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Abstract
In this paper, we consider a one-dimensional mean curvature equation in Minkowski
space and the corresponding one-parameter problem. By using a fixed point
theorem of cone expansion and compression of norm type, the existence and
multiplicity of positive solutions for the above problems are obtained. Meanwhile, as
applications of our results, some examples are given.
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1 Introduction
The problem

div

( ∇v√
1 – |∇v|2

)
= H(x, v) in �

arises from the study of prescribed mean curvature of a spacelike graph in the flat
Minkowski space

LN+1 :=
{

(x, t) : x ∈R
N , t ∈R

}

endowed with the Lorentzian metric
∑N

i=1 dx2
i – dt2 [1].

Recently, these kinds of problems have been studied by many authors. In [2], Bereanu et
al. considered the Dirichlet problem for the mean curvature equation in Minkowski space
of the type

⎧⎨
⎩

div( ∇v√
1–|∇v|2 ) + f (|x|, v) = 0 in BR,

v = 0 on ∂BR,

where BR = {x ∈R
N : |x| < R} and f : [0, R] × [0,α) →R is positive on (0, R] × (0,α). When

α = R = 1, f is superlinear at 0 and sublinear at 1 with respect to φ(s) := s/
√

1 – s2, the
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authors obtained the existence of classical positive radial solutions of the problem by us-
ing the Leray–Schauder degree arguments. In [3], Bereanu et al. studied the positive ra-
dial solutions of the one-parameter problem involving the mean curvature operator in
Minkowski space of the type

⎧⎨
⎩

div( ∇v√
1–|∇v|2 ) + λ[μ(|x|)vq] = 0 in BR,

v = 0 on ∂BR,

where λ > 0 is a parameter, q > 1, R > 0, μ : [0, +∞) → R is continuous, positive on (0,∞).
Using upper and lower solutions together with Leray–Schauder degree type arguments,
the authors proved that there exists � > 0 such that the problem has zero, at least one or
at least two positive radial solutions according to λ ∈ (0,�), λ = � or λ > �. In [4], Pei and
Wang considered the singular Dirichlet problem involving the mean curvature operator
in Minkowski space of the form

⎧⎨
⎩

div( ∇v√
1–|∇v|2 ) + f (|x|, v) = 0 in B1,

v = 0 on ∂B1,

and the corresponding one-parameter problem

⎧⎨
⎩

div( ∇v√
1–|∇v|2 ) + λf (|x|, v) = 0 in B1,

v = 0 on ∂B1,

where f ∈ C([0, 1] × [0, 1), [0, +∞)). They provided sufficient conditions for the exis-
tence of triple and arbitrarily many positive solutions to the above problems by Leggett–
Williams’ fixed point theorem. In [5], Pei and Wang considered a strongly singular Dirich-
let problem involving the mean curvature operator in Minkowski space of the form

⎧⎨
⎩

div( ∇v√
1–|∇v|2 ) + f (|x|, v) = 0 in B1,

v = 0 on ∂B1,

where f (r, u) is nonnegative and continuous on (0, 1) × (0, +∞) and may be singular at
r = 0 and/or r = 1 and strongly singular at u = 0. The authors presented sufficient con-
ditions which guarantee the existence of positive solutions to the problem by applying
the perturbation technique and nonlinear alternative of Leray–Schauder type. In [6], Dai
considered the solvability of the Dirichlet problem with mean curvature operator in the
Minkowski space

⎧⎨
⎩

div( ∇v√
1–|∇v|2 ) + λf (x, v) = 0 in �,

v = 0 on ∂�,

where � is a general bounded domain of R
N . By bifurcation and topological meth-

ods, the author determined the interval of parameter λ in which the above problem has
zero/one/two nontrivial nonnegative solutions according to sublinear/linear/superlinear
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nonlinearity at zero. We refer the reader to [7–15] for the N-dimensional mean curvature
equation in Minkowski space. In particular, for one-dimensional mean curvature equation
with Dirichlet/Neumann/periodic/mixed type boundary conditions in Minkowski space,
we refer the reader to [16–24] and the references therein.

