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1 Introduction
A boundary value problem is said to be at resonance if the corresponding homogeneous
boundary value problem has a non-trivial solution. Mawhin’s continuation theorem [1]
and its extension by Ge and Ren [2] are effective tools in the study of boundary value
problems at resonance (see [3–10] and the references therein). In Refs. [6, 9], the authors
studied the existence of solutions for functional boundary value problems with a linear
differential operator by using Mawhin’s continuation theorem. In [6], we extended the
results of [9] to include new resonance scenarios. Since the p-Laplacian operator occurs in
many applications such as non-Newtonian mechanics, nonlinear elasticity and glaciology,
combustion theory, we would like to further extend the results of [6] to the third-order
functional p-Laplacian boundary value problem at resonance

⎧
⎨

⎩

(ϕp(u′′))′(t) = f (t, u(t), u′(t), u′′(t)), t ∈ (0, 1),

u′′(0) = 0, B1(u) = B2(u) = 0,
(1.1)

where f : [0, 1] × R
3 → R is continuous, p > 1, ϕp(s) = |s|p–2s, B1, B2 : C2[0, 1] → R are

linear bounded functions with B2(t)B1(1) = B2(1)B1(t). Although the paper by Han and
Kang [11] explores positive solutions in the non-resonant setting of a dynamic equation
on a measure chain with Sturm–Liouville boundary conditions in place of our functional
conditions, it is also relevant since it bears some similarity to the boundary value problem
considered herein. Finally, one can easily extend the scheme used in this paper to include
fractional analogs of [4] and thus to extend the findings of [10].
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2 Preliminaries
We introduce the theoretical foundations of the method; for more details, see [2].

Definition 2.1 Let X and Y be two Banach spaces with norms ‖ · ‖X , ‖ · ‖Y , respectively.
An operator M : X ∩ dom M → Y is said to be quasi-linear if

(i) Im M = M(X ∩ dom M) is a closed subset of Y ;
(ii) Ker M = {x ∈ X ∩ dom M : Mx = 0} is linearly homeomorphic to R

n.

In this paper, an operator T : X → Y is said to be bounded if T(V ) ⊂ Y is bounded for
any bounded subset V ⊂ X.

Definition 2.2 A linear operator P : X → X, where X is a vector space, is a projector if
P2x = Px.

Let X1 = Ker M, P : X → X1 be a projector and X2 be the complement space of X1 in X
with X = X1 ⊕ X2. Let � ⊂ X be an open and bounded set with the origin 0 ∈ �.

Definition 2.3 Suppose that Nλ : � → Y , λ ∈ [0, 1] is a continuous and bounded operator
and N1 is denoted by N . Let �λ = {x ∈ � : Mx = Nλx}. The operator Nλ is said to be M-
quasi-compact in � if there exists a vector subspace Y1 of Y satisfying dim Y1 = dim X1 and
the operators Q and R such that the following conditions hold:

(a) Ker Q = Im M;
(b) QNλx = 0, λ ∈ (0, 1) ⇔ QNx = 0;
(c) R(·, 0) is the zero operator and R(·,λ)|�λ

= (I – P)|�λ
;

(d) M[P + R(·,λ)] = (I – Q)Nλ, where Q : Y → Y1 is continuous, bounded with
Q(I – Q) = 0, QY = Y1 and R : � × [0, 1] → X2 is continuous and compact with
Pu + R(u,λ) ∈ dom M, u ∈ �, λ ∈ [0, 1].

We use the result of Ge and Ren [2].

Theorem 2.4 Let X and Y be Banach spaces and � ⊂ X be an open and bounded
nonempty set. Suppose that M : X ∩dom M → Y is a quasi-linear operator and Nλ : � → Y ,
λ ∈ [0, 1], is M-quasi-compact. In addition, if the following conditions hold:

(C1) Mx 
= Nλx, x ∈ ∂� ∩ dom M, λ ∈ (0, 1);
(C2) deg(JQN ,� ∩ Ker M, 0) 
= 0, where N = N1, J : Im Q → Ker M is a homeomorphism

with J(0) = 0 and deg is the Brouwer degree,
then the abstract equation Mx = Nx has at least one solution in dom M ∩ �.

