the disease-free equilibrium by means of Lyapunov
function

In this section, we investigate the global stability of the disease-free equilibrium P0 for
system (1.3).

Theorem 3.1 If R0 < 1 –
Ag′(0)–δ0g( A

δ0
)

A(m3+g′(0)) , then the disease-free equilibrium P0 of system (1.3)
is globally asymptotically stable in the feasible region Ω . If R0 > 1, then P0 is unstable.

Proof The Jacobian matrix of system (1.3) at P0 is

J(P0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–m1 0 – ∂f
∂I ( (δ0+η)A

δ2
0 +(μ+η)δ0

, 0) 0 η

0 –m2
∂f
∂I ( (δ0+η)A

δ2
0 +(μ+η)δ0

, 0) 0 0

0 δ1 –m3 – g ′(0) 0 0
0 0 δ2 + g ′(0) –δ0 0
μ 0 0 0 –m4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Obviously, λ1 = –δ0 is an eigenvalue of J(P0). The other eigenvalues of J(P0) are determined
by the equations

λ2 + (m1 + m4)λ + (m1m4 – μ) = 0

and

λ2 +
(
m2 + m3 + g ′(0)

)
λ + m2

(
m3 + g ′(0)

)
(1 – R0) = 0,

respectively. If R0 > 1, then one eigenvalue is positive. Thus, P0 is unstable.

When R0 < 1 –
Ag′(0)–δ0g( A

δ0
)

A(m3+g′(0)) , to prove the disease-free equilibrium P0 is globally asymp-
totically stable, we consider the Lyapunov function V (E, I) = δ1E + m2I . The derivative of
V (E, I) along system (1.3) satisfies

dV (E, I)
dt

= δ1
(
f (S, I) – m2E

)
+ m2

(
δ1E – m3I – g(I)

)

= δ1f (S, I) – m2
(
m3I + g(I)

)

= I
(

δ1
f (S, I)

I
– m2

m3I + g(I)
I

)

≤ I
(

δ1

f ( A
m1– μη

m4
, I)

I
– m2

(

m3 +
g(I)

I

))

≤ I
(

δ1 lim
I→0+

f ( A
m1– μη

m4
, I)

I
– m2

(

m3 +
g(I)

I

))

= I
[

δ1

∂f ( A
m1– μη

m4
, 0)

∂I
– m2

(

m3 +
g(I)

I

)]

= I
[

m2
(
m3 + g ′(0)

)
R0 – m2

(

m3 +
g(I)

I

)]
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= Im2
(
m3 + g ′(0)

)
[

R0 –
m2(m3 + g(I)

I )
m2(m3 + g ′(0))

]

= Im2
(
m3 + g ′(0)

)
[

R0 – 1 +
m3 + g ′(0) – m3 – g(I)

I
m3 + g ′(0)

]

≤ Im2
(
m3 + g ′(0)

)
[

R0 – 1 +
Ag ′(0) – δ0g( A

δ0
)

A(m3 + g ′(0))

]

≤ 0.

Furthermore, dV (E,I)
dt = 0 iff I = 0. Thus, the largest compact invariant set in {(S, E, I, R, V )|

V̇ (E, I) = 0}, when R0 < 1 –
Ag′(0)–δ0g( A

δ0
)

A(m3+g′(0)) , is the singleton P0. By the LaSalle invariance prin-
ciple theorem ([42], p. 30), the disease-free equilibrium P0 is globally asymptotically stable

if R0 < 1 –
Ag′(0)–δ0g( A

δ0
)

A(m3+g′(0)) . This completes the proof. �

4 Global stability of the endemic equilibrium by means of geometric approach
In this section, we analyze the stability of the endemic equilibrium P∗. First, we show
the local stability of the endemic equilibrium of system (1.3) around the endemic equi-
librium P∗.

Theorem 4.1 If R0 > 1, then the endemic equilibrium P∗ exists and is locally asymptoti-
cally stable if the following conditions hold:

(i) η < a11m4
μ

;
(ii) a13 < min{ a11m4+(a11+m4)(a33+m2)+a33m2–μη

δ1
, a11(a33+m2)m4+a33(a11+m4)m2–μη(a33+m2)

(m1+m4)δ1
,

a11a33m2m4–μηa33m2
(m1m4–μη)δ1

};
(iii) 0 < h ≤ z

a33m4+(a33+m4)m2
and

a11 > (a33μm2η–a21a13m4δ1)h2–a13δ1h(μηh+z)+a33hz(m2+m4)+hz(m2m4–μη)–z2

h[a33m2m4h–a13m4δ1h–(a33+m2+m4)z] .
Here all the parameters a11, a13, a21, a33, a43 are defined in (4.1). The values of h
and z equal to B1 and B3, respectively.

