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Abstract
In this article, we consider the following boundary-value problem of nonlinear
fractional differential equation with p-Laplacian operator:

Dα(φp(D
αu(t))) = f (t,u(t)), t ∈ [0, 1]T ,

u(0) = u(σ (1)) = Dαu(0) = Dαu(σ (1)) = 0,

where 1 < α ≤ 2 is a real number, the time scale T is a nonempty closed subset of R.
Dα is the conformable fractional derivative on time scales, φp(s) = |s|p–2s, p > 1,
φ–1
p = φq, 1/p + 1/q = 1, and f : [0,σ (1)]× [0, +∞) → [0, +∞) is continuous. By the use

of the approach method and fixed-point theorems on cone, some existence and
multiplicity results of positive solutions are acquired. Some examples are presented to
illustrate the main results.
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1 Introduction
In this paper, the existence and multiplicity of positive solutions for the following fractional
differential boundary-value problem on time scales is studied:

Dα
(
φp

(
Dαu(t)

))
= f

(
t, u(t)

)
, t ∈ [0, 1]T , (1.1)

u(0) = u
(
σ (1)

)
= Dαu(0) = Dαu

(
σ (1)

)
= 0, (1.2)

where 1 < α ≤ 2, Dα is the conformable fractional derivative on time scales, φp(s) = |s|p–2s,
p > 1, φ–1

p = φq, 1/p + 1/q = 1, and f : [0,σ (1)] × [0, +∞) → [0, +∞) is continuous.
The existence of positive solutions for boundary-value problem on time scales has be-

come the focus in recent years; for details, see [1–6]. Due to the wide applications, many
researchers studied the existence of positive solutions for fractional derivatives boundary-
value problem [7–21] and the references therein. Meanwhile, the boundary-value prob-
lem with p-Laplacian operator have also been discussed extensively in the literature; for
example, see [4, 11, 22–27].
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For α = 2, problem (1.1), (1.2) is called a fourth order p-Laplacian boundary-value prob-
lem which has been studied in [4].

Dong et al. [22] investigated the boundary-value problem for a fractional differential
equation with the p-Laplacian operator

Dα
(
φp

(
Dαu(t)

))
= f

(
t, u(t)

)
, 0 < t < 1, (1.3)

u(0) = u(1) = Dαu(0) = Dαu(1) = 0, (1.4)

where 1 < α ≤ 2 is a real number, Dα is the conformable fractional derivative, φp(s) =
|s|p–2s, p > 1, φ–1

p = φq, 1/p + 1/q = 1,f : [0, 1] × [0, +∞) → [0, +∞) is continuous. By the
use of the fixed-point theorems on cone, some existence and multiplicity results of positive
solutions are obtained.

Motivated by the work mentioned above, we investigate the existence and multiplicity
of positive solutions for (1.3), (1.4) on time scales. The rest of this paper is organized as
follows. In Sect. 2, we recall some concepts relative to the new conformable fractional
calculus and give some lemmas with respect to the corresponding Green’s function. In
Sect. 3, we investigate the existence and multiplicity of positive solution for boundary-
value problem (1.1), (1.2). In Sect. 4, we present some examples to illustrate our main
results, respectively.

2 Preliminaries and lemmas
In this section, we introduced notations and definitions of conformable fractional deriva-
tive on time scales and some lemmas. Let T be a time scale and denote [a, b]T =: [a, b]∩T .
These results can be found in the recent literature; see [2, 3, 6].

Definition 2.1 A time scale T is a nonempty closed subset of R; assume that T has the
topology that it inherits from the standard topology on R. Define the forward and back-
ward jump operators σ , ρ : T → T by

σ (t) = inf{τ > t | τ ∈ T}, ρ(t) = sup{τ < t | τ ∈ T}.

In this definition we put inf∅ = sup T , sup∅ = inf T . Set σ 2(t) = σ (σ (t)), ρ2(t) = ρ(ρ(t)).
The sets Tk and Tk which are derived from the time scale T are as follows:

Tk :=
{

t ∈ T : t is not maximal or ρ(t) = t
}

,

Tk :=
{

t ∈ T : t is not minimal or σ (t) = t
}

.

Denote interval I on T by IT = I ∩ T .