We make use of well-known inequalities [12] in the context of the p-Laplacian ϕp(s),
p > 1. For u, v ≥ 0, we have

ϕp(u + v) ≤
⎧
⎨

⎩

ϕp(u) + ϕp(v), if 1 < p ≤ 2,

2p–2(ϕp(u) + ϕp(v)), if p > 2.
(2.1)

3 Main results
We work in the Banach spaces X = {u ∈ C2[0, 1] : u′′(0) = 0} with the norm ‖u‖X =
max{‖u‖0,‖u′‖0,‖u′′‖0} and Y = C[0, 1] with the norm ‖y‖Y = ‖y‖0, where ‖ · ‖0 is the
max-norm and introduce the following assumptions:
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(A0) The linear functionals Bi : X → R, i = 1, 2, satisfy B1(t) = β , B1(1) = α, B2(t) = kβ ,
B2(1) = kα, where α,β , k ∈R with α2 + β2 
= 0.

(A1) ‖Biu‖ ≤ ki‖u‖X , ki ∈R
+, u ∈ X , i = 1, 2.

(A2) The functional F : Y →R defined by

F(y) = (B2 – kB1)
(∫ t

0
(t – s)ϕq

(∫ s

0
y(r) dr

)

ds
)

, (3.1)

where 1
p + 1

q = 1 is increasing, that is, if y1, y2 ∈ Y , y1(t) ≤ y2(t), t ∈ [0, 1], y1 
≡ y2,
then F(y1) < F(y2).

Define operators M : X ∩ dom M → Y and Nλ : X → Y by

Mu(t) =
(
ϕp

(
u′′))′(t),

where dom M = {u ∈ X : B1(u) = B2(u) = 0, (ϕp(u′′))′ ∈ C[0, 1]}, and

Nλu(t) = λf
(
t, u(t), u′(t), u′′(t)

)
, λ ∈ [0, 1].

It is easy to see recalling (3.1) that

Ker M =
{

c(αt – β) : c ∈R
}

and Im M =
{

y ∈ Y : F(y) = 0
}

.

In fact, if y ∈ Im M, there exists a function u ∈ dom M with Mu = y. So,

u(t) =
∫ t

0
(t – s)ϕq

(∫ s

0
y(r) dr

)

ds + at + b, a, b ∈R.

By Bi(u) = 0, we get

B1(u) = B1

(∫ t

0
(t – s)ϕq

(∫ s

0
y(r) dr

)

ds
)

+ aβ + bα = 0,

B2(u) = B2

(∫ t

0
(t – s)ϕq

(∫ s

0
y(r) dr

)

ds
)

+ akβ + bkα = 0.

Thus, F(y) = 0.
Conversely, if y ∈ Y satisfies F(y) = 0, we let

u(t) =
∫ t

0
(t – s)ϕq

(∫ s

0
y(r) dr

)

ds

–
1

α2 + β2 B1

(∫ t

0
(t – s)ϕq

(∫ s

0
y(r) dr

)

ds
)

(βt + α).

Clearly, u′′(0) = 0, (ϕp(u′′))′ = y and B1(u) = B2(u) = 0. Therefore, u ∈ dom M and Mu = y,
that is, y ∈ Im M.

Obviously, Ker M is linearly homeomorphic to R. Let yn ∈ Im M ⊂ Y , yn → y ∈ Y . Since

∥
∥
∥
∥

∫ t

0
(t – s)ϕq

(∫ s

0
yn(r) dr

)

ds –
∫ t

0
(t – s)ϕq

(∫ s

0
y(r) dr

)

ds
∥
∥
∥
∥

X
→ 0, as n → ∞,
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then, by (A1), |F(yn) – F(y)| → 0 as n → ∞. This, together with yn ∈ Im M, shows that
y ∈ Im M. Hence, Im M is a closed subset of Y . Thus, M is quasi-linear. Set X1 = Ker M.
Define operators P : X → X and Q : Y → Y by

Pu =
αu′(0) – βu(0)

α2 + β2 (αt – β),

and Qy = c, where c satisfies F(y – c) = 0.
Clearly, P is a projector and Ker Q = Im M. Set Y1 = R.