Proof The Jacobian matrix of system (1.3) at P∗ is given by

J
(
P∗) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–a11 0 –a13 0 η

a21 –m2 a13 0 0
0 δ1 –a33 0 0
0 0 a43 –δ0 0
μ 0 0 0 –m4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

a11 =
∂f (S∗, I∗)

∂S
+ m1, a13 =

∂f (S∗, I∗)
∂I

,

a21 =
∂f (S∗, I∗)

∂S
, a33 = m3 + g ′(I∗), a43 = δ2 + g ′(I∗).

(4.1)

Clearly, one of the roots of J(P∗) is negative, i.e. –δ0. The remaining roots can be deter-
mined from the following equation:

λ4 + B1λ
3 + B2λ

2 + B3λ + B4 = 0,
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where

B1 = a11 + a33 + m2 + m4 > 0,

B2 = a11m4 + (a11 + m4)(a33 + m2) + a33m2 – μη – δ1a13,

B3 = a11(a33 + m2)m4 + a33(a11 + m4)m2 – μη(a33 + m2) – δ1a13(m1 + m4),

B4 = a11a33m2m4 – a33μηm2 – δ1a13m1m4 + δ1a13μη.

Using assumptions (i) and (ii), by a direct calculation, we have Bi > 0 for i = 1, 2, 3, 4. It
follows from the Routh–Hurwitz criteria [43] that all the eigenvalues associated to J(P∗)
have negative real parts iff Bi > 0 for i = 1, 2, 3, 4 and B1B2B3 > B2

3 + B2
1B4.

Now,

B1B2B3 – B2
3 – B2

1B4

= B3(B1B2 – B3) – B2
1B4

=
[
a11(a33 + m2)m4 + a33(a11 + m4)m2 – μη(a33 + m2) – δ1a13(m1 + m4)

]

· {a11(a11 + m4)m4 + (a11 + m4)2(a33 + m2) + (a11 + m4)(a33 + m2)2

+ a33(a33 + m2)m2 – (a11 + m4)μη – δ1a13(a21 + a33 + m2)
}

– B4h2

= –B4h2 + h
[
a11m4 + (a11 + m4)(a33 + m2) + a33m2 – μη – δ1a13

]
z

–
[
a11(a33 + m2)m4 + m2a33(a11 + m4) – μη(a33 + m2)

– δ1a13(m1 + m4)
]
z

= –B4h2 + h
[
a33m4 + (a33 + m4)m2 + a11(a33 + m2 + m4) – μη – δ1a13

]
z

–
[
a11a33m4 + a33m2m4 + a11(a33 + m4)m2 – (a33 + m2)μη

– δ1a13(m1 + m4)
]
z

= –B4h2 + h
[
a33m4 + (a33 + m4)m2 + a11(a33 + m2 + m4) – μη – δ1a13

]
z

–
[
a11a33m4 + a33m2m4 + a11(a33 + m4)m2 – (a33 + m2)μη

– δ1a13(m1 + m4)
]2

> 0,

if (iii) holds. This ends the proof. �

To find the global stability of system (1.3), it is necessary to reduce system (1.3) first.
Since recovered class R does not have any effect on the dynamics of S, V , E and I class, we
shall investigate the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = A – δ0S – f (S, I) + ηV – μS,
dE
dt = f (S, I) – (δ0 + δ1)E,
dI
dt = δ1E – (δ0 + δ2 + δ3)I – g(I),
dV
dt = μS – (δ0 + η)V .

(4.2)
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The solutions of (4.2) corresponding to nonnegative initial values remain nonnegative
for all time. Moreover, we observe that the total population size of (4.2) denoted by X(t)
satisfies Ẋ = A – δ0X – δ2I – δ3I – g(I), so that we can study the model in the region:

Θ =
{

(S, E, I, V ) ∈ R4
+ : S + E + I + V ≤ A

δ0

}

.

