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Abstract
In this paper, we consider the inverse three spectra problems of recovering the
Sturm–Liouville equation by the spectra of the Neumann–Dirichlet boundary value
problem on [0, 1], the Neumann–Robin problem on [0, 1/2], and the Robin–Dirichlet
problem on [1/2, 1], where the two Robin parameters at the interior node x = 1/2 are
considered to be different. The algorithm of construction is presented and sufficient
conditions for three sequences to be the spectral data of the mentioned boundary
problems are given.
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1 Introduction
In this paper, we are concerned with the inverse three spectra problem for the Sturm–
Liouville equation. Consider the operator L := L(a, b; ha, hb; q) defined as

Ly = –y′′ + q(x)y (1.1)

on [a, b] subject to the boundary conditions

y′(a) + hay(a) = 0, (1.2)

y′(b) + hby(b) = 0. (1.3)

Here a < b, the potential q ∈ L2(a, b) is real-valued, the boundary parameters ha, hb ∈
R ∪ {∞}. It is well known [1, 2] that the operator L(a, b; ha, hb; q) has a discrete spectrum
consisting of simple real eigenvalues, denoted as σ (a, b; ha, hb; q).

The inverse three spectra problem of recovering the potential q in a Sturm–Liouville
equation was firstly studied by Pivovarchik [3], where the three spectra are given as
σ (0, 1;∞,∞; q), σ (0, 1/2;∞,∞; q) and σ (1/2, 1;∞,∞; q). In [4], the authors further gener-
alized the uniqueness theorem by σ (0, 1; h0, h1; q), σ (0, c; h0, hc; q) and σ (c, 1; hc, h1; q) with
c ∈ (0, 1) and hc ∈ R ∪ {∞}. In the past years, the inverse three spectra problem has been
investigated by several authors (see [5–15] and the references therein). The known results
contain the existence, the uniqueness, the numerical scheme, the reconstructing formula,
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and so on. It should be noted that all the results obtained above are restricted to the case
that the boundary problems on [0, c] and [c, 1] are subject to the same boundary condition
at x = c.

Our immediate motivation for this paper is a recent research of Wei et al. [16], who
considered the inverse three spectra problem where the boundary parameter h1/2 of the
problems defined on [0, 1/2] and [1/2, 1] is replaced by two different real numbers h– and
h+, and proved the uniqueness by the given three spectra σ (0, 1; h0, h1; q), σ (0, 1/2; h0, h–; q)
and σ (1/2, 1; h+, h1; q). However, the existence and the reconstruction has not yet been
considered.

The main purpose of this paper is to give the sufficient conditions for three sequences
to be the spectra of L(0, 1; 0,∞; q), L(0, 1/2; 0, h–; q) and L(1/2, 1; h+,∞; q) with h– �= h+,
and further describe the procedure of recovering the potential. The technique used to
obtain our results is similar to those used in [17], where the inverse three spectral problem
was considered by L(0, 1;∞,∞, q), L(0, 1/2;∞,∞; q) and L(1/2, 1; 0,∞; q). The obtained
results here are natural generalizations of the well-known results since h± ∈R and h– �= h+.

The paper is organized as follows. In Sect. 2 we deal with a direct three spectra problem,
and give some properties of the spectral data. In Sect. 3 we consider the inverse three
spectra problem, and give the statements of the main result.

2 Direct three spectra problem
We begin with considering the problems L(0, 1; 0,∞; q), L(0, 1/2; 0, h–; q) and L(1/2, 1;
h+,∞; q) defined as follows:

⎧
⎨

⎩

–y′′ + q(x)y = λ2y,

y′(0) = y(1) = 0,
(2.1)

⎧
⎨

⎩

–y′′ + q(x)y = λ2y,

y′(0) = y′(1/2) + h–y(1/2) = 0,
(2.2)

⎧
⎨

⎩

–y′′ + q(x)y = λ2y,

y′(1/2) + h+y(1/2) = y(1) = 0.
(2.3)

Denote by {λn}∞–∞,n�=0 (λ–n = –λn) (resp. {μ–
1,n}∞–∞,n�=0 ∪ {μ–

1,+0} ∪ {μ–
1,–0} (μ–

1,–n = –μ–
1,n) and

{ν+
2,n}∞–∞,n�=0 (ν+

2,–n = –ν+
2,n)) the eigenvalues of the problem (2.1) (resp. (2.2) and (2.3)). For

our purposes, we shall transform the right subinterval [1/2, 1] into the left subinterval
[0, 1/2] by a reflection about x = 1/2. Thus by denoting

q1(x) := q(x), q2(x) := q(1 – x) for 0 ≤ x ≤ 1/2

and

y1(x) := y(x), y2(x) := y(1 – x) for 0 ≤ x ≤ 1/2,

we can rewrite the problem (2.1) as follows:

– y′′
j + qj(x)yj = λ2yj, x ∈ [0, 1/2], j = 1, 2, (2.4)
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y′
1(0) = 0, (2.5)

y2(0) = 0, (2.6)

y1(1/2) = y2(1/2), (2.7)

y′
1(1/2) + y′

2(1/2) = 0. (2.8)

Here qj ∈ L2(0, 1/2) (j = 1, 2) are real-valued. It is easy to verify that {λ2, y(x)} is an eigenpair
of problem (2.1) if and only if {λ2, y1(x), y2(x)} is an eigentriple of problem (2.4)–(2.8). So
in this sense the problems (2.1) and (2.4)–(2.8) are equivalent. Let sj(x,λ) and cj(x,λ) be
the solutions of Eq. (2.4) under the initial conditions

sj(0,λ) = 0, s′
j(0,λ) = 1; cj(0,λ) = 1, c′

j(0,λ) = 0.

Then there exist constants Cj and C̄j such that the solutions yj(x,λ) of Eq. (2.4) can be
expressed as

yj(x,λ) = Cjcj(x,λ) + C̄jsj(x,λ), j = 1, 2,

which together with (2.5) and (2.6) yields

y1(x,λ) = C1c1(x,λ) and y2(x,λ) = C̄2s2(x,λ). (2.9)

We consider also the following problems on the subintervals [0, 1/2] for j = 1, 2:
1. The Neumann–Robin problems

⎧
⎨

⎩

–y′′
j + qj(x)yj = λ2yj,

y′
j(0) = y′

j(1/2) + h–yj(1/2) = 0,
(2.10)

the spectra {μ–
j,n}∞–∞,n�=0 ∪ {μ–

j,+0} ∪ {μ–
j,–0} (μ–

j,–n = –μ–
j,n) of which coincide with the

sets of zeros of the characteristic functions

ω–
j (λ, h–) = c′

j(1/2,λ) + h–cj(1/2,λ). (2.11)

2. The Neumann–Robin problems:
⎧
⎨

⎩

–y′′
j + qj(x)yj = λ2yj,

y′
j(0) = y′

j(1/2) + h+yj(1/2) = 0,
(2.12)

the spectra {μ+
j,n}∞–∞,n�=0 ∪ {μ+

j,+0} ∪ {μ+
j,–0} (μ+

j,–n = –μ+
j,n) of which coincide with the

sets of the zeros of the characteristic functions

ω–
j (λ, h+) = c′

j(1/2,λ) + h+cj(1/2,λ). (2.13)

3. The Dirichlet–Robin problems:
⎧
⎨

⎩

–y′′
j + qj(x)yj = λ2yj,

yj(0) = y′
j(1/2) – h+yj(1/2) = 0,

(2.14)
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the spectra {ν+
j,n}∞–∞,n�=0 (ν+

j,–n = –ν+
j,n) of which coincide with the sets of the zeros of

the characteristic functions

ω+
j (λ, h+) = s′

j(1/2,λ) – h+sj(1/2,λ). (2.15)

4. The Dirichlet–Robin problems:

⎧
⎨

⎩

–y′′
j + qj(x)yj = λ2yj,

yj(0) = y′
j(1/2) – h–yj(1/2) = 0.

(2.16)

the spectra {ν–
j,n}∞–∞,n�=0 (ν–

j,–n = –ν–
j,n) of which coincide with the sets of the zeros of

the characteristic functions

ω+
j (λ, h–) = s′

j(1/2,λ) – h–sj(1/2,λ). (2.17)

Let us look for a nontrivial solution to the problem (2.4)–(2.8). It follows from (2.7), (2.8)
and (2.9) that

C1c1(1/2,λ) = C̄2s2(1/2,λ) and C1c′
1(1/2,λ) + C̄2s′

2(1/2,λ) = 0.

A nontrivial solution {C1, C̄2} to this system of linear equations is sought, because other-
wise y1(x,λ) = C1c1(x,λ) and y2(x,λ) = C̄2s2(x,λ) would be identically zero, contradicting
the fact that {y1(x,λ), y2(x,λ)} is an eigenpair of the problem (2.4)–(2.8). It is easy to ver-
ify that the system of equations above possesses a nontrivial solution at the zeros of the
characteristic function

ω(λ) = c1(1/2,λ)s′
2(1/2,λ) + s2(1/2,λ)c′

1(1/2,λ),

which together with (2.11), (2.13), (2.15) and (2.17) further yields

ω(λ) =
1

h– – h+

[
ω–

1 (λ, h–)ω+
2 (λ, h+) – ω–

1 (λ, h+)ω+
2 (λ, h–)

]
. (2.18)

The set of zeros {λn}∞–∞,n�=0 of this function is the spectrum of problem (2.4)–(2.8). Note
here that, since q1, q2 (hence q) are real-valued functions, the sequences {(λn)2}∞n=1,
{(μ±

j,n)2}∞n=0, {(ν±
j,n)2}∞n=1 (j = 1, 2) will all be real-valued, as proved in the theory of direct

Sturm–Liouville problems.