Lemma 3.1 The operator Q : Y → Y1 is continuous, bounded and Q(I – Q) = 0, QY = Y1,
|Qy| ≤ ‖y‖Y .

Proof For y ∈ Y , by (A1) and (A2), it follows that the function F(y – ·) : R → R, defined
in terms of (3.1), is continuous and decreasing. Choose a, b ∈ R and y ∈ Y such that a >
‖y‖Y , b < –‖y‖Y . By (A2), F(y – a) < 0 < F(y – b). So, there exists a unique constant c with
|c| ≤ ‖y‖Y such that F(y – c) = 0. Thus, Q is well defined and |Qy| ≤ ‖y‖Y . For y1, y2 ∈ Y ,
Q(y1) = c1, Q(y2) = c2, if c2 – c1 > ‖y2 – y1‖Y , it follows from (A2) that

0 = F(y1 – c1) = F
(
y2 – c2 –

[
(y2 – y1) – (c2 – c1)

])
> F(y2 – c2) = 0,

which is a contradiction. If c2 – c1 < –‖y2 – y1‖Y , then

0 = F(y1 – c1) = F
(
y2(r) – c2 –

[
(y2 – y1) – (c2 – c1)

])
< F(y2 – c2) = 0,

which is a contradiction, again. Thus, |Q(y2) – Q(y1)| = |c2 – c1| ≤ ‖y2 – y1‖Y , that is, Q is
continuous.

Obviously, Q(I – Q) = 0 and QY = Y1. �

We define R(u,λ) : X × [0, 1] → X2 by

R(u,λ)(t) =
∫ t

0
(t – s)ϕq

(∫ s

0
(I – Q)Nλu(r) dr

)

ds

–
1

α2 + β2 B1

(∫ t

0
(t – s)ϕq

(∫ s

0
(I – Q)Nλu(r) dr

)

ds
)

(βt + α),

where X1 ⊕ X2 = X.

Lemma 3.2 The operator R : � × [0, 1] → X2 is continuous and compact with Pu +
R(u,λ) ∈ dom M, u ∈ �, λ ∈ [0, 1], where � ⊂ X is bounded.

Proof Since PR(u,λ) = 0, R(u,λ) ∈ X2. For u ∈ X, λ ∈ [0, 1], it follows from the continuity of
B1, Q and f that R(u,λ) is continuous. Clearly, (ϕp((Pu + R(u,λ))′′))′ = (I – Q)Nλu ∈ C[0, 1],
(Pu + R(u,λ))′′(0) = 0 and B1(Pu + R(u,λ)) = 0. Considering (I – Q)Nλu ∈ Ker Q = Im M, we
get B2(Pu + R(u,λ)) = 0. So, Pu + R(u,λ) ∈ dom M. Now, we prove that R is compact.

There exists a constant C > 0 such that ‖Nλu‖Y ≤ C in � for all λ ∈ [0, 1]. Note that

∣
∣
(
R(u,λ)

)′′(t)
∣
∣ =

∣
∣
∣
∣ϕq

(∫ t

0
(I – Q)Nλu(s) ds

)∣
∣
∣
∣ ≤ (2C)q–1,
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(R(u,λ))′′ is uniformly bounded in � together with R(u,λ) and (R(u,λ))′. Also, since ϕq(·)
is uniformly continuous in [–2C, 2C] and, for 0 ≤ t1 < t2 ≤ 1,

∣
∣
∣
∣

∫ t2

0
(I – Q)Nλu(s) ds –

∫ t1

0
(I – Q)Nλu(s) ds

∣
∣
∣
∣ ≤ 2C(t2 – t1),

it follows that {R(u,λ))′′ : u ∈ �,λ ∈ [0, 1]} is equicontinuous. By the mean value theorem,
{(R(u,λ))′ : u ∈ �,λ ∈ [0, 1]} and {R(u,λ) : u ∈ �,λ ∈ [0, 1]} are also equicontinuous. The
compactness of the operator R follows from the Arzela–Ascoli theorem. �

Now, we will show that Nλ is M-quasi-compact in �, where � ⊂ X is an open and
bounded set with 0 ∈ �.