Definition 2.2 If f : T → R is a function and t ∈ Tk , then the delta derivative of f at the
point t is defined to be the number f �(t) (provided it exists) with the property that, for
each ε > 0, there is a neighborhood U of t such that

∣∣f
(
σ (t)

)
– f (s) – f �(t)

(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣

for all s ∈ U . The function f is called �-differentiable on Tk if f �(t) exists for all t ∈ Tk .
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Definition 2.3 ([3]) Let α ∈ (1, 2] and f : T → R, t ∈ Tk . For t > 0, we define Dαf (t) to
be the number (provided it exists) with the property that, given any ε > 0, there is a δ-
neighborhood Vt ⊂ T of t, δ > 0, such that

∣∣[f
(
σ (t)

)
– f (s)

]
t2–α – Dαf (t)

[
σ (t) – s

]∣∣ ≤ ε
∣∣σ (t) – s

∣∣.

We call Dαf (t) the conformable fractional derivative of f of order α at t, and we define the
conformable fractional derivative at 0 as Dαf (0) = limt→0+ Dαf (t).

Lemma 2.1 ([3]) Let α ∈ (1, 2] and f be two times delta differentiable at t ∈ Tk . The fol-
lowing relation holds: Dαf (t) = t2–αf 		(t).

Definition 2.4 ([2]) A function f : T →R is called regulated provided its right-sided lim-
its exist (and are finite) at all right-dense points in T and its left-sided limits exist (and are
finite) at all left-dense points in T .

Definition 2.5 ([2]) A function f : T → R is called rd-continuous provided it is continu-
ous at right-dense points in T and its left-sided limit exist (finite) at all left-dense points
in T . The set of rd-continuous functions f : T →R will be denoted by Crd(T , R).

Lemma 2.2 ([2]) Assume f : T →R.
(i) If f is continuous, then f is rd-continuous.

(ii) If f is rd-continuous, then f is regulated.

Definition 2.6 ([3]) Let f : T → R be a regulated function and 1 < α ≤ 2. Then the α-
fractional integral of f is defined by

Iαf (t) = I2(tα–2f (t)
)

=
∫ t

0
(t – s)sα–2f (s)�s. (2.1)

Lemma 2.3 Let t > 0, α ∈ (1, 2], and the function f : [0,∞)T → R be rd-continuous, then
DαIαf (t) = f (t).

Proof Since f (t) is rd-continuous, then f (t) is regulated, and Iαf (t) is twice times differen-
tiable. In view of Lemma 2.1, one has

Dα
(
Iαf

)
(t) = t2–α

(∫ t

0
(t – s)sα–2f (s)�s

)��

= t2–αf (t)tα–2

= f (t).

The proof is complete. �

Lemma 2.4 (Mean value theorem [6]) Let a ≥ 0 and f : T → R be a function continuous
on [a, b]T which is conformable fractional differentiable of order with α on [a, b]T . Then
there exist ξ , τ ∈ [a, b]T such that

ξα–1Dαf (ξ ) ≤ f (b) – f (a)
b – a

≤ τα–1Dαf (τ ).
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Lemma 2.5 Let α ∈ (1, 2], f be a α-differentiable function at t > 0, then Dαf (t) = 0 for t ∈
[0, 1]T if and only if f (t) = a0 + a1t, where ak ∈R, for k = 0, 1.

Proof The sufficiency follows by the definition of the delta derivative on time scales.
Next, given t1, t2 ∈ [0, 1]T with t1 < t2, by Lemma 2.4, there exists ξ , τ ∈ (t1, t2)T such that

ξα–1Dαf (ξ ) ≤ f �(t2) – f �(t1)
t2 – t1

≤ τα–1Dαf (τ ).

By means of Dαf (ξ ) = Dαf (τ ) = 0, we have f �(t2) = f �(t1), with the arbitrariness of t1, t2,
one has f �(t) is a constant, so f (t) = a0 + a1t, for t ∈ [0, 1]T . �

With Lemma 2.3 and Lemma 2.5, the following lemma is immediate.

Lemma 2.6 Assume that u ∈ C(0, +∞)T with a fractional derivative of order α ∈ (1, 2].
Then

IαDαu(t) = u(t) + c0 + c1t, (2.2)

for some ck ∈R, k = 0, 1.

We present below the Green’s function and its properties.