Definition 2.1 ([18] or [19, Definition 12.2.2]) An entire function of exponential type ≤ a
is said to belong to the Paley–Wiener class £a, if its restriction to the real axis belongs to
L2(–∞,∞).

By the Paley–Wiener theorem, the £a-functions are the Fourier images of all square
summable functions supported on [–a, a].

The following lemma can be derived from [1] and [19].
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Lemma 2.2 If qj ∈ L2(0, 1/2), then the sequences {λn}∞–∞,n�=0, {μ±
j,n}∞–∞,n�=0 ∪ {μ±

j,+0} ∪ {μ±
j,–0}

and {ν±
j,n}∞–∞,n�=0, which are the sets of zeros of the functions

ω(λ) = cosλ + A
sinλ

λ
+

g(λ)
λ

, (2.19)

ω–
j (λ, h±) = –λ sin

λ

2
+ (h± + Aj) cos

λ

2
+ f ±

j (λ), (2.20)

ω+
j (λ, h±) = cos

λ

2
+ (Aj – h±)

sin λ
2

λ
+

g±
j (λ)
λ

, (2.21)

behave asymptotically as follows:

λn =
(

n –
1
2

)

π +
A

(n – 1/2)π
+

αn

n
, (2.22)

μ±
j,n = 2nπ +

h± + Aj

nπ
+

αn

n
, (2.23)

ν±
j,n = (2n – 1)π +

Aj – h±
(n – 1/2)π

+
αn

n
. (2.24)

Here A = A1 + A2, Aj = 1
2
∫ 1/2

0 qj(t) dt, h± ∈ R, the functions g(λ) and g±
j (λ) are odd, f ±

j (λ)
are even, g(λ) ∈ £1, f ±

j (λ) ∈ £1/2 and g±
j (λ) ∈ £1/2, the sequences {αn} are different in (2.22)–

(2.24) but all belong to l2.

Lemma 2.3 If h– > h+, then the eigenvalues {μ±
j,n}∞–∞,n�=0 ∪ {μ±

j,+0} ∪ {μ±
j,–0} and {ν±

j,n}∞–∞,n�=0

satisfy the following interlacing property:

–∞ <
(
μ+

j,+0
)2 <

(
μ–

j,+0
)2 <

(
μ+

j,1
)2 <

(
μ–

j,1
)2 < · · · ;

–∞ <
(
ν–

j,1
)2 <

(
ν+

j,1
)2 <

(
ν–

j,2
)2 <

(
ν+

j,2
)2 < · · · .

Proof The proof refers to [2, Theorem 4.4.3] and is therefore omitted. �

Definition 2.4 ([6, Definition 2.3] or [19]) A meromorphic function f (z) is said to be an
essentially positive Nevanlinna function if

(1) Im z Im f (z) > 0 for all nonreal z,
(2) there exists β ∈R such that f (z) > 0 for all z < β .

Lemma 2.5 Suppose h– > h+. The eigenvalues {λn}∞–∞,n�=0 of the problem (2.4)–(2.8) are
interlaced with the union {θn}∞–∞,n�=0 ∪ {θ+0} ∪ {θ–0} := {μ–

1,n}∞–∞,n�=0 ∪ {μ–
1,+0} ∪ {μ–

1,–0} ∪
{ν–

2,n}∞–∞,n�=0 in the following sense:

–∞ < θ2
+0 ≤ λ2

1 ≤ θ2
1 ≤ λ2

2 ≤ · · · . (2.25)

Moreover, λn = θn–1 if and only if λn = θn for all n > 0.

Proof We firstly show that ω–
1 (

√
z, h–)/ω–

1 (
√

z, h+) and ω+
2 (

√
z, h+)/ω+

2 (
√

z, h–) are essen-
tially positive Nevanlinna functions. Since the zeros of the entire functions ω–

1 (
√

z, h–) and
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ω–
1 (

√
z, h+) are {(μ–

1,n)2}∞n=0 and {(μ+
1,n)2}∞n=0, respectively, it follows from (2.20) and (2.23)

that

ω–
1 (

√
z, h–) = C1

∞∏

n=0

(

1 –
z

(μ–
1,n)2

)

and ω–
1 (

√
z, h+) = C2

∞∏

n=0

(

1 –
z

(μ+
1,n)2

)

,

where

C1 =
(μ–

1,+0)2

2

∞∏

n=1

(μ–
1,n)2

(2nπ )2 and C2 =
(μ+

1,+0)2

2

∞∏

n=1

(μ+
1,n)2

(2nπ )2 .

