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Abstract
By applying the mountain pass theorem in critical point theory, the existence of fast
homoclinic solutions is obtained for the following second-order damped vibration
system:

ü(t) + q(t)u̇(t) – L(t)u(t) – a(t)
∣
∣u(t)

∣
∣
p–2

u(t) +∇W(t,u(t)) = 0,

where p ∈ (2, +∞), t ∈R, u ∈R
N , L(t) is a positive definite symmetric matrix-valued

function for all t ∈ R,W ∈ C1(R×R
N ,R) is not periodic in t, a(t) is a continuous,

positive function on R and q :R →R is a continuous function and Q(t) =
∫ t
0 q(s)ds

with lim|t|→+∞ Q(t) = +∞.
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1 Introduction
Consider fast homoclinic solutions of the following second-order system:

ü(t) + q(t)u̇(t) – L(t)u(t) – a(t)
∣
∣u(t)

∣
∣
p–2u(t) + ∇W

(

t, u(t)
)

= 0, (1.1)

where p ∈ (2, +∞), t ∈R, u ∈ R
N , L(t) is a positive definite symmetric matrix-valued func-

tion for all t ∈ R, W ∈ C1(R × R
N ,R) is not periodic in t, a(t) is a continuous, positive

function on R, and q : R →R is a continuous function and Q(t) =
∫ t

0 q(s) ds with

lim|t|→+∞ Q(t) = +∞. (1.2)

When q(t) ≡ 0 and L(t) ≡ 0, problem (1.1) reduces to the following special second-order
Hamiltonian system:

ü(t) – a(t)
∣
∣u(t)

∣
∣
p–2u(t) + ∇W

(

t, u(t)
)

= 0, a.e. t ∈ R. (1.3)
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In [1, 2], and [3], the authors considered homoclinic solutions for the special Hamil-
tonian system (1.3) in a weighted Sobolev space and obtained some results by using the
mountain pass theorem in critical point theory. For the applications of mountain pass the-
orem, please see the references [4] and [5]. In [6], Benci and Fortunato investigated a class
of nonlinear Dirichlet problems in a weighted Sobolev space.

When p = 2 and L(t) ≡ 0, problem (1.1) reduces to the following nonlinear second-order
damped vibration problem:

ü(t) + q(t)u̇(t) – a(t)u(t) + ∇W
(

t, u(t)
)

= 0, a.e. t ∈R. (1.4)

When a(t) ≡ 0 and q(t) ≡ 0, problem (1.1) becomes the following second-order Hamil-
tonian system:

ü(t) – L(t)u(t) + ∇W
(

t, u(t)
)

= 0, a.e. t ∈R. (1.5)

As we known, the existence of homoclinic orbits is very important in the study of
the behavior of dynamical systems. The first work about homoclinic orbits was done by
Poincaré [7].

In the past years, the existence and multiplicity of homoclinic solutions for system (1.5)
were investigated by many researchers by using critical point theory. For example, see [8–
19], and the references cited therein. For the existence of homoclinic solutions for damped
vibration problem (1.4), please see the literature [20–25], and the references cited therein.
For other kinds of damped vibration problem, please see the literature [26] and [27]. Be-
sides, by applying the mountain pass theorem and symmetric mountain pass theorem in
critical point theory, Zhang and Li [28] investigated the existence and multiplicity of fast
homoclinic solutions for a class of nonlinear second-order nonautonomous systems and
obtained some results, which generalized and improved problem (1.4).

Motivated mainly by the above mentioned works, we will investigate fast homoclinic so-
lutions for problem (1.1) and establish some results. In the following, we first state some
properties of the weighted Sobolev space E and then introduce the concept of fast homo-
clinic solutions for problem (1.1). On the weighted Sobolev space E, a certain variational
functional associated with (1.1) is defined and fast homoclinic solutions are the critical
points of the certain functional.

Let

X =
{

u ∈ W 1,2(
R,RN)

∣
∣
∣

∫

R

eQ(t)[∣∣u̇(t)
∣
∣
2 +

(

L(t)u(t), u(t)
)]

dt < +∞
}

,

where Q(t) is defined in (1.2). Then X is a weighted Sobolev space with the norm given by

‖u‖ =
(∫

R

eQ(t)[∣∣u̇(t)
∣
∣
2 +

(

L(t)u(t), u(t)
)]

dt
)1/2

, u, v ∈ X.

It is obvious that

X ⊂ L2(eQ(t))
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with the embedding being continuous. Here Lq(eQ(t)) (2 ≤ q < +∞) denotes the Banach
spaces of functions on R with values in R

N under the norm

‖u‖q :=
{∫

R

eQ(t)∣∣u(t)
∣
∣
q dt

}1/q

.

If σ is a positive, continuous function on R and 1 < s < +∞, let

Ls
σ

(

eQ(t)) =
{

u ∈ L1
loc

(

eQ(t))|
∫

R

σ (t)eQ(t)∣∣u(t)
∣
∣
s dt < +∞

}

.