Lemma 2.7 Given y ∈ C[0,σ (1)]T , the unique solution of

Dαu(t) + y(t) = 0, t ∈ [0, 1]T , (2.3)

u(0) = u
(
σ (1)

)
= 0, (2.4)

is

u(t) =
∫ σ (1)

0
G(t, s)y(s)�s,

where

G(t, s) =
1

σ (1)

⎧
⎨

⎩
(σ (1) – t)sα–1, for 0 ≤ s ≤ t;

tsα–2(σ (1) – s), for t ≤ s ≤ 1.
(2.5)

Proof By the use of the Lemma 2.6, we can deduce from equation (2.3) an equivalent in-
tegral equation,

u(t) = –Iαy(t) + c0 + c1t

= –
∫ t

0
(t – s)sα–2y(s)�s + c0 + c1t,

for some c0, c1 ∈R. By (2.4), there are

c0 = 0, c1 =
1

σ (1)

∫ σ (1)

0

[
σ (1) – s

]
sα–2y(s)�s.
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Therefore, the unique solution of Problem (2.3), (2.4) is

u(t) = –
∫ t

0
(t – s)sα–2y(s)�s +

t
σ (1)

∫ σ (1)

0

(
σ (1) – s

)
sα–2y(s)�s

=
1

σ (1)

∫ t

0

[
–σ (1)tsα–2 + σ (1)sα–1]y(s)�s

+
1

σ (1)

∫ σ (1)

0

[
tσ (1)sα–2 – tsα–2]y(s)�s

=
1

σ (1)

∫ t

0

(
σ (1) – t

)
(s)α–1y(s)�s

+
1

σ (1)

∫ σ (1)

t
tsα–2(σ (1) – s

)
y(s)�s

=
∫ σ (1)

0
G(t, s)y(s)�s.

The proof is complete. �

We point out here that (2.5) becomes the usual Green’s function when α = 2 on time
scales.

Lemma 2.8 Let y ∈ C[0,σ (1)] and 1 < α ≤ 2. Then the problem

Dα
(
φp

(
Dαu(t)

))
= y(t), t ∈ [0, 1]T , (2.6)

u(0) = u
(
σ (1)

)
= Dαu(0) = Dαu

(
σ (1)

)
= 0, (2.7)

has a unique solution

u(t) =
∫ σ (1)

0
G(t, s)φq

(∫ σ (1)

0
G(s, τ )y(τ )�τ

)
�s. (2.8)

Proof Applying operator Iα on both sides of (2.6), with Lemma 2.6,

φp
(
Dαu(t)

)
+ C0 + C1t = Iαy(t).

So,

φp
(
Dαu(t)

)
= Iαy(t) – C0 – C1t

=
∫ t

0
(t – τ )τα–2y(τ )�τ – C0 – C1t

for some C0, C1 ∈ R. By the boundary conditions Dαu(0) = Dαu(σ (1)) = 0, as a conse-
quence we have

C0 = 0, C1 =
1

σ (1)

∫ σ (1)

0

(
σ (1) – τ

)
τα–2y(τ )�τ .
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Therefore, the solution u(t) of fractional differential equation boundary-value problem
(2.6) and (2.7) satisfies

φp
(
Dαu(t)

)
=

∫ t

0
(t – τ )τα–2y(τ )�τ

–
1

σ (1)
t
∫ σ (1)

0

(
σ (1) – τ

)
τα–2y(τ )�τ

= –
∫ σ (1)

0
G(t, τ )y(τ )�τ .

Thus, the fractional differential equation boundary-value problem (2.6) and (2.7) is equiv-
alent to the problem

Dαu(t) + φq

(∫ σ (1)

0
G(t, τ )y(τ )�τ

)
= 0, 0 < t < 1,

u(0) = u
(
σ (1)

)
= 0.

Lemma 2.7 implies that fractional differential equation boundary-value problem (2.6),
(2.7) has a unique solution

u(t) =
∫ σ (1)

0
G(t, s)φq

(∫ σ (1)

0
G(s, τ )y(τ )�τ

)
�s.

The proof is complete. �

Lemma 2.9 The function G(t, s) defined by (2.5) satisfies:
(i) G(t, s) ≥ 0, for t ∈ [0,σ (1)], s ∈ [0, 1], and G(t, s) > 0, for t ∈ (0,σ (1)), s ∈ (0, 1);

(ii) G(t, s) ≤ G(s, s), for t ∈ [0,σ (1)], s ∈ [0, 1];
(iii) G(t, s) ≥ σ (1)

4 G(s, s), for t ∈ [ σ (1)
4 , 3σ (1)

4 ], s ∈ [0, 1].