Obviously, Nλ is continuous, bounded and dim X1 = dim Y1.

Lemma 3.3 The operator Nλ is M-quasi-compact in �.

Proof Obviously, Ker Q = Im M, QNλu = 0, λ ∈ (0, 1) ⇔ QNu = 0, R(·, 0) is the zero oper-
ator and M(Pu + R(u,λ)) = (I – Q)Nλu. Considering Lemmas 3.1 and 3.2, we need only to
prove that R(·,λ)|∑

λ
= (I – P)|∑

λ
.

To this end, u ∈ ∑
λ implies Nλu = Mu, u′′(0) = 0, Bi(u) = 0, i = 1, 2. Thus, QNλu = 0 and

R(u,λ) =
∫ t

0
(t – s)ϕq

(∫ s

0
Nλu(r) dr

)

ds

–
B1(

∫ t
0 (t – s)ϕq(

∫ s
0 Nλu(r) dr) ds)

α2 + β2 (βt + α)

=
∫ t

0
(t – s)ϕq

(∫ s

0

(
ϕp

(
u′′))′(r) dr

)

ds

–
B1(

∫ t
0 (t – s)ϕq(

∫ s
0 (ϕp(u′′))′(r) dr) ds)

α2 + β2 (βt + α)

=
∫ t

0
(t – s)u′′(s) ds –

B1(
∫ t

0 (t – s)u′′(s) ds)
α2 + β2 (βt + α)

= u(t) – u′(0)t – u(0) –
–u′(0)β – u(0)α

α2 + β2 (βt + α)

= u(t) –
αu′(0) – βu(0)

α2 + β2 (αt – β)

= (I – P)u.

The proof is completed. �

In order to obtain our main results, we need the following hypotheses:
(H1) There exists a constant M0 > 0 such that if |u(t)| + |u′(t)| > M0, then F(Nu) 
= 0.
(H2) There exist functions a, b, c, d ∈ C[0, 1] with ‖b‖1 + ‖c‖1 + ‖d‖1 < 1, if 1 < p ≤ 2 and

2p–2(‖b‖1 + ‖c‖1) + ‖d‖1 < 1, if p > 2, such that

∣
∣f (t, u, v, w)

∣
∣ ≤ a(t) + b(t)ϕp

(|u|) + c(t)ϕp
(|v|) + d(t)ϕp

(|w|), t ∈ [0, 1], u, v, w ∈R,

where ‖y‖1 =
∫ 1

0 |y(t)|dt.
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(H3) There exists a constant M1 > 0 such that for |c| > M1 one of the following inequali-
ties holds:

cQN
(
c(αt – β)

)
> 0, (3.2)

cQN
(
c(αt – β)

)
< 0. (3.3)

Lemma 3.4 Assume that (H1) and (H2) hold. Then the set

�1 =
{

u ∈ dom M : Mu = Nλu,λ ∈ (0, 1)
}

is bounded.

Proof Since u ∈ �1, QNλu = 0. By (H1), there exists t0 ∈ [0, 1] such that |u(t0)| ≤ M0,
|u′(t0)| ≤ M0. It follows from

u′(t) =
∫ t

t0

u′′(s) ds + u′(t0) and u(t) =
∫ t

t0

u′(s) ds + u(t0)

that

∣
∣u′(t)

∣
∣ ≤ M0 +

∥
∥u′′∥∥

0,
∣
∣u(t)

∣
∣ ≤ 2M0 +

∥
∥u′′∥∥

0. (3.4)

Based on Mu = Nλu and (H2), we get

∣
∣ϕp

(
u′′)∣∣ =

∣
∣
∣
∣λ

∫ t

0
Nu(s) ds

∣
∣
∣
∣

≤ ‖a‖1 + ‖b‖1ϕp
(
2M0 +

∥
∥u′′∥∥

0

)
+ ‖c‖1ϕp

(
M0 +

∥
∥u′′∥∥

0

)
+ ‖d‖1ϕp

(∥
∥u′′∥∥

0

)
.