The condition h– > h+ and Lemma 2.3 imply that

–∞ <
(
μ+

1,+0
)2 <

(
μ–

1,+0
)2 <

(
μ+

1,1
)2 <

(
μ–

1,1
)2 < · · · .

This together with [4, Theorem 2.1] or [20, Theorem 1, p.308] shows that the function

f (z) :=
ω–

1 (
√

z, h–)
ω–

1 (
√

z, h+)
= C

∞∏

n=0

(

1 –
z

(μ–
1,n)2

)(

1 –
z

(μ+
1,n)2

)–1

is a meromorphic function with Imz Imf (z) > 0 for all nonreal z, since the constant C =
C1/C2 > 0. We have from (2.20)

lim
z→–∞ω–

1 (
√

z, h±) =
√|z|

2
(
e

√|z|
2 – e–

√|z|
2

)(
1 + o(1)

)
, (2.26)

which means there exists β ∈ R such that f (z) > 0 for all z < β . Thus the function
ω–

1 (
√

z, h–)/ω–
1 (

√
z, h+) is an essentially positive Nevanlinna function. For the same reason,

one can easily verify that ω+
2 (

√
z, h+)/ω+

2 (
√

z, h–) is also an essentially positive Nevanlinna
function.

Moreover, we find from [19, Remark 5.1.21] that if f is a meromorphic function which
satisfies condition (1) of Definition 2.4, then such is also –f –1. Therefore the function
–ω–

1 (
√

z, h+)/ω–
1 (

√
z, h–) is also a meromorphic function that satisfies condition (1) of Def-

inition 2.4. It follows from (2.18) that

(h– – h+)ω(
√

z)
ω–

1 (
√

z, h–)ω+
2 (

√
z, h–)

=
ω+

2 (
√

z, h+)
ω+

2 (
√

z, h–)
–

ω–
1 (

√
z, h+)

ω–
1 (

√
z, h–)

, (2.27)

which means the meromorphic function (h––h+)ω(
√

z)
ω–

1 (
√

z,h–)ω+
2 (

√
z,h–) satisfies condition (1) of Defini-

tion 2.4 after cancellation of common factors in the numerator and in the denominator.
Moreover, it follows from (2.19) and (2.21) that

lim
z→–∞ω(

√
z) =

e
√|z| + e–

√|z|

2
(
1 + o(1)

)

and

lim
z→–∞ω+

2 (
√

z, h±) =
1
2
(
e

√|z|
2 + e–

√|z|
2

)(
1 + o(1)

)
,
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which together with h– > h+ and (2.26) yield (h––h+)ω(
√

z)
ω–

1 (
√

z,h–)ω+
2 (

√
z,h–) > 0 for z → –∞. Thus we

have showed that the function (h––h+)ω(
√

z)
ω–

1 (
√

z,h–)ω+
2 (

√
z,h–) is an essentially positive Nevanlinna func-

tion, and hence we get from [19, Remark 5.2.1 and Corollary 5.2.3] that

–∞ < θ2
+0 ≤ λ2

1 ≤ θ2
1 ≤ λ2

2 < · · · .

Suppose λn = θn, then ω(λn) = 0 and either ω–
1 (θn, h–) = 0 or ω+

2 (θn, h–) = 0. If ω–
1 (θn, h–) =

0, then it follows from Lemma 2.3 and (2.18) that ω–
1 (θn, h+) �= 0 and ω–

1 (θn, h+)ω+
2 (θn,

h–) = 0. This shows that ω+
2 (θn, h–) = 0, i.e. θn is a multiple eigenvalue of ω–

1 (λ, h–)ω+
2 (λ, h–),

which implies that θn = θn–1. On the other hand, since the eigenvalues λn are simple, we
find from (2.25) that the maximal multiplicity of θn is two. The proof is complete. �

Lemma 2.6 Suppose h– > h+. The eigenvalues {λn}∞–∞,n�=0 of the problem (2.4)–(2.8) are
interlaced with the union {ζn}∞–∞,n�=0 ∪ {ζ+0} ∪ {ζ–0} := {μ–

1,n}∞–∞,n�=0 ∪ {μ–
1,+0} ∪ {μ–

1,–0} ∪
{ν+

2,n}∞–∞,n�=0 as follows: for n ≥ 1 each interval (–∞,λ2
n) contains n or n – 1 elements of the

sequence {ζ 2
n }∞n=0.