Here we follow the approach used in [8] for a SVEIR model of SARS epidemic spread.
Let us consider the following autonomous dynamical system:

ẋ = f (x), (4.3)

where f : D → Rn, D ⊂ Rn which is an open set, simply connected and f ∈ C1(D). Suppose
that x∗ is an equilibrium point of (4.3), i.e. f (x∗) = 0. Therefore, x∗ is said to be globally
stable in D if it is locally stable and all trajectories in D converge to x∗.

Let Q(x) be a matrix-valued function of order
( n

2
)×( n

2
)

that is C1 on D. We also consider
the matrix A which is defined as

A = Qf Q–1 + QMQ–1,

where the matrix Qf is

(
qij(x)

)

f =
(

∂qij(x)
∂x

)T

· f (x) = ∇qij · f (x),

and the matrix M is the second additive compound matrix of the Jacobian matrix J . Further

the Lozinskĭi measure μ̄ of A with respect to a vector norm ‖ · ‖ can be defined in R
( n

2

)

as
follows:

μ̄(A) = lim
h→0+

‖I + hA‖
h

.

We will apply the following theorem according to [44].

Lemma 4.1 If D1 is a compact absorbing subset in the interior of D, and there exist γ > 0
and a Lozinskiĭ measure μ̄(A) ≤ –γ for all x ∈ D1, then every omega limit point of system
(4.2) in the interior of D is an equilibrium in D1.

Theorem 2.1 states that R0 > 1 implies the existence and uniqueness of the endemic
equilibrium P∗. Further, we know that the disease-free equilibrium P0 is unstable when
R0 > 1. The instability of P0, together with P0 ∈ ∂Θ , which implies the uniform persistence
of the state variables (see [45]). Thus, there exists a constant a > 0 such that any solution
(S(t), E(t), I(t), V (t)) with (S(0), E(0), I(0), V (0)) in the orbit of system (4.2) satisfies

min
{

lim
t→∞ inf S(t), lim

t→∞ inf E(t), lim
t→∞ inf I(t), lim

t→∞ inf V (t)
}

≥ a.

The uniform persistence of system (4.2), incorporating the boundedness of Θ , suggests
that the compact absorbing set in the interior of Θ ; see [46]. Hence, Lemma 4.1 may be
applied, with D = Θ .
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According to [47], the Lozinskĭi measure in Lemma 4.1 can be evaluated as:

μ̄(A) = inf
{

k̄ : D+‖z‖ ≤ k̄‖z‖, for all solutions of z′ = Az
}

,

where D+ is the right-hand derivative. The endemic equilibrium is locally asymptoti-
cally stable, provided R0 > 1. Hence, to get the global asymptotic stability, according to
Lemma 4.1, the trick of the proof is to find a norm ‖ · ‖ such that μ̄(A) < 0 for all x in the
interior of Θ .

Starting with the Jacobian matrix J of (4.2),

J =

⎛

⎜
⎜
⎜
⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞

⎟
⎟
⎟
⎠

,

the second additive compound matrix is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 + a22 a23 a24 –a13 –a14 0
a32 a11 + a33 a34 a12 0 –a14

a42 a43 a11 + a44 0 a12 a13

–a31 a21 0 a22 + a33 a34 –a24

–a41 0 a21 a43 a22 + a44 a23

0 –a41 a31 –a42 a32 a33 + a44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Hence, the second additive compound matrix of J is given as follows:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M11 M12 0 M14 M15 0
M21 M22 0 0 0 M26

0 0 M33 0 0 M36

0 M42 0 M44 0 0
M51 0 M53 0 M55 M56

0 M62 0 0 M65 M66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

M11 = –2δ0 –
∂f (S, I)

∂S
– (μ + δ1), M12 =

∂f (S, I)
∂I

,

M14 =
∂f (S, I)

∂I
, M15 = –η;

M21 = δ1, M22 = –2δ0 –
∂f (S, I)

∂S
– μ – (δ2 + δ3) – g ′(I), M26 = –η;

M33 = –2δ0 –
∂f (S, I)

∂S
– (μ + η), M36 = –

∂f (S, I)
∂I

;

M42 =
∂f (S, I)

∂S
, M44 = –2δ0 – (δ1 + δ2 + δ3) – g ′(I);

M51 = –μ, M53 =
∂f (S, I)

∂S
, M55 = –2δ0 – (δ1 + η),



Gao et al. Boundary Value Problems  (2018) 2018:42 Page 13 of 22

M56 =
∂f (S, I)

∂I
, M62 = –μ, M65 = δ1;

M66 = –2δ0 – (δ2 + δ3 + η) – g ′(I).