If 1 < p ≤ 2, by (2.1), we have

∣
∣ϕp

(
u′′)∣∣ ≤ ‖a‖1 +

(
2‖b‖1 + ‖c‖1

)
Mp–1

0 +
(‖b‖1 + ‖c‖1 + ‖d‖1

)
ϕp

(∥
∥u′′∥∥

0

)
.

Thus,

∥
∥u′′∥∥

0 ≤ ϕq

(‖a‖1 + (2‖b‖1 + ‖c‖1)Mp–1
0

1 – (‖b‖1 + ‖c‖1 + ‖d‖1)

)

.

Similarly, if p > 2, then

∥
∥u′′∥∥

0 ≤ ϕq

(‖a‖1 + (2p–1‖b‖1 + ‖c‖1)2p–2Mp–1
0

1 – 2p–2(‖b‖1 + ‖c‖1) – ‖d‖1)

)

.

The above inequalities, together with (3.4), imply that �1 is bounded. �

Lemma 3.5 Assume that (H3) holds. Then the set

�2 = {u ∈ Ker M : QNu = 0}

is bounded.
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Proof If u ∈ �2, then uc(t) = c(αt –β) and F(Nuc) = 0. By (H3), we get |c| ≤ M1. This means
that �2 is bounded. �

Theorem 3.6 Assume that (A0)–(A2) and (H1)–(H3) hold. Then the functional boundary
value problem (1.1) has at least one solution.

Proof Choose R0 large enough such that � = {u ∈ X : ‖u‖ < R0} ⊃ �1 ∪ �2 and R0 >
M1(|α| + |β|). By Lemma 3.4, Mu 
= Nλu for u ∈ ∂� ∩ Ker M, λ ∈ (0, 1). So, (C1) of Theo-
rem 2.4 holds.

Let H(u, δ) = ρδu + (1 – δ)JQNu, u ∈ Ker M ∩ �, δ ∈ [0, 1], where J : Im Q → Ker M is a
homeomorphism with J(c) = c(αt – β), and ρ = 1 or ρ = –1, if (3.2) or (3.3) hold, respec-
tively.

For u ∈ Ker M ∩ ∂�, u = c(αt – β) 
= 0, H(u, 1) = ρc(αt – β) 
= 0. By Lemma 3.5, we know
that H(u, 0) = QN(c(αt – β))(αt – β) 
= 0. For δ ∈ (0, 1), u = c(αt – β) ∈ Ker M ∩ ∂�, ‖u‖ =
R0 ≤ |c|(|α| + |β|), we have |c| > M1. If H(c(αt – β), δ) = ρδc(αt – β) + (1 – δ)QN(c(αt –
β))(αt – β) = 0, by (H3), we obtain

c2 = –
1 – δ

δ
ρc · QN

(
c(αt – β)

)
< 0,

which is a contradiction. Thus, H(u, δ) 
= 0, u ∈ Ker M ∩ ∂�, δ ∈ [0, 1].
By invariance of degree under a homotopy,

deg(JQN ,� ∩ Ker M, 0) = deg
(
H(·, 0),� ∩ Ker M, 0

)

= deg
(
H(·, 1),� ∩ Ker M, 0

)

= deg(ρI,� ∩ Ker M, 0) = ±1 
= 0.

By Theorem 2.4, the problem (1.1) has at least one solution in �. �

In the next results the inequality |u(t)| + u′(t)| > M of (H1) is replaced with either |u(t)| >
M or |u′(t)| > M, which will lead to slight modifications of the proof of Lemma 3.4. We
recall that α2 + β2 
= 0.

Lemma 3.7 Assume that α 
= 0 and the following conditions hold:
(H4) There exists a constant M2 > 0 such that if |u′(t)| > M2, then F(Nu) 
= 0.
(H5) There exist functions a, b, c, d ∈ C[0, 1] such that

∣
∣f (t, u, v, w)

∣
∣ ≤ a(t) + b(t)ϕp

(|u|) + c(t)ϕp
(|v|) + d(t)ϕp

(|w|), t ∈ [0, 1], u, v, w ∈R,

and

(

2 +
|β|
|α|

)(

1 +
k1(|α| + |β|)

α2 + β2

)
(‖b‖0 + ‖c‖0 + ‖d‖0

)q–1

<

⎧
⎨

⎩

23–2q, if 1 < p ≤ 2,

21–q, if p > 2.
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Then the set

�1 =
{

u ∈ dom M : Mu = Nλu,λ ∈ (0, 1)
}

is bounded.