Proof Observing the expression of G(t, s), it is clear that G(t, s) ≥ 0 for t ∈ [0,σ (1)], s ∈
[0, 1], and G(t, s) > 0, for t ∈ (0,σ (1)), s ∈ (0, 1). Moreover, G(t, s) is decreasing with respect
to t for s ≤ t, and increasing for t ≤ s. By the fact

G(t, s)
G(s, s)

=

⎧
⎨

⎩

t
s , t ≤ s;
σ (1)–t
σ (1)–s , s ≤ t.

We have

G(t, s) ≤ G(s, s),

for t ∈ [0,σ (1)], s ∈ [0, 1]. Furthermore, if t ∈ [ σ (1)
4 , 3σ (1)

4 ], s ∈ [0, 1], one has

G(t, s)
G(s, s)

≥ σ (1)
4

,

which implies the desired results. �
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Lemma 2.10 ([27]) The following relations hold:
(1) If 1 < q ≤ 2, then |φq(u + v) – φq(u)| ≤ 22–q|v|q–1 for u, v ∈R.
(2) If q > 2, then |φq(u + v) – φq(u)| ≤ (q – 1)(|u| + |v|)q–2|v| for u, v ∈R.

Lemma 2.11 ([28]) Suppose E is a Banach space and Tn : E → E, n = 3, 4, . . . are completely
continuous operators, T : E → E. If ‖Tnu – Tu‖ uniformly to zero when n → ∞ for all
bounded set � ⊆ E, then T : E → E is completely continuous.

Definition 2.7 The map θ is said to be a nonnegative continuous concave functional on
a cone P of a Banach space E provided that θ : P → [0,∞) is continuous and

θ
(
tx + (1 – t)y

) ≥ tθ (x) + (1 – t)θ (y)

for all x, y ∈ P and 0 < t < 1.

The following fixed-point theorems are useful in our proofs.

Lemma 2.12 ([29]) Let E be a Banach space, P ⊆ E be a cone, and �1, �2 be two bounded
open balls of E centered at the origin with �1 ⊂ �2. Suppose that A : P ∩ (�2\�1) → P is
a completely continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂�1, and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂�2, or
(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂�1, and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂�2,

holds. Then A has a fixed point in P ∩ (�2\�1).

Lemma 2.13 ([30]) Let P be a cone in a real Banach space E, Pc = {x ∈ P | ‖x‖ ≤ c}, θ be
a nonnegative continuous concave functional on P such that θ (x) ≤ ‖x‖, for all x ∈ Pc, and
P(θ , b, d) = {x ∈ P | b ≤ θ (x),‖x‖ ≤ d}. Suppose A : Pc → Pc is a completely continuous and
there exist constants 0 < a < b < d ≤ c such that

(C1) {x ∈ P(θ , b, d) | θ (x) > b} is nonempty, and θ (Ax) > b, for x ∈ P(θ , b, d);
(C2) ‖Ax‖ < a, for x ≤ a;
(C3) θ (Ax) > b, for x ∈ P(θ , b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2, x3 with

‖x1‖ < a, b < θ (x2), a < ‖x3‖, θ (x3) < b.

Remark 2.1 ([30]) If we have d = c, then condition (C1) of Lemma 2.13 implies condition
(C3) of Lemma 2.13.

3 Existence results
Let E = {u : [0,σ (1)] → R} be endowed with the ordering u ≤ v if u(t) ≤ v(t) for all t ∈
[0,σ (1)], and the norm ‖u‖ = max0≤t≤σ (1) |u(t)|. Define

P =
{

u ∈ E | u(t) ≥ 0 on
[
0,σ (1)

]
, u(t) ≥ σ (1)

4
‖u‖ for t ∈

[
σ (1)

4
,

3σ (1)
4

]}
.
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Given a function f ∈ C([0,σ (1)] × [0,∞), [0,∞)), define T , Tn : P → E as

(Tu)(t) :=
∫ σ (1)

0
G(t, s)φq

(∫ σ (1)

0
G(s, τ )f

(
τ , u(τ )

)
�τ

)
�s,

(Tnu)(t) :=
∫ σ (1)

1
n

G(t, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s, n = 3, 4, . . . .

Lemma 3.1 T : P → P is completely continuous.