Proof It follows from Lemma 2.5 that

θ2
n–1 ≤ λ2

n ≤ θ2
n for n ≥ 1,

where {θn}∞–∞,n�=0 ∪ {θ+0} ∪ {θ–0} = {μ–
1,n}∞–∞,n�=0 ∪ {μ–

1,+0} ∪ {μ–
1,–0} ∪ {ν–

2,n}∞–∞,n�=0. Moreover,
we find from Lemma 2.3 that for two sequences {θ2

n }∞n=0 and {ζ 2
n }∞n=0:

θ2
n–1 ≤ ζ 2

n–1 ≤ θ2
n for n ≥ 1.

There are two cases to be considered. Case (I): θ2
n–1 = θ2

n , then we must have

λ2
n–1 < θ2

n–1 = λ2
n = θ2

n and ζ 2
n–2 < θ2

n–1 = ζ 2
n–1 = θ2

n (if any),

which means (–∞,λ2
n) contains n – 1 elements of the sequence {ζ 2

n }∞n=0. Case (II): θ2
n–1 < θ2

n .
Therefore if ζ 2

n–1 ∈ [θ2
n–1,λ2

n), then (–∞,λ2
n) contains n elements of the sequence {ζ 2

n }∞n=0;
if ζ 2

n–1 ∈ [λ2
n, θ2

n ], then (–∞,λ2
n) contains n – 1 elements of the sequence {ζ 2

n }∞n=0. The proof
is complete. �

3 Inverse three spectra problem
In this section, we shall solve the inverse spectral problem, give the sufficient conditions for
three sequences to be the spectra of L(0, 1; 0,∞; q), L(0, 1/2; 0, h–; q) and L(1/2, 1; h+,∞; q)
with h– �= h+, and further describe the procedure of recovering the potential.

The main result of this paper is given as follows.

Theorem 3.1 Let {λn}∞–∞,n�=0 (λ–n = –λn), {μ–
1,n}∞–∞,n�=0 ∪ {μ–

1,+0} ∪ {μ–
1,–0} (μ–

1,–n = –μ–
1,n)

and {ν+
2,n}∞–∞,n�=0 (ν+

2,–n = –ν+
2,n) be three sequences of real and pure imaginary numbers with

λ2
k < λ2

k′ , (μ–
1,k)2 < (μ–

1,k′ )2 and (ν+
2,k)2 < (ν+

2,k′ )2 for k < k′. Suppose the following conditions
are valid:
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(1) {λn}∞–∞,n�=0 satisfy (2.22), {μ–
1,n}∞–∞,n�=0 ∪ {μ–

1,+0} ∪ {μ–
1,–0} satisfy (2.23) with j = 1, and

{ν+
2,n}∞–∞,n�=0 satisfy (2.24) with j = 2, where A, Aj and h± are all real numbers with

A = A1 + A2 and h– �= h+.
(2)

–∞ < ζ 2
+0 < λ2

1 < ζ 2
1 < λ2

2 < · · · ,

where {ζn}∞–∞,n�=0 ∪ {ζ+0} ∪ {ζ–0} := {μ–
1,n}∞–∞,n�=0 ∪ {μ–

1,+0} ∪ {μ–
1,–0} ∪ {ν+

2,n}∞–∞,n�=0.
Then there exists a unique pair of real functions qj(x) ∈ L2(0, 1/2) (j = 1, 2) which gen-
erate problem (2.4)–(2.8) with the spectrum {λn}∞–∞,n�=0, problem (2.10) with j = 1 and
the spectrum {μ–

1,n}∞–∞,n�=0 ∪ {μ–
1,+0} ∪ {μ–

1,–0}, problem (2.14) with j = 2 and the spectrum
{ν+

2,n}∞–∞,n�=0.

In order to prove our main result, we need the following lemma.

Lemma 3.2 The set of zeros of the function

�(λ) = –λ sin
λ

2
cos

λ

2
+ (A1 + h+) cos2 λ

2
– (A2 – h–) sin2 λ

2
+ f (λ), (3.1)

can be given as the union of two sets (denoted by {ξ1,n}∞–∞,n�=0 ∪ {ξ1,+0} ∪ {ξ1,–0} and
{ξ2,n}∞–∞,n�=0) such that ξj,–n = –ξj,n and

ξ1,n = 2nπ +
A1 + h+

nπ
+

αn

n
, (3.2)

ξ2,n = (2n – 1)π +
A2 – h–

(n – 1/2)π
+

αn

n
, (3.3)

where Aj and h± are real constants, f is an even function and f ∈ £1, the sequences {αn} are
different in (3.2)–(3.3) but all belong to l2.