Motivated by above work, in this paper, we will consider the one-dimensional mean
curvature equations in Minkowski space of the type

⎧⎨
⎩

( u′√
1–u′2 )′ + f (r, u) = 0, r ∈ (0, 1),

u′(0) = 0, u(1) = 0,
(1.1)

and the corresponding one-parameter problem

⎧⎨
⎩

( u′√
1–u′2 )′ + λf (r, u) = 0, r ∈ (0, 1),

u′(0) = 0, u(1) = 0,
(1.2)

where f ∈ C([0, 1] × [0, 1), [0, +∞)). Using a fixed point theorem of cone expansion and
compression of norm type, we obtain the existence and multiplicity of positive solutions
of the above problems. It is worth to note that, in our work, we do not assume that f is
superlinear at 0 and sublinear at 1 with respect to φ(s). To the best of our knowledge, this
is the first paper using a fixed point theorem of cone expansion and compression of norm
type to study the above problem.

The rest of the paper is organized as follows. By means of a fixed point theorem of cone
expansion and compression of norm type (see [25]), in Sect. 2 we show the existence and
multiplicity of positive solutions of (1.1) and (1.2). In Sect. 3, we give some examples to
illustrate our results.

2 Main results
In order to introduce our main theorem, we need some lemmas.

Simple computations lead to the following lemma.

Lemma 2.1 Let φ(s) be defined by above. Then φ–1(s) = s/
√

1 + s2 and

φ–1(s1)φ–1(s2) ≤ φ–1(s1s2) ≤ s1s2, ∀s1, s2 ∈ [0, +∞).

Lemma 2.2 ([25]) Let E be a Banach space and let K be a cone in E. Assume that �1 and �2

are bounded open subsets of E such that 0 ∈ �1 ⊂ �1 ⊂ �2, and let T : K ∩ (�2 \ �1) → K
be a completely continuous operator such that either

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ K ∩ ∂�1 and ‖Tx‖ ≥ ‖x‖ for x ∈ K ∩ ∂�2, or
(ii) ‖Tx‖ ≥ ‖x‖ for x ∈ K ∩ ∂�1 and ‖Tx‖ ≤ ‖x‖ for x ∈ K ∩ ∂�2.

Then T has a fixed point in K ∩ (�2 \ �1).

Take E = C[0, 1] with the usual supremum norm ‖ · ‖ and the corresponding open ball
of center 0 and radius ρ > 0 will be denoted by Bρ . Let

K =
{

u ∈ E : u(r) is concave and nonincreasing on [0, 1], u(1) = 0
}

.
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Then K is a cone in E and, for all u ∈ K ,

u(r) ≥ (1 – r)‖u‖ on [0, 1]. (2.1)

Now we define a nonlinear operator T on K ∩ B1 as follows:

(Tu)(r) =
∫ 1

r
φ–1

(∫ s

0
f
(
τ , u(τ )

)
dτ

)
ds, u ∈ K ∩ B1.

Clearly, (Tu)(r) ≥ 0, (Tu)′′(r) ≤ 0 for all r ∈ [0, 1], (Tu)′(0) = (Tu)(1) = 0, which implies that
T(K ∩ B1) ⊂ K . Moreover, it is easy to show by a standard argument that T is compact on
K ∩ Bρ for all ρ ∈ (0, 1) (see [2]). In addition, it can easily be verified that u is a positive
solution of problem (1.1) if u ∈ K ∩ B1 is a fixed point of the nonlinear operator T .

Now, we state and prove the existence and multiplicity of positive solutions of problem
(1.1) and (1.2) by using a fixed point theorem of cone expansion and compression of norm
type.

For convenience, we introduce some notations

f J
0 = lim

s→0+
min
r∈J

f (r, s)
φ(s)

, f 0 = lim
s→0+

max
r∈[0,1]

f (r, s)
φ(s)

, f 1 = lim
s→1–

max
r∈[0,1]

f (r, s)
φ(s)

,

where J be a compact subinterval of [0, 1].

Theorem 2.1 Assume that there exists a compact subinterval J := [r0, r1] ⊂ [0, 1) such that

f J
0 >

σ

1 – r1
and f 1 < 1,

where σ = 1
(r1–r0)2 (

√
1 + (r1 – r0)2 + 1). Then problem (1.1) has at least one positive solution.

Proof Take a number L with σ
1–r1

< L < f J
0 . Then

lim
δ→0+

L
φ((1 – r1)δ)

φ(σδ)
= L

1 – r1

σ
> 1.

It follows that there exists δ∗ ∈ (0, 1) with σδ∗ < 1 such that

L
φ((1 – r1)δ)

φ(σδ)
> 1, ∀δ ∈ (

0, δ∗).

Since f J
0 > L, there exists ρ ∈ (0, δ∗) such that

f (r, s)
φ(s)

> L, ∀(r, s) ∈ J × (0,ρ].