Proof Firstly, take the constant in the second member to be independent on n, Hence,
we show that Tn : P → P are completely continuous for n = 3, 4, . . . . Given u ∈ P, with
Lemma 2.9 and the nonnegativity of f (t, u), one has

(Tnu)(t) =
∫ σ (1)

1
n

G(t, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s

≤
∫ σ (1)

1
n

G(s, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s,

so

‖Tnu‖ ≤
∫ σ (1)

1
n

G(s, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s.

For u ∈ P,

min
σ (1)

4 ≤t≤ 3σ (1)
4

(Tnu)(t) = min
σ (1)

4 ≤t≤ 3σ (1)
4

∫ σ (1)

1
n

G(t, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s

≥ σ (1)
4

∫ σ (1)

1
n

G(s, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s.

It follows that

min
σ (1)

4 ≤t≤ 3σ (1)
4

(Tnu)(t) ≥ σ (1)
4

‖Tnu‖.

Hence, Tnu ∈ P, and so Tn : P → P. Let � ⊂ P be bounded, i.e., there exists a positive
constant M > 0 such that ‖u‖ ≤ M for all u ∈ �. Let

L = max
0≤t≤σ (1),0≤u≤M

∣
∣f (t, u)

∣
∣ + 1, H =

∫ σ (1)

0
G(s, s)�s + 1,

then, for u ∈ �, we have

∣∣(Tnu)(t)
∣∣ =

∫ σ (1)

1
n

G(t, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s

≤ Lq–1Hq < +∞.

Hence, Tn(�) is bounded for n = 3, 4, . . . .
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On the other hand, given ε > 0, let

δ =
ε

2σ (1)Lq–1Hq–1 ,

then, for each u ∈ �, t1, t2 ∈ [0,σ (1)], t1 ≤ t2, and t2 – t1 < δ, one has

∣∣(Tnu)(t2) – (Tnu)(t1)
∣∣ < ε.

That is to say Tn(�) has equicontinuity. In fact, we consider three situations.
(1) 0 < t1 ≤ t2 < 1

n .

∣∣(Tnu)(t2) – (Tnu)(t1)
∣∣

=
∣
∣∣
∣

∫ σ (1)

1
n

G(t2, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s

–
∫ σ (1)

1
n

G(t1, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s

∣
∣∣
∣

≤ Lq–1Hq–1
∫ σ (1)

1
n

∣∣G(t2, s) – G(t1, s)
∣∣�s

=
1

σ (1)
Lq–1Hq–1

∫ σ (1)

1
n

(t2 – t1)sα–2(σ (1) – s
)
�s

≤ 1
σ (1)

Lq–1Hq–1(t2 – t1)
∫ σ (1)

0

[
σ (1) – s

]
�s

≤ Lq–1Hq–1(t2 – t1)σ (1)

< ε.

(2) 0 < t1 ≤ 1
n ≤ t2 < 1.

∣∣(Tnu)(t2) – (Tnu)(t1)
∣∣

≤ Lq–1Hq–1
(∫ t2

1
n

∣∣G(t2, s) – G(t1, s)
∣∣�s +

∫ σ (1)

t2

∣∣G(t2, s) – G(t1, s)
∣∣�s

)

≤ Lq–1Hq–1 1
σ (1)

(∫ t2

1
n

[
(t1 – s)sα–2σ (1) + (t2 – t1)sα–1]�s

+
∫ σ (1)

t2

(t2 – t1)sα–2(σ (1) – s
)
�s

)

≤ 1
σ (1)

Lq–1Hq–1(t2 – t1)
∫ σ (1)

0

(
sα–2σ (1) + sα–1)�s

≤ 1
σ (1)

Lq–1Hq–1(t2 – t1)
∫ σ (1)

0

[
σ (1) + s

]
�s

≤ 2
1

σ (1)
Lq–1Hq–1(t2 – t1)

∫ σ (1)

0
σ (1)�s

≤ 2Lq–1Hq–1σ (1)(t2 – t1)

< ε.
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(3) 1
n < t1 ≤ t2 < 1.

∣
∣(Tnu)(t2) – (Tnu)(t1)

∣
∣

≤ Lq–1Hq–1
(∫ t1

1
n

∣
∣G(t2, s) – G(t1, s)

∣
∣�s +

∫ t2

t1

∣
∣G(t2, s) – G(t1, s)

∣
∣�s

+
∫ σ (1)

t2

∣
∣G(t2, s) – G(t1, s)

∣
∣�s

)

=
1

σ (1)
Lq–1Hq–1

[∫ t2

t1

((
σ (1) – t2

)
sα–1 – t1sα–2(σ (1) – s

))
�s

+
∫ t1

1
n

(t2 – t1)sα–1�s +
∫ σ (1)

t2

(
(t2 – t1)sα–2σ (1) – sα–1)�s

]

≤ 1
σ (1)

Lq–1Hq–1(t2 – t1)
∫ σ (1)

0

(
sα–2σ (1) + sα–1)�s

≤ 1
σ (1)

Lq–1Hq–1(t2 – t1)
∫ σ (1)

0

[
σ (1) + s

]
�s

< ε.