Proof It follows from (3.1) that the function �(λ) can be rewritten as

�(λ) = �0(λ) + f0(λ), (3.4)

where f0 ∈ £1 and

�0(λ) = –λ sin
λ

2
cos

λ

2
+ (A1 + h+) cos2 λ

2
– (A2 – h–) sin2 λ

2

+ (A1 + h+)(A2 – h–)
sin λ

2 cos λ
2

λ

=
[

–λ sin
λ

2
+ (A1 + h+) cos

λ

2

][

cos
λ

2
+

A2 – h–

λ
sin

λ

2

]

.

Denote

Cn(δ) =
{

λ :
∣
∣
∣
∣λ –

(

2nπ +
A1 + h+

nπ

)∣
∣
∣
∣ =

δ

n

}

with δ > 0.
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Then, for λ ∈ Cn(δ), we have

λ = 2nπ +
A1 + h+

nπ
+

δ

n
eiθ , θ ∈ [0, 2π ),

which implies that

sin

(

nπ +
A1 + h+

2nπ
+

δ

2n
eiθ

)

= (–1)n
(

A1 + h+

2nπ
+

δ

2n
eiθ

)

+ O
(

1
n3

)

,

cos

(

nπ +
A1 + h+

2nπ
+

δ

2n
eiθ

)

= (–1)n + O
(

1
n2

)

,

�0

(

2nπ +
A1 + h+

nπ
+

δ

n
eiθ

)

= –δπeiθ + O
(

1
n2

)

.

Therefore, for any ε ∈ (0, δ) and any θ ∈ [0, 2π ) there exists N(ε) such that for n > N(ε)

∣
∣
∣
∣�0

(

2nπ +
A1 + h+

nπ
+

δ

n
eiθ

)∣
∣
∣
∣ > δπ – ε.

Moreover, we have from [1, Lemma 1.4.3]

lim
n→∞ f0

(

2nπ +
A1 + h+

nπ
+

δ

n
eiθ

)

= 0

uniformly with respect to θ ∈ [0, 2π ). Thus, we conclude that for sufficiently large n (n >
N1 > N(ε))

∣
∣
∣
∣f0

(

2nπ +
A1 + h+

nπ
+

δ

n
eiθ

)∣
∣
∣
∣

< δπ – ε <
∣
∣
∣
∣�0

(

2nπ +
A1 + h+

nπ
+

δ

n
eiθ

)∣
∣
∣
∣.

It is obvious that the set of zeros of �0(λ) consists of two subsequences and one of these
subsequences due to its asymptotics has exactly one element inside each circle Cn(δ) for
n > N1. Hence we conclude by Rouche’s theorem that, for sufficiently large n, there is ex-
actly one zero of �(λ) inside circle Cn(δ). Since δ > 0 is arbitrary, there is a subsequence of
zeros of �(λ) of the form

ξ1,n = 2nπ +
A1 + h+

nπ
+

δn

n
, (3.5)

where δn = o(1). Substituting (3.5) into (3.1), using the condition f ∈ £1 and [18, Theo-
rem 17 and Remark, pp. 82–83], we obtain {δn} ∈ l2, which means (3.2) is obtained. In the
same way we can obtain the asymptotics for {ξ2,n}∞–∞,n�=0. The proof is complete. �

We are now in a position to give the proof of Theorem 3.1.

Proof of Theorem 3.1 Without loss of generality, we always assume h– > h+. Using (2.22)–
(2.24) we find

A = lim
n→∞(n – 1/2)π

(
λn – (n – 1/2)π

)
, (3.6)
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h– + A1 = lim
n→∞ nπ

(
μ–

1,n – 2nπ
)
, (3.7)

A2 – h+ = lim
n→∞(n – 1/2)π

(
ν+

2,n – (2n – 1)π
)
, (3.8)

which imply that h– – h+ = (h– + A1) + (A2 – h+) – A. Consider the functions

P(λ) =
∞∏

n=1

λ2
n – λ2

(n – 1/2)2π2 ,

P1(λ) =
(μ–

1,+0)2 – λ2

2

∞∏

n=1

(μ–
1,n)2 – λ2

(2nπ )2 ,

P2(λ) =
∞∏

n=1

(ν+
2,n)2 – λ2

(2n – 1)2π2 .