Ls
σ equipped with the norm

‖u‖s,σ =
(∫

R

σ (t)eQ(t)∣∣u(t)
∣
∣
s dt

)1/s

is a reflexive Banach space.
Set E = X ∩ Lp

a(eQ(t)), where a is the function given in condition (A). Then E with its
standard norm ‖ · ‖ is a reflexive Banach space. Similar to [20–25], the definition of fast
homoclinic solutions is given in the following.

Definition 1.1 If (1.2) holds, a solution of (1.1) is called a fast homoclinic solution if u ∈ E.

The main results are given in the following.

Theorem 1.1 Suppose that q satisfies (1.2), a, L, and W satisfy the following conditions:
(A) Let p > 2, a(t) is a continuous, positive function on R such that, for all t ∈R,

a(t) ≥ ϑ |t|β , ϑ > 0,β > (p – 2)/2.

(L) L ∈ C(R,RN ×R
N ) is an MN (R)-valued continuous function of t ∈ R, and there

exists a constant γ > 0 such that

(

L(t)x, x
) ≥ γ |x|2, ∀(t, x) ∈R×R

N .

(W1) W (t, x) = W1(t, x) – W2(t, x), W1, W2 ∈ C1(R×R
N ,R), and there exists a constant

R > 0 such that

∣
∣∇W (t, x)

∣
∣ = o

(|x|p–1) as x → 0

uniformly in t ∈ (–∞, –R] ∪ [R, +∞).
(W2) There is a constant μ > p such that

0 < μW1(t, x) ≤ (∇W1(t, x), x
)

, ∀(t, x) ∈ R×R
N\{0}.

(W3) W2(t, 0) = 0 and there exists a constant � ∈ (p,μ) such that

W2(t, x) ≥ 0,
(∇W2(t, x), x

) ≤ �W2(t, x), ∀(t, x) ∈ R×R
N .
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Then problem (1.1) has at least one nontrivial fast homoclinic solution.

Theorem 1.2 Suppose that q, a, L, and W satisfy (1.2), (A), (L), (W2), and the following
conditions:

(W1)’ W (t, x) = W1(t, x) – W2(t, x), W1, W2 ∈ C1(R×R
N ,R), and

∣
∣∇W (t, x)

∣
∣ = o

(|x|p–1) as x → 0

uniformly in t ∈R.
(W3)’ W2(t, 0) = 0 and there exists a constant � ∈ (p,μ) such that

(∇W2(t, x), x
) ≤ �W2(t, x), ∀(t, x) ∈R×R

N .

Then problem (1.1) has at least one nontrivial fast homoclinic solution.

The rest of this paper is organized as follows. In Sect. 2, some preliminaries are pre-
sented. In Sect. 3, the proofs of the main results are given. In Sect. 4, two examples are
given to illustrate the main results.

2 Preliminaries
The functional ϕ corresponding to (1.1) on E is given by

ϕ(u) =
∫

R

eQ(t)
{

1
2
[∣
∣u̇(t)

∣
∣
2 +

(

L(t)u(t), u(t)
)]

+
a(t)

p
∣
∣u(t)

∣
∣
p – W

(

t, u(t)
)
}

dt,

u ∈ E. (2.1)

Clearly, it follows from (A), (L), (W1), or (W1)’ that ϕ : E →R. By Theorem 2.1 of [6], we
can deduce that the map

u → a(t)eQ(t)∣∣u(t)
∣
∣
p–2u(t)

is continuous from Lp
a(eQ(t)) in the dual space Lp1

a–1/(p–1) (eQ(t)), where p1 = p
p–1 . As the em-

beddings E ⊂ X ⊂ Lκ (eQ(t)) for all κ ≥ 2 are continuous, if (A), (L) and (W1) or (W1)’ hold,
then ϕ ∈ C1(E,R) and one can easily check that for u ∈ E

〈

ϕ′(u), v
〉

=
∫

R

eQ(t)[(u̇(t), v̇(t)
)

+
(

L(t)u(t), v(t)
)

+ a(t)
∣
∣u(t)

∣
∣
p–2(u(t), v(t)

)

–
(∇W

(

t, u(t)
)

, v(t)
)]

dt. (2.2)

Furthermore, the critical points of ϕ in E are classical solutions of (1.1) with u(±∞) = 0.
Let E and ‖ · ‖ be given in Sect. 1. The following lemmas are important.