By the means of the Arzela–Ascoli theorem, we see that Tn : P → P are completely con-
tinuous operators.

Secondly, it is clear that T : P → P. We prove that Tn : P → P have uniform convergence
to T and T : P → P is completely continuous too.

With the use of Lemma 2.10,

φq(A + B) < φq(A) + 2φq(B) + (q – 1)(A + B)q–2B.

Given ε > 0, let

K =
(

σ (1) · (2Lq–1H + qLq–1Hq–1)
ε

)
,

then ‖Tnu – Tu‖ < ε, for all n > N . In fact,

‖Tnu – Tu‖
= max

0≤t≤σ (1)

∣∣(Tnu)(t) – (Tu)(t)
∣∣

= max
0≤t≤σ (1)

∣∣∣
∣

∫ σ (1)

0
G(t, s)φq

(∫ σ (1)

0
G(s, τ )f

(
τ , u(τ )

)
�τ

)
�s

–
∫ σ (1)

1
n

G(t, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s

∣
∣∣∣

< max
0≤t≤σ (1)

∫ σ (1)

0
G(t, s)

[
φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)

+ 2φq

(∫ 1
n

0
G(s, τ )f

(
τ , u(τ )

)
�τ

)
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+ (q – 1)
(∫ σ (1)

0
G(s, τ )f

(
τ , u(τ )

)
�τ

)q–2 ∫ 1
n

0
G(s, τ )f

(
τ , u(τ )

)
�τ

]
�s

–
∫ σ (1)

1
n

G(t, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
s, u(s)

)
�τ

)
�s

≤ max
0≤t≤σ (1)

∫ 1
n

0
G(t, s)φq

(∫ σ (1)

1
n

G(s, τ )f
(
τ , u(τ )

)
�τ

)
�s

+ 2Lq–1
∫ σ (1)

0
G(s, s)�sφq

(∫ 1
n

0
G(τ , τ )�τ

)

+ (q – 1)Lq–1
∫ σ (1)

0
G(s, s)�s

(∫ σ (1)

0
G(τ , τ )�τ

)q–2 ∫ 1
n

0
G(τ , τ )�τ

≤ σ (1) · (Lq–1Hq–1 + 2Lq–1H + (q – 1)Lq–1Hq–1) ·
(

1
n

)

< ε.

By the use of Lemma 2.11, T : P → P is completely continuous. �

We take into account that the Green’s function satisfy G(t, s) ≥ 0 for t ∈ [0,σ (1)], s ∈
[0, 1], and G(t, s) > 0, for t ∈ (0,σ (1)), s ∈ (0, 1). The following constants are well defined:

M =
(∫ σ (1)

0
G(s, s)�sφq

(∫ σ (1)

0
G(τ , τ )�τ

))–1

,

N =
(∫ 3σ (1)

4

σ (1)
4

σ (1)
4

G(s, s)�sφq

(∫ 3σ (1)
4

σ (1)
4

σ (1)
4

G(τ , τ )�τ

))–1

.

Theorem 3.1 Let f ∈ C([0,σ (1)] × [0,∞), [0,∞)). Assume that there exist two different
positive constants r2, r1, and r2 = r1 such that

(H1) f (t, u) ≤ φp(Mr1), for (t, u) ∈ [0,σ (1)] × [0, r1];
(H2) f (t, u) ≥ φp(Nr2), for (t, u) ∈ [ σ (1)

4 , 3σ (1)
4 ] × [ σ (1)

4 r2, r2].
Then Problem (1.1), (1.2) has at least one positive solution u such that min{r2, r1} ≤ ‖u‖ ≤
max{r2, r1}.

Proof By Lemma 3.1, T : P → P is completely continuous. Without loss of generality, sup-
pose 0 < r1 < r2, and let

�1 :=
{

u ∈ P | ‖u‖ < r1
}

, �2 :=
{

u ∈ P | ‖u‖ < r2
}

.