Then we have from [1, Lemma 3.4.2]

P(λ) = cosλ + A
sinλ

λ
+

g0(λ)
λ

, (3.9)

P1(λ) = –λ sin
λ

2
+ (h– + A1) cos

λ

2
+ g1(λ), (3.10)

P2(λ) = cos
λ

2
+ (A2 – h+)

sin λ
2

λ
+

g2(λ)
λ

, (3.11)

where g0(λ) ∈ £1, gj(λ) ∈ £1/2 for j = 1, 2. It follows directly from the infinite product rep-
resentation of P(λ) and Pj(λ) (j = 1, 2) that P(λ) and Pj(λ) are all even functions, so we
find from (3.9)–(3.11) that g0(λ) and g2(λ) are odd, whereas g1(λ) is even. This makes
g0(0) = 0 = g2(0), which means g0(λ)/λ and g2(λ)/λ are entire functions. Define

�(λ) := P1(λ)P2(λ) – (h– – h+)P(λ). (3.12)

It follows from (3.9)–(3.11) that the function �(λ) given by (3.12) can be represented as
in (3.1). Therefore, we find from Lemma 3.2 that the set of zeros of �(λ) consists of two
subsequences which we denote by {μ+

1,n}∞–∞,n�=0 ∪ {μ+
1,+0} ∪ {μ+

1,–0} and {ν–
2,n}∞–∞,n�=0, which

behave asymptotically as follows:

μ+
1,n = 2nπ +

A1 + h+

nπ
+

αn

n
, (3.13)

ν–
2,n = (2n – 1)π +

A2 – h–

(n – 1/2)π
+

αn

n
, (3.14)

where the constants A1 + h+ = A – (A2 – h+) and A2 – h– = A – (A1 + h–) can be derived
from (3.6)–(3.8), the sequences {αn} are different in (3.13)–(3.14) but all belong to l2.

Notice here that P1(λ)P2(λ) > 0 and P(λ) > 0 for λ2 → –∞. Condition (2) and the fact
�(λn) = P1(λn)P2(λn) yields

�(λn)(–1)n > 0.



Guo et al. Boundary Value Problems  (2018) 2018:68 Page 11 of 14

Condition (2), h– > h+ and the fact �(ζn) = –(h– – h+)P(ζn) implies that

�(ζn)(–1)n+1 > 0.

By direct calculation, we have from (3.9)–(3.12)

lim
λ2→–∞

�(λ) =
|λ|
2

(
e|λ| – e–|λ|)(1 + o(1)

)
=

|λ|
2

e|λ|(1 + o(1)
)
,

which means �(λ) > 0 for λ2 → –∞. Taking into account the asymptotics (3.13)–(3.14),
we conclude that each interval (–∞, ζ 2

+0), (λ2
1, ζ 2

1 ), (λ2
2, ζ 2

2 ), . . . , contains exactly one zero of
the function �(

√
z). Now we denote the zero of �(

√
z) lying in (–∞, ζ 2

+0) by (μ+
1,+0)2 if

ζ 2
+0 = (μ–

1,+0)2 and by (ν–
2,1)2 if ζ 2

+0 = (ν+
2,1)2. We denote the zero of �(

√
z) lying in (λ2

n, ζ 2
n )

by (μ+
1,k)2 if ζ 2

n = (μ–
1,k)2 and by (ν–

2,k)2 if ζ 2
n = (ν+

2,k)2. Therefore, {(μ+
1,n)2}∞n=0 interlace with

{(μ–
1,n)2}∞n=0 as:

–∞ <
(
μ+

1,+0
)2 <

(
μ–

1,+0
)2 <

(
μ+

1,1
)2 <

(
μ–

1,1
)2 < · · · . (3.15)

As is well known (see e.g. [1, p. 283]), two sequences {(μ+
1,n)2}∞n=0 and {(μ–

1,n)2}∞n=0 satisfy-
ing (2.23) with j = 1 and (3.15) uniquely determine a real-valued function q1 ∈ L2(0, 1/2),
which generates the Neumann–Robin problem (2.10) for j = 1 with the characteristic
function ω–

1 (λ, h–) and the spectrum {μ–
1,n}∞–∞,n�=0 ∪ {μ–

1,+0} ∪ {μ–
1,–0}, and the Neumann–

Robin problem (2.12) for j = 1 with the characteristic function ω–
1 (λ, h+) and the spectrum

{μ+
1,n}∞–∞,n�=0 ∪ {μ+

1,+0} ∪ {μ+
1,–0}.

Now we need to find the constants h– and h+. The entire functions ω–
1 (λ, h–) and

ω–
1 (λ, h+) can be expressed as

ω–
1 (λ, h–) =

(μ–
1,+0)2 – λ2

2

∞∏

n=1

(μ–
1,n)2 – λ2

(2nπ )2 ≡ P1(λ) (3.16)

and

ω–
1 (λ, h+) =

(μ+
1,+0)2 – λ2

2

∞∏

n=1

(μ+
1,n)2 – λ2

(2nπ )2 .