Therefore, for each (r, s) ∈ J × [(1 – r1)ρ,ρ] we have

f (r, s) > Lφ(s) ≥ Lφ
(
(1 – r1)ρ

)
> φ(σρ). (2.2)
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Now, let �1 = {u ∈ E : ‖u‖ < ρ}. Then from (2.1), (2.2) and Lemma 2.1, we obtain

‖Tu‖ =
∫ 1

0
φ–1

(∫ s

0
f
(
τ , u(τ )

)
dτ

)
ds

≥
∫ r1

r0

φ–1
(∫ s

r0

f
(
τ , u(τ )

)
dτ

)
ds

>
∫ r1

r0

φ–1
(∫ s

r0

φ(σρ) dτ

)
ds

≥ σρ

∫ r1

r0

φ–1(s – r0) ds

= σρ

∫ r1–r0

0
φ–1(s) ds

= ρ = ‖u‖, ∀u ∈ K ∩ ∂�1. (2.3)

Next, we prove that there exists � ∈ (ρ, 1) such that

‖Tu‖ < ‖u‖, ∀u ∈ K ∩ ∂B� . (2.4)

In fact, from f 1 < 1, there exist α ∈ (f 1, 1) and β ∈ (0, 1) such that

f (r, s) ≤ M + αφ(s), ∀(r, s) ∈ [0, 1] × [0, 1), (2.5)

where M = max{f (r, s) : (r, s) ∈ [0, 1] × [0,β]}.
Select � > 0 with

max

{
ρ,φ–1

(
M

1 – α

)}
< � < 1.

Then from (2.5) we get

‖Tu‖ =
∫ 1

0
φ–1

(∫ s

0
f
(
τ , u(τ )

)
dτ

)
ds

≤
∫ 1

0
φ–1

(∫ s

0

(
M + αφ(�)

)
dτ

)
ds

=
∫ 1

0
φ–1((M + αφ(�)

)
s
)

ds

< φ–1(M + αφ(�)
)

< φ–1((1 – α)φ(�) + αφ(�)
)

= � = ‖u‖, ∀u ∈ K ∩ ∂B� ,

that is, (2.4) holds.
Let �2 = {u ∈ E : ‖u‖ < �}. Then from (2.4) we have

‖Tu‖ < ‖u‖, ∀u ∈ K ∩ ∂�2. (2.6)
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Therefore, from (2.3), (2.6) and Lemma 2.2, the operator T has a fixed point u∗ ∈ K ∩
(�2 \ �1), which is a positive solution of problem (1.1). This completes the proof of the
theorem. �

Corollary 2.1 Assume that there exists a compact subinterval J := [r0, r1] ⊂ (0, 1) such that

σ

(1 – r1)f J
0

=: �1 < �2 :=
1
f 1 ,

where σ = 1
(r1–r0)2 (

√
1 + (r1 – r0)2 + 1). Then the one-parameter problem (1.2) has at least

one positive solution provided �1 < λ < �2.

Theorem 2.2 Assume that
(i) f 0 < 1 and f 1 < 1;

(ii) there exist a compact subinterval [r0, r1] ⊂ [0, 1) and ρ ∈ (0, 1) such that σρ ∈ (0, 1)
and

f (r, s) > φ(σρ), ∀(r, s) ∈ [r0, r1] × [
(1 – r1)ρ,ρ

]
,

where σ = 1
(r1–r0)2 (

√
1 + (r1 – r0)2 + 1).

Then problem (1.1) has at least two positive solutions.

Proof Since f 0 < 1, there exists ρ0 ∈ (0,ρ) such that

f (r, s) < φ(s), ∀(r, s) ∈ [0, 1] × [0,ρ0].

Let �0 = {u ∈ E : ‖u‖ < ρ0}, then, for u ∈ K ∩ ∂�0,

‖Tu‖ =
∫ 1

0
φ–1

(∫ s

0
f
(
τ , u(τ )

)
dτ

)
ds

<
∫ 1

0
φ–1

(∫ s

0
φ
(
u(τ )

)
dτ

)
ds

≤
∫ 1

0
φ–1

(∫ 1

0
φ(ρ0) dτ

)
ds

= ρ0 = ‖u‖. (2.7)

Let �1 = {u ∈ E : ‖u‖ < ρ}. Then from the proof of Theorem 2.1 we obtain

‖Tu‖ > ‖u‖, ∀u ∈ K ∩ ∂�1. (2.8)