For u ∈ ∂�1, we have 0 ≤ u(t) ≤ r1 for all t ∈ [0,σ (1)]. It follows from (H1) that

‖Tu‖ = max
0≤t≤σ (1)

∣∣
∣∣

∫ σ (1)

0
G(t, s)�q

(∫ σ (1)

0
G(s, τ )f

(
τ , u(τ )

)
�τ

)
�s

∣∣
∣∣

≤ Mr1

∫ σ (1)

0
G(s, s)�s�q

(∫ σ (1)

0
G(τ , τ )�τ

)
= r1 = ‖u‖.

So,

‖Tu‖ ≤ ‖u‖, for u ∈ ∂�1.
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For u ∈ ∂�2, by the definition of P, we have

min
σ (1)

4 ≤t≤ 3σ (1)
4

u(t) ≥ σ (1)
4

‖u‖ =
σ (1)

4
r2.

By assumption (H2), for t ∈ [ σ (1)
4 , 3σ (1)

4 ], we have

(Tu)(t) =
∫ σ (1)

0
G(t0, s)φq

(∫ σ (1)

0
G(s, τ )f

(
τ , u(τ )

)
�τ

)
�s

≥
∫ σ (1)

0

σ (1)
4

G(s, s)φq

(∫ 3σ (1)
4

σ (1)
4

σ (1)
4

G(τ , τ )f
(
τ , u(τ )

)
�τ

)
�s

≥ Nr2

∫ 3σ (1)
4

σ (1)
4

σ (1)
4

G(s, s)φq

(∫ 3σ (1)
4

σ (1)
4

σ (1)
4

G(τ , τ )�τ

)
�s

= r2 = ‖u‖.

So,

‖Tu‖ ≥ ‖u‖, for u ∈ ∂�2.

Therefore, by Lemma 2.12, we complete the proof. �

Theorem 3.2 Suppose f ∈ C([0,σ (1)] × [0,∞), [0,∞)) and there exist constants 0 < a <
b < c such that the following assumptions hold:

(A1) f (t, u) ≤ φp(Ma), for (t, u) ∈ [0,σ (1)] × [0, a];
(A2) f (t, u) ≥ φp(Nb), for (t, u) ∈ [ σ (1)

4 , 3σ (1)
4 ] × [b, c];

(A3) f (t, u) ≤ φp(Mc), for (t, u) ∈ [0,σ (1)] × [0, c].
Then the boundary-value problem (1.1), (1.2) has at least three positive solutions u1, u2, u3

with

max
0≤t≤σ (1)

∣
∣u1(t)

∣
∣ < a, b < min

σ (1)
4 ≤t≤ 3σ (1)

4

∣
∣u2(t)

∣
∣ < max

0≤t≤σ (1)

∣
∣u2(t)

∣
∣ ≤ c,

a < max
0≤t≤σ (1)

∣∣u3(t)
∣∣ ≤ c, min

σ (1)
4 ≤t≤ 3σ (1)

4

∣∣u3(t)
∣∣ < b.

Proof We show that all the conditions of Lemma 2.13 are satisfied. If u ∈ Pc, then ‖u‖ ≤ c.
Assumption (A3) implies f (t, u(t)) ≤ φp(Mc) for 0 ≤ t ≤ σ (1), consequently,

‖Tu‖ = max
0≤t≤σ (1)

∣
∣∣
∣

∫ σ (1)

0
G(t, s)φq

(∫ σ (1)

0
G(s, τ )f

(
τ , u(τ )

)
�τ

)
�s

∣
∣∣
∣

≤
∫ σ (1)

0
G(s, s)φq

(∫ σ (1)

0
G(τ , τ )f

(
τ , u(τ )

)
�τ

)
�s

≤ Mc
∫ σ (1)

0
G(s, s)�sφq

(∫ σ (1)

0
G(τ , τ )�τ

)
≤ c.

Hence, T : Pc → Pc. Similarly, if u ∈ Pa, then assumption (A1) yields f (t, u(t)) ≤ φp(Ma),
0 ≤ t ≤ σ (1). Therefore, condition (C2) of Lemma 2.13 is satisfied.
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Choose

u(t) =
b + c

2
, 0 ≤ t ≤ σ (1).

Then u(t) ∈ P(θ , b, c), θ (u) = θ ( b+c
2 ) > b, consequently,

{
u ∈ P(θ , b, c) | θ (u) > b

} = ∅.