Now we consider the following matrix:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
I 0 0 0 0 0
0 1

I 0 0 0 0
0 0 0 1

I 0 0
0 0 1

V 0 0 0
0 0 0 0 1

V 0
0 0 0 0 0 1

V

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.4)

Then we obtain the matrix A = Qf Q–1 + QMQ–1, where Qf is the derivative of Q in the
direction of the vector field f . More accurately, we have

Qf Q–1 = – diag

{
İ
I

,
İ
I

,
İ
I

,
V̇
V

,
V̇
V

,
V̇
V

}

.

Hence, in view of the fact that

İ
I

= δ1
E
I

– (δ0 + δ2 + δ3) –
g(I)

I
,

V̇
V

= μ
S
V

– (δ0 + η),

we obtain

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 A12 A13 0 A15 0
A21 A22 0 0 0 A26

0 A32 A33 0 0 0
0 0 0 A44 0 A46

A51 0 0 A54 A55 A56

0 A62 0 0 A65 A66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

A11 =
g(I)

I
+ δ2 + δ3 – δ0 – δ1 – δ1

E
I

–
∂f (S, I)

∂S
– μ,

A12 =
∂f (S, I)

∂I
, A13 =

∂f (S, I)
∂I

, A15 = –η
V
I

;

A21 = δ1, A22 = –δ0 –
∂f (S, I)

∂S
– μ – g ′(I) +

g(I)
I

– δ1
E
I

, A26 = –η
V
I

;

A32 =
∂f (S, I)

∂S
, A33 =

g(I)
I

– (δ0 + δ1) – g ′(I) – δ1
E
I

;

A44 = –δ0 –
∂f (S, I)

∂S
– μ – μ

S
V

, A46 = –
∂f (S, I)

∂I
;

A51 = –μ
I
V

, A54 =
∂f (S, I)

∂S
, A55 = –μ

S
V

– (δ0 + δ1), A56 =
∂f (S, I)

∂I
;

A62 = –μ
I
V

, A65 = δ1, A66 = –(δ0 + δ2 + δ3) – g ′(I) – μ
S
V

.
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As in [8], we consider the following norm on R6:

‖z‖ = max{U1, U2}, (4.5)

where z ∈ R6, with components zi, i = 1, 2, . . . , 6, and U1(z1, z2, z3) is defined as:

U1(z1, z2, z3)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max{|z1|, |z2| + |z3|}, if sgn(z1) = sgn(z2) = sgn(z3),

max{|z2|, |z1| + |z3|}, if sgn(z1) = sgn(z2) = – sgn(z3),

max{|z1|, |z2|, |z3|}, if sgn(z1) = – sgn(z2) = sgn(z3),

max{|z1| + |z3|, |z2| + |z3|}, if – sgn(z1) = sgn(z2) = sgn(z3),

and U2(z4, z5, z6) is defined as

U2(z4, z5, z6)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|z4| + |z5| + |z6| if sgn(z4) = sgn(z5) = sgn(z6),

max{|z4| + |z5|, |z4| + |z6|}, if sgn(z4) = sgn(z5) = – sgn(z6),

max{|z5|, |z4| + |z6|}, if sgn(z4) = – sgn(z5) = sgn(z6),

max{|z4| + |z6|, |z5| + |z6|}, if – sgn(z4) = sgn(z5) = sgn(z6).

In the next, we will use the following inequalities:

|z1|, |z2|, |z3|, |z2 + z3| ≤ U1

and

|zi|, |zi + zj|, |z4 + z5 + z6| ≤ U2(z), i = 4, 5, 6; i �= j.

Furthermore, we assume that

δ2 + δ3 > δ1. (4.6)

We will use the inequalities mentioned above to get the estimates on D+‖z‖.

Theorem 4.2 For R0 > 1, system (4.2) admits an unique endemic equilibrium which is
globally asymptotically stable in the interior of Θ , provided that inequality (4.6) is satisfied
and that

max{δ2 + δ3 + �, δ1 – δ0 + �} < –ω (4.7)

for some positive constant ω, where

� = sup
t∈(0,∞)

g(I)
I

– sup
t∈(0,∞)

δ1E
I

+ sup
t∈(0,∞)

ηV
I

+ sup
t∈(0,∞)

{
∂f (S, I)

∂S
,
∂f (S, I)

∂I

}

,
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� = sup
t∈(0,∞)

2μI
V

– sup
t∈(0,∞)

μS
V

+ sup
t∈(0,∞)

∂f (S, I)
∂I

.