Moreover, it follows from (2.11) and (2.13) for j = 1 that

c1(1/2,λ) =
ω–

1 (λ, h–) – ω–
1 (λ, h+)

h– – h+
, (3.17)

which together with the asymptotic expression for c1(1/2,λ) (see e.g. [6, Eq. (2.11)]) shows
that

A1 =
4π

h– – h+
lim

n→+∞
{

n
[
ω–

1
(
(4n + 1)π , h–

)
– ω–

1
(
(4n + 1)π , h+

)]}
. (3.18)

Thus, the parameters h– = (h– + A1) – A1 and h+ = h– – (h– – h+), which can be derived
from (3.6)–(3.8) and (3.18).
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We can find q1(x) via the procedure [1] described below. Without loss of generality let us
assume that (μ+

1,+0)2 > 0, otherwise we apply a shift. Using the constant h–, the functions
ω–

1 (λ, h–) and c1(1/2,λ) (see (3.16) and (3.17)), we obtain

c′
1(1/2,λ) = ω–

1 (λ, h–) – h–c1(1/2,λ),

further we construct e(λ) as (see e.g. [1, p. 283] or [21, p. 390])

e(λ) =
(
c′

1(1/2,λ) – iλc1(1/2,λ)
)
e

iλ
2 ,

which is the analog of the so-called Jost-function of the corresponding prolonged Sturm–
Liouville problem on the half-axis [0,∞):

–y′′ + q(x)y = λ2y, x ∈ [0,∞),

y′(0) = 0,

with

q(x) =

⎧
⎨

⎩

q1(x) for x ∈ [0, 1/2],

0 for x ∈ (1/2,∞).

Construct the S-function of this problem on the half-axis thus:

S(λ) =
e(–λ)
e(λ)

.

Solving the Marchenko equation

K1(x, y) + F(x + y) +
∫ ∞

x
K1(x, t)F(t + y) dt = 0,

where

F(x) =
1

2π

∫ ∞

–∞

(
1 – S(λ)

)
eiλx dλ,

we find the kernel K(x, y) and the potential

q1(x) = 2
dK1(x, x)

dx
,

which is a real-valued function and belongs to L2(0, 1/2). This potential generates the
Neumann–Robin problem (2.10) for j = 1 with the characteristic function ω–

1 (λ, h–) ≡
P1(λ) and the spectrum {μ–

1,n}∞–∞,n�=0 ∪ {μ–
1,+0} ∪ {μ–

1,–0}, the Neumann–Robin problem
(2.12) for j = 1 with the characteristic function ω–

1 (λ, h+) and the spectrum {μ+
1,n}∞–∞,n�=0 ∪

{μ+
1,+0} ∪ {μ+

1,–0}.
In the same way we construct q2(x) using the sequences {ν+

2,n}∞–∞,n�=0 and {ν–
2,n}∞–∞,n�=0. It

is clear that the obtained q2(x) generated the Dirichlet–Robin problem (2.16) for j = 2 with
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the characteristic function

ω+
2 (λ, h–) =

∞∏

n=1

(ν–
2,n)2 – λ2

(2n – 1)2π2 ,

and the Dirichlet–Robin problem (2.14) for j = 2 with the characteristic function ω+
2 (λ,

h+) ≡ P2(λ).
It remains to prove that the spectrum of problem (2.4)–(2.8) generated by the obtained

q1 and q2 coincides with {λn}∞–∞,n�=0. Since the functions ω–
1 (λ, h+)ω+

2 (λ, h–) and �(λ) have
common zeros, there exists a constant C such that �(λ) = Cω–

1 (λ, h+)ω+
2 (λ, h–). We have

from (2.20)–(2.21) and (3.1)

C = lim
λ2→–∞

�(λ)
ω–

1 (λ, h+)ω+
2 (λ, h–)

= 1,

that is, �(λ) = ω–
1 (λ, h+)ω+

2 (λ, h–). Hence we find from (2.18) and (3.12) that

ω(λ) =:
1

h– – h+

[
ω–

1 (λ, h–)ω+
2 (λ, h+) – ω–

1 (λ, h+)ω+
2 (λ, h–)

]

=
1

h– – h+

[
P1(λ)P2(λ) – �(λ)

]

= P(λ)

with the set of zeros {λn}∞–∞,n�=0. The proof is complete. �

4 Conclusion
Inverse spectral problems consist in recovering operators from their spectral characteris-
tics. Such problems play an important role in mathematics and have many applications in
natural sciences. Our research focuses mainly on the inverse three spectra problems for
the Sturm–Liouville operators, which have been studied fairly completely under the as-
sumption that h– = h+. In this paper, we give the sufficient conditions for three sequences
to be the spectra of problems (2.1), (2.2) and (2.3) with h– �= h+, for which the uniqueness
was studied in [16]. We also present the algorithm of constructing the potential. Our result
also holds for the special case of h– = ∞ and h+ = 0, thus it improves the result of Boyko
et al. [17].
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