Notice that f 1 < 1, it follows from the proof of Theorem 2.1 that there exists � ∈ (ρ, 1)
such that

‖Tu‖ < ‖u‖, ∀u ∈ K ∩ ∂�2, (2.9)

where �2 = {u ∈ E : ‖u‖ < �}. Therefore, it follows from (2.7), (2.8), (2.9) and Lemma 2.2
that the operator T has two fixed points u1 ∈ K ∩ (�1 \�0) and u2 ∈ K ∩ (�2 \�1), which
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are two distinct positive solutions of problem (1.1). This completes the proof of the theo-
rem. �

Remark 2.1 In Theorem 2.2, the condition f 0 < 1 in (i) can be replaced by the following
condition: there exists ρ0 ∈ (0,ρ) such that

f (r, s) < φ(ρ0), ∀(r, s) ∈ [0, 1] × [0,ρ0].

The conclusion still holds.

Corollary 2.2 Assume that
(i) there exist a compact subinterval [r0, r1] ⊂ [0, 1) and ρ ∈ (0, 1) such that σρ ∈ (0, 1)

and

f (r, s) > 0, ∀(r, s) ∈ [r0, r1] × [
(1 – r1)ρ,ρ

]
=: D,

where σ = 1
(r1–r0)2 (

√
1 + (r1 – r0)2 + 1);

(ii) φ(σρ)
min(r,s)∈D f (r,s) =: �1 < �2 := min{ 1

f 0 , 1
f 1 }.

Then the one-parameter problem (1.2) has at least two positive solutions provided �1 <
λ < �2.

Proof At first, from the assumption (i), we know that min(r,s)∈D f (r, s) > 0, and thus �1 is
a finite number. We now check that all conditions of Theorem 2.2 are satisfied. From the
assumption (ii), for λ < �2, we have

λf i < �2f i ≤ 1, i = 0, 1.

On the other hand, from assumption (ii), for λ > �1, we have

λf (r, s) > �1f (r, s) >
φ(σρ)

min(r,s)∈D f (r, s)
f (r, s)

≥ φ(σρ)
min(r,s)∈D f (r, s)

min
(r,s)∈D

f (r, s)

= φ(σρ), ∀(r, s) ∈ D.

Therefore, by Theorem 2.2, the one-parameter problem (1.2) has at least two positive so-
lutions provided �1 < λ < �2. �

Theorem 2.3 Assume that there exists a compact subinterval J := [r0, r1] ⊂ [0, 1) such that
(i) f J

0 = ∞ and f 1 < 1;
(ii) there exists ρ ∈ (0, 1) with σρ ∈ (0, 1) such that

f (r, s) > φ(σρ), ∀(r, s) ∈ J × [
(1 – r1)ρ,ρ

]
,

where σ = 1
(r1–r0)2 (

√
1 + (r1 – r0)2 + 1);
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(iii) there exists ρ0 ∈ (0,ρ) such that

f (r, s) < φ(ρ0), ∀(r, s) ∈ [0, 1] × [0,ρ0].

Then problem (1.1) has at least three positive solutions.

Proof From the assumptions (i), (ii), (iii) and Remark 2.1, the conditions of Theorem 2.2
are all satisfied. Then from the proof of Theorem 2.2, there exist ρ and � with 0 < ρ0 < ρ <
� < 1 such that

‖Tu‖ < ‖u‖, ∀u ∈ K ∩ ∂Bρ0 ,

‖Tu‖ > ‖u‖, ∀u ∈ K ∩ ∂Bρ ,

and

‖Tu‖ < ‖u‖, ∀u ∈ K ∩ ∂B� ,

where Bρ0 = {u ∈ E : ‖u‖ < ρ0}, Bρ = {u ∈ E : ‖u‖ < ρ}, B� = {u ∈ E : ‖u‖ < �}.
Moreover, from f J

0 = ∞ and the proof of Theorem 2.1, there exists ρ∗ > 0 with ρ∗ < ρ0,
such that

‖Tu‖ > ‖u‖, ∀u ∈ K ∩ ∂Bρ∗ ,

where Bρ∗ = {u ∈ E : ‖u‖ < ρ∗}. Then from Lemma 2.2, problem (1.1) has three distinct
positive solutions u0, u1, u2 with u0 ∈ K ∩ (Bρ0 \ Bρ∗ ), u1 ∈ K ∩ (Bρ \ Bρ0 ) and u2 ∈ K ∩
(B� \ Bρ). �

Corollary 2.3 Assume that there exists a compact subinterval J := [r0, r1] ⊂ [0, 1) such
that

(i) f J
0 = ∞;

(ii) there exists ρ ∈ (0, 1) with σρ ∈ (0, 1) such that

f (r, s) > 0, ∀(r, s) ∈ J × [
(1 – r1)ρ,ρ

]
=: Dρ ,

where σ = 1
(r1–r0)2 (

√
1 + (r1 – r0)2 + 1);

(iii) there exists ρ∗ ∈ (0,ρ) such that

φ(σρ)
min(r,s)∈Dρ f (r, s)

=: �1 < �2 := min

{
1
f 1 ,

φ(ρ∗)
max(r,s)∈Dρ∗ f (r, s)

}
,

where Dρ∗ := [0, 1] × [0,ρ∗].
Then the one-parameter problem (1.2) has at least three positive solutions provided �1 <
λ < �2.

Proof Similar to the proof of Corollary 2.2, it is easy to check that, for �1 < λ < �2, λf (t, s)
satisfies all conditions of Theorem 2.3. Then the conclusion hold. �
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3 Examples
In this section, we give some examples to demonstrate the applications of the our re-
sults.

Example 3.1 Consider the following one-dimensional mean curvature equations in
Minkowski space of the type

⎧⎨
⎩

( u′√
1–u′2 )′ + (r – 1

2 )2 up

(1–u2)q = 0, r ∈ (0, 1),

u′(0) = 0, u(1) = 0,
(3.1)

where 0 < p < 1 and q < 1/2 are constants.
Let f (r, s) = (r – 1

2 )2sp/(1 – s2)q on [0, 1]× [0, 1). Take J = [ 3
4 , 1], it is easy to see that f J

0 = ∞
and f 1 = 0. By Theorem 2.1, the problem (3.1) has at least one positive solution. We note
that Theorem 1 of [2] cannot guarantee this conclusion since f ( 1

2 , s) = 0, ∀s ∈ [0, 1).

Example 3.2 Consider the following one-parameter problem:

⎧⎨
⎩

( u′√
1–u′2 )′ + λ|r – 37

48 |puq = 0, r ∈ (0, 1),

u′(0) = 0, u(1) = 0,
(3.2)

where λ > 0 be a parameter, p ≥ 0, q > 1 are constants.
Let f (r, s) = |r – 37

48 |psq on [0, 1] × [0, 1). It is easy to see that f 0 = f 1 = 0. Choose ρ = 1/12,
r0 = 1/4 and r1 = 3/4. Then σρ = (2 +

√
5)/6 ∈ (0, 1),

φ(σρ) =
σρ√

1 – (σρ)2
=

2 +
√

5√
27 – 4

√
5

and

min
(r,s)∈D

f (r, s) = min
(r,s)∈D

∣∣∣∣r –
37
48

∣∣∣∣
p

sq =
1

48p+q ,

where D = [ 1
4 , 3

4 ] × [ 1
48 , 1

12 ]. Thus from Corollary 2.2, the one-parameter problem (3.2) has
at least two positive solutions provided

λ > �1 := 48p+q 2 +
√

5√
27 – 4

√
5

.

Example 3.3 Consider the following one-parameter problem:

⎧⎨
⎩

( u′√
1–u′2 )′ + λg(u) = 0, r ∈ (0, 1),

u′(0) = 0, u(1) = 0,
(3.3)
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where λ > 0 is a parameter and

g(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
10

√
s, s ∈ [0, 1

96 ],
2
5 (360 –

√
6)(s – 1

48 ) + 3
2 , s ∈ [ 1

96 , 1
48 ],

3456s2, s ∈ [ 1
48 , 1

12 ],

– 276
5 (s – 1

2 ) + 1, s ∈ [ 1
12 , 1

2 ],
1
2

4
√

12
1–s2 , s ∈ [ 1

2 , 1).

We choose ρ = 1/12, r0 = 1/4, r1 = 3/4 and ρ∗ = 1/96. It is easy to check that the condi-
tions for Corollary 2.3 are all satisfied, where

�1 =
2(2 +

√
5)

3
√

27 – 4
√

5
< 1, �2 =

40
√

6√
9215

> 1.

Hence from Corollary 2.3, problem (3.3) has at least three positive solutions when λ ∈
(�1,�2).
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