Hence, if u ∈ P(θ , b, c), then b ≤ u(t) ≤ c for σ (1)
4 ≤ t ≤ 3σ (1)

4 . From assumption (A3), we
have f (t, u(t)) ≥ φp(Nb) for σ (1)

4 ≤ t ≤ 3σ (1)
4 . So

θ (Tu) = min
σ (1)

4 ≤t≤ 3σ (1)
4

∫ σ (1)

0
G(t, s)�q

(∫ σ (1)

0
G(s, τ )f

(
τ , u(τ )

)
�τ

)
�s

> Nb
∫ 3σ (1)

4

σ (1)
4

σ (1)
4

G(s, s)φq

(∫ 3σ (1)
4

σ (1)
4

σ (1)
4

G(τ , τ )�τ

)
�s

= b,

i.e.,

θ (Tu) > b, for all u ∈ P(θ , b, c).

This shows that condition (C1) of Lemma 2.13 is satisfied.
By Lemma 2.13 and Remark 2.1, Problem (1.1), (1.2) has at least three positive solutions

u1, u2, u3, satisfying

max
0≤t≤σ (1)

∣
∣u1(t)

∣
∣ < a, b < min

σ (1)
4 ≤t≤ 3σ (1)

4

∣
∣u2(t)

∣
∣,

a < max
0≤t≤σ (1)

∣
∣u3(t)

∣
∣, min

σ (1)
4 ≤t≤ 3σ (1)

4

∣
∣u3(t)

∣
∣ < b.

The proof is complete. �

4 Examples
Example 4.1 Let T = R, α = 3

2 , p = 3, consider the following fractional differential equation
boundary-value problem:

D
3
2
(
φ3

(
D

3
2 u(t)

))
= 1 + t + sin u, t ∈ [0, 1]T , (4.1)

u(0) = u(1) = D
3
2 u(0) = D

3
2 u(1) = 0. (4.2)

By a simple computation, we obtain M = 3.75, N ≈ 5.987. Choose r1 = 1, r2 = 1
5 , then

f (t, u) = 1 + t + sin u ≤ 3.5 < φp(Mr1) = 3.75, for (t, u) ∈ [0, 1] × [0, 1],

f (t, u) = 1 + t + sin u ≥ 2 > φp(Nr2) ≈ 1.1974, for (t, u) ∈
[

1
4

,
3
4

]
×

[
1

20
,

1
5

]
.
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With the use of Theorem 3.1, the fractional differential equation boundary-value problem
(4.1) and (4.2) has at least one positive solution u such that 1

5 ≤ ‖u‖ ≤ 1.

Example 4.2 Let T = R, consider the following fractional differential equation boundary-
value problem:

D
3
2
(
φ3

(
D

3
2 u(t)

))
= f (t, u), t ∈ [0, 1]T , (4.3)

u(0) = u(1) = D
3
2 u(0) = D

3
2 u(1) = 0, (4.4)

where

f (t, u) =

⎧
⎨

⎩
2u + 1

10 t, u ≤ 1;

6 + 7(u – 1)2 + 1
10 t, u ≥ 1.

We obtain M = 3.75, N ≈ 5.987. Choose a = 0.1, b = 1, c = 4, then

f (t, u) = 2u +
1

10
t < 0.3 < φp(Ma) = 0.375, for (t, u) ∈ [0, 1] × [0, 0.1],

f (t, u) = 6 + 7(u – 1)2 +
t

10
≥ 2 > φp

(
Nb
4

)
≈ 1.497, (t, u) ∈

[
1
4

,
3
4

]
× [1, 4],

f (t, u) = 6 + 7(u – 1)2 +
t

10
≤ 9.1 < φp(Mc) = 15, (t, u) ∈ [0, 1] × [0, 4].

With the use of Theorem 3.2, the fractional differential equation boundary-value problem
(4.3) and (4.4) has at least three positive solutions u1, u2 and u3 with

max
0≤t≤1

∣∣u1(t)
∣∣ < 0.1, 1 < min

1
4 ≤t≤ 3

4

∣∣u2(t)
∣∣ < max

0≤t≤1

∣∣u2(t)
∣∣ ≤ 4,

0.1 < max
0≤t≤1

∣∣u3(t)
∣∣ ≤ 4, min

1
4 ≤t≤ 3

4

∣∣u3(t)
∣∣ < 1.
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