Proof For u ∈ �1, QNu = 0. Following the proof of Lemma 3.3 and applying (H4), we ob-
tain R(u,λ) = (I – P)u and a constant t2 ∈ [0, 1] such that |u′(t2)| ≤ M2.

Since u(t) = Pu(t) + (I – P)u(t) = Pu(t) + R(u,λ), |(Pu)′(t2)| ≤ M2 + ‖R(u,λ)‖X . By the
definition of P, we have

∣
∣
∣
∣
αu′(0) – βu(0)

α2 + β2

∣
∣
∣
∣ ≤ 1

|α|
(
M2 +

∥
∥R(u,λ)

∥
∥

X

)
.

Thus,

‖u‖X ≤ ‖Pu‖X +
∥
∥R(u,λ)

∥
∥

X ≤
(

1 +
|β|
|α|

)

M2 +
(

2 +
|β|
|α|

)
∥
∥R(u,λ)

∥
∥

X . (3.5)

Since

∥
∥R(u,λ)

∥
∥

X ≤
(

1 +
k1(|α| + |β|)

α2 + β2

)∥
∥
∥
∥

∫ t

0
(t – s)ϕq

(∫ s

0
(I – Q)Nλu(r) dr

)

ds
∥
∥
∥
∥

X

≤
(

1 +
k1(|α| + |β|)

α2 + β2

)

2q–1ϕq
(‖Nλu‖Y

)
,

by (H5), we have

‖u‖X ≤
(

1 +
|β|
|α|

)

M2

+ 2q–1
(

2 +
|β|
|α|

)(

1 +
k1(|α| + |β|)

α2 + β2

)

× ϕq
(‖a‖0 +

(‖b‖0 + ‖c‖0 + ‖d‖0
)
ϕp

(‖u‖X
))

.

By (H5), �1 is bounded, if p > 2. With a different constant, the same inequality shows that
�1 is bounded, if 1 < p ≤ 2. �

Example Consider

(
φp

(
u′′(t)

))′ = f
(
t, u(t), u′(t), u′′(t)

)
, t ∈ (0, 1),

where p = 3/2 and

f
(
t, u(t), u′(t), u′′(t)

)
= t + A sin

(√∣
∣u(t)

∣
∣
)

+ A
u′(t) + 1
|u′(t)| + 1

√∣
∣u′(t)

∣
∣ + A sin

(√∣
∣u′′(t)

∣
∣
)
,

where A = 0.043.
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We impose the functional conditions

u′′(0) = 0, B1(u) = u′(0) + 2
∫ 1

0
u(s) ds = 0, B2(u) = u(1) = 0.

Then the functional problem is at resonance with B1(1) = B1(t) = 2, B2(1) = B2(t) = 1, k =
1/2, k1 = 3, KerM = {c(t – 1) : c ∈R}. In this case, α = β = 2 and ‖b‖0 = ‖c‖0 = ‖d‖0 = A and
q = 3. Moreover,

22q–3
(

2 +
|β|
|α|

)(

1 +
k1(|α| + |β|)

α2 + β2

)
(‖b‖0 + ‖c‖0 + ‖d‖0

)q–1 = 540A2 < 1.

Clearly,

∣
∣f (t, u, v, w)

∣
∣ ≤ t + A

√|u| + A
√|v| + A

√|w|
= t + Aφp

(|u|) + Aφp
(|v|) + Aφp

(|w|), t ∈ (0, 1).

For convenience, introduce

Y (s) = φq

(∫ s

0
f
(
r, u(r), u′(r), u′′(r)

)
dr

)

.