Proof The basic idea of the proof is to obtain the estimate of the right derivate D+‖z‖ of
the norm (4.5). For this purpose, we need to discuss sixteen cases according to the different
orthants and the definition of the norm (4.5) within each orthant.

Case 1:

U1 > U2 and z1, z2, z3 > 0 with |z1| > |z2| + |z3|. Then,‖z‖ = |z1|. (4.8)

This shows that

D+‖z‖ = z′
1

= A11z1 + A12z2 + A13z3 + A15z5

≤
[

g(I)
I

+ δ2 + δ3 – δ0 – δ1 – δ1
E
I

–
∂f (S, I)

∂S
– μ

]

|z1|

+
∂f (S, I)

∂I
(|z2| + |z3|

)
+ η

V
I

|Z5|.

By using |z5| < U2 < |z1| and |z2| + |z3| < |z1|, it follows from (4.8) that

D+‖z‖

≤
[

g(I)
I

+ δ2 + δ3 – δ0 – δ1 – δ1
E
I

–
∂f (S, I)

∂S
– μ +

∂f (S, I)
∂I

+ η
V
I

]

‖z‖.

Case 2:

U1 > U2 and z1, z2, z3 > 0 with |z1| < |z2| + |z3|. Then,‖z‖ = |z2| + |z3|. (4.9)

Thus, we have

D+‖z‖ = z′
2 + z′

3

= A21z1 + A22z2 + A26z6 + A32z2 + A33z3

≤ δ1|z1| +
(

g(I)
I

– g ′(I) – δ1
E
I

)
(|z2| + |z3|

)
+ η

V
I

|z6|.

Using |z6| < U2 < |z2| + |z3| and |z1| < |z2| + |z3|, in view of (4.9), one has

D+‖z‖ ≤
[

δ1 +
g(I)

I
– g ′(I) – δ1

E
I

+ η
V
I

]

‖z‖.

The discussion for the other fourteen cases are similar to the ones discussed in [7] and so
we omit it here. Thus, we can get the following estimate:

D+‖z‖ ≤ max{δ2 + δ3 + �, δ1 – δ0 + �}‖z‖,



Gao et al. Boundary Value Problems  (2018) 2018:42 Page 16 of 22

where

� = sup
t∈(0,∞)

g(I)
I

– sup
t∈(0,∞)

δ1E
I

+ sup
t∈(0,∞)

ηV
I

+ sup
t∈(0,∞)

{
∂f (S, I)

∂S
,
∂f (S, I)

∂I

}

,

� = sup
t∈(0,∞)

2μI
V

– sup
t∈(0,∞)

μS
V

+ sup
t∈(0,∞)

∂f (S, I)
∂I

.

Now the global stability follows from Lemma 4.1. �

Remark 4.1 As pointed out by Buonomo and Lacitignola [7], in some real situations, dif-
ferent choices of the matrix Q and of the vector norm ‖ · ‖ may lead to better sufficient
conditions than those we presented here, in the sense that the assumptions on the param-
eters may be weakened. Thus, it is worth to note that sufficient conditions (4.6) and (4.7)
in Theorem 4.2 are derived from the application of the method and numerical simulations
suggest that they may be not necessary (see Example 5.1).

5 Numerical simulations
The aim of this section is to give a numerical example to illustrate our main results.

Example 5.1 Consider the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = A – δ0S – mSI

1+nI + ηV – μS,
dE
dt = mSI

1+nI – (δ0 + δ1)E,
dI
dt = δ1E – (δ0 + δ2 + δ3)I – γ I

I+a ,
dR
dt = δ2I – δ0R + γ I

I+a ,
dV
dt = μS – (δ0 + η)V ,

(5.1)

which is a particular case of system (1.3) by letting f (S, I) = mSI
1+nI and g(I) = γ I

I+a , where m,
n, γ , a are positive and na > 1. The other parameters in (5.1) have the same biological
meanings as in model (1.3).

We first consider the case when

R0 = 0.571429 < 1 –
Ag ′(0) – δ0g( A

δ0
)

A(m3 + g ′(0))
= 0.910714

by using the parameter values given in Table 1. Using these parameter values, for differ-
ent initial conditions the dynamics of model (5.1) is presented in Figs. 1–5. It shows that
system (5.1) has a disease-free equilibrium and it is globally asymptotically stable. This
numerical verification supports the result stated in Theorem 3.1.

Next, we consider the case when R0 = 2.211436 > 1 using the parameter values given
in Table 2. Using these parameter values, for different initial conditions the dynamics of
model (5.1) is presented in Figs. 6–10. It shows that system (5.1) has an endemic equilib-
rium and it is globally asymptotically stable with different initial values, which supports
our analytical results stated in Theorem 4.2.
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Table 1 Parameter for Figs. 1–5

Parameter Values

A 2
δ0 0.2
m 0.2
n 2
η 0.2
μ 0.4
δ1 0.8
δ2 0.5
δ3 0.55
γ 0.3
a 2

Figure 1 Time series plot of the susceptible
population forR0 = 0.571429 < 0.910714 with
various initial conditions, parameter values are given
in Table 1

Figure 2 Time series plot of the exposed
population forR0 = 0.571429 < 0.910714 with
various initial conditions, parameter values are given
in Table 1

Figure 3 Time series plot of the infective
population forR0 = 0.571429 < 0.910714 with
various initial conditions, parameter values are given
in Table 1



Gao et al. Boundary Value Problems  (2018) 2018:42 Page 18 of 22

Figure 4 Time series plot of the recovered
population forR0 = 0.571429 < 0.910714 with
various initial conditions, parameter values are given
in Table 1

Figure 5 Time series plot of the vaccinated
population forR0 = 0.571429 < 0.910714 with
various initial conditions, parameter values are given
in Table 1

Table 2 Parameter for Figs. 6–10

Parameter Values

A 6
δ0 0.5
m 0.8
n 2
η 0.2
μ 0.4
δ1 0.8
δ2 0.5
δ3 0.55
γ 0.3
a 2

Figure 6 Time series plot of the susceptible
population forR0 = 2.211436 > 1 with various initial
conditions, parameter values are given in Table 2
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Figure 7 Time series plot of the exposed
population forR0 = 2.211436 > 1 with various initial
conditions, parameter values are given in Table 2

Figure 8 Time series plot of the infective
population forR0 = 2.211436 > 1 with various initial
conditions, parameter values are given in Table 2

Figure 9 Time series plot of the recovered
population forR0 = 2.211436 > 1 with various initial
conditions, parameter values are given in Table 2

Figure 10 Time series plot of the vaccinated
population forR0 = 2.211436 > 1 with various initial
conditions, parameter values are given in Table 2
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6 Conclusions
In this paper, we have considered an SVEIR epidemic model with general nonlinear inci-
dence rate. In model (1.3), we have divided the total population into five compartments,
namely susceptible, exposed, infective, recovered, vaccinated population and investigated
the dynamical behavior of this model. Here, we have found that

R0 =
δ1

m2(m3 + g ′(0))
∂f
∂I

(
A

m1 – μη

m4

, 0
)

is a basic reproduction number of system (1.3), which helps us to determine the dynamical
behavior of the system. We have showed that system (1.3) to be globally asymptotically
stable at disease-free equilibrium P0 when

R0 < 1 –
Ag ′(0) – δ0g( A

δ0
)

A(m3 + g ′(0))
.

When R0 > 1, the endemic equilibrium stable both locally and globally has been derived
and analyzed under some conditions. The important mathematical findings for the dy-
namical behavior of model (1.3) have also numerically been verified for a special case of
model (1.3). We would like to point out that the model considered in this paper is not a
case study and so it is difficult to choose parameter values from quantitative estimation.
We have used hypothetical sets of parameters to verify our analytical results. It is worth to
mention that the results presented in this paper improve and extend some related results
in [9, 10, 12, 13].

Finally, we remark that there are quite a few spaces to deserve further investigation.
For example, we can continue the research in this line considering the vaccination rate
μ in our model (1.3) as a continuous function, and, later, a discontinuous function. On
the other hand, as is well known, epidemiological models which incorporate the control
strategies can be useful to both control the spread of disease and minimize the intervention
costs. For our model, it is natural to consider vaccination rate coefficient as a control to
reduce the disease burden. Thus, it is important and interesting to prove the existence of
optimal control, characterize the optimal control, prove the uniqueness of optimal control,
compute the optimal control numerically and investigate how the optimal control depends
on various parameters in the models. We will devote to these questions our future work.
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