Hence

F(Nu) = (B2 – kB1)
(∫ t

0
(t – s)Y (s) ds

)

=
∫ 1

0
(1 – s)Y (s) ds –

∫ 1

0

(∫ s

0
(s – r)Y (r) dr

)

ds

=
∫ 1

0
(1 – s)Y (s) ds –

1
2

∫ 1

0
(1 – s)2Y (s) ds

=
1
2

∫ 1

0

(
1 – s2)Y (s) ds.

If u′(t) > M0 > (2 + 1
A )2, then

u′(t) + 1
|u′(t)| + 1

√∣
∣u′(t)

∣
∣ >

√
M0

and

f
(
t, u(t), u′(t), u′′(t)

)
> –2A + A

√
M0 > 0.

If u′(t) < –M0, then

u′(t) + 1
|u′(t)| + 1

√∣
∣u′(t)

∣
∣ < –

√
M0

and

f
(
t, u(t), u′(t), u′′(t)

)
< 1 + 2A – A

√
M0 < 0.
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Hence, |u′(t)| > M0 guarantees |Y (s)| > 0, which, in turn, implies that F(Nu) 
= 0. Similarly,
one can choose M1 > 0 such that, for uc(t) = c(t – 1),

F(Nuc) = (B2 – kB1)
(∫ t

0
(t – s)φq

(∫ s

0
f
(
r, c(r – 1), c, 0

)
dr

)

ds
)


= 0

provided |c| > M1.

The above computations show that there is a solution whose existence is governed by
Lemma 3.7.

Lemma 3.8 Assume that α = 0 and the following conditions hold:
(H6) There exists a constant M3 > 0 such that if |u(t)| > M3, then F(Nu) 
= 0.
(H7) There exist functions a, b, c, d ∈ C[0, 1] such that

∣
∣f (t, u, v, w)

∣
∣ ≤ a(t) + b(t)ϕp

(|u|) + c(t)ϕp
(|v|) + d(t)ϕp

(|w|), t ∈ [0, 1], u, v, w ∈R,

and

(

1 +
k1

|β|
)

(‖b‖0 + ‖c‖0 + ‖d‖0
)q–1 <

⎧
⎨

⎩

41–q, if 1 < p ≤ 2,

2–q, if p > 2.

Then the set

�1 =
{

u ∈ dom M : Mu = Nλu,λ ∈ (0, 1)
}

is bounded.

Proof As in the proof of Lemma 3.3, by (H6), we have R(u,λ) = (I – P)u and a constant t3 ∈
[0, 1] such that |u(t3)| ≤ M3. Since u(t) = Pu(t) + (I – P)u(t) = Pu(t) + R(u,λ), |(Pu)(t3)| ≤
M3 + ‖R(u,λ)‖X and

‖u‖X ≤ ‖Pu‖X +
∥
∥(I – P)u

∥
∥

X ≤ M3 + 2
∥
∥R(u,λ)

∥
∥

X .

Since

∥
∥R(u,λ)

∥
∥

X ≤
(

1 +
k1

|β|
)∥

∥
∥
∥

∫ t

0
(t – s)ϕq

(∫ s

0
(I – Q)Nλu(r) dr

)

ds
∥
∥
∥
∥

X

≤
(

1 +
k1

|β|
)

2q–1ϕq
(‖Nλu‖Y

)
,

by (H7), we have

‖u‖ ≤ M3 + 2q
(

1 +
k1

|β|
)

ϕq
(‖a‖0 +

(‖b‖0 + ‖c‖0 + ‖d‖0
)
ϕp

(‖u‖X
))

.

This, together with (H7), means that �1 is bounded in the case p > 2 and, similarly, for
1 < p ≤ 2. �

The proofs of the following theorems are similar to that of Theorem 3.6.
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Theorem 3.9 Assume that α 
= 0, (A0)–(A2) and (H3)–(H5) hold. Then the functional
boundary value problem (1.1) has at least one solution.

Theorem 3.10 Assume that α = 0, (A0)–(A2) and (H3), (H6), (H7) hold. Then the func-
tional boundary value problem (1.1) has at least one solution.

4 Conclusion
We obtain the existence of solution for a third-order functional p-Laplacian boundary
value problem at resonance. This result extends many existent results and generalizes
many related problems in the literature.
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