Lemma 2.1 ([1]) For any u ∈ E,

‖u‖∞ ≤ 1
√

2e0
√

γ
‖u‖ =

1
√

2e0
√

γ

{∫

R

eQ(s)[∣∣u̇(s)
∣
∣
2 +

(

L(s)u(s), u(s)
)]

ds
}1/2

, (2.3)
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∣
∣u(t)

∣
∣ ≤ 1

4√γ

{∫ +∞

t
e–Q(s)eQ(s)[∣∣u̇(s)

∣
∣
2 +

(

L(s)u(s), u(s)
)]

ds
}1/2

(2.4)

and

∣
∣u(t)

∣
∣ ≤ 1

4√γ

{∫ t

–∞
e–Q(s)eQ(s)[∣∣u̇(s)

∣
∣
2 +

(

L(s)u(s), u(s)
)]

ds
}1/2

, (2.5)

where ‖u‖∞ = ess supt∈R |u(t)|, e0 = emin{Q(t):t∈R}.

Lemma 2.2 ([24]) If a satisfies assumption (A), then

the embedding Lp
a
(

eQ(t)) ⊂ L2(eQ(t)) is continuous. (2.6)

Moreover, there exists a Hilbert space Z such that

the embeddings Lp
a
(

eQ(t)) ⊂ Z ⊂ L2(eQ(t)) are continuous, (2.7)

the embedding X ∩ Z ⊂ L2(eQ(t)) is compact. (2.8)

The following lemma is the mountain pass theorem which is very useful in the proofs of
our theorems.

Lemma 2.3 ([29]) Let E be a real Banach space and I ∈ C1(E,R) satisfy the (PS)-condition.
Suppose I(0) = 0 and

(i) There exist constants ρ , α > 0 such that I∂Bρ (0) ≥ α.
(ii) There exists e ∈ E\B̄ρ(0) such that I(e) ≤ 0.
Then I possesses a critical value c ≥ α which can be characterized as c =

infh∈� maxs∈[0,1] I(h(s)), where � = {h ∈ C([0, 1], E)|h(0) = 0, h(1) = e} and Bρ(0) is an open
ball in E of radius ρ centered at 0.

Lemma 2.4 Assume that (W2) and (W3) or (W3)’ hold. Then, for every (t, x) ∈R×R
N ,

(i) s–μW1(t, sx) is nondecreasing on (0, +∞);
(ii) s–�W2(t, sx) is nonincreasing on (0, +∞).

The proof of Lemma 2.4 is routine and we omit it.

3 Proofs of theorems

Proof of Theorem 1.1 The proof of Theorem 1.1 is divided into three steps. Step 1. We will
prove that the functional ϕ satisfies the (PS)-condition. Let {un} ⊂ E satisfying ϕ(un) be
bounded and ϕ′(un) → 0 as n → ∞. Then there exists a constant C1 > 0 such that

∣
∣ϕ(un)

∣
∣ ≤ C1,

∥
∥ϕ′(un)

∥
∥

E∗ ≤ μC1. (3.1)

From (2.1), (2.2), (3.1), (W2), and (W3), we have

2C1 + 2C1‖un‖ ≥ 2ϕ(un) –
2
μ

〈

ϕ′(un), un
〉
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=
μ – 2

μ
‖un‖2 +

(
2
p

–
2
μ

)∫

R

eQ(t)a(t)
∣
∣un(t)

∣
∣
p dt

– 2
∫

R

eQ(t)
[

W1
(

t, un(t)
)

–
1
μ

(∇W1
(

t, un(t)
)

, un(t)
)
]

dt

+ 2
∫

R

eQ(t)
[

W2
(

t, un(t)
)

–
1
μ

(∇W2
(

t, un(t)
)

, un(t)
)
]

dt

≥ μ – 2
μ

‖un‖2 +
(

2
p

–
2
μ

)

‖un‖p
p,a.

It follows from Lemma 2.2, μ > p > 2, and the above inequalities that there exists a constant
C2 > 0 such that

‖un‖ ≤ C2, n ∈N. (3.2)

Now we prove that un → u0 in E. Passing to a subsequence if necessary, we can assume
that un ⇀ u0 in E. For any given number ε > 0, from (W1), we can choose ξ > 0 such that

∣
∣∇W (t, x)

∣
∣ ≤ εγ |x|p–1 for |t| ≥ R and |x| ≤ ξ . (3.3)

Since Q(t) → ∞ as |t| → ∞, we can take T > R such that

Q(t) ≥ ln

(
C2

2√
γ ξ 2

)

for |t| ≥ T . (3.4)

It follows from (2.4), (3.2), and (3.4) that

∣
∣un(t)

∣
∣
2 ≤ 1√

γ

∫ +∞

t
e–Q(s)eQ(s)[∣∣u̇n(s)

∣
∣
2 +

(

L(s)un(s), un(s)
)]

ds

≤ ξ 2

C2
2
‖un‖2 ≤ ξ 2 for t ≥ T and n ∈N. (3.5)

Similarly, from (2.5), (3.2), and (3.4), we have

∣
∣un(t)

∣
∣
2 ≤ ξ 2 for t ≤ –T and n ∈N. (3.6)

Since un ⇀ u0 in E, it is easy to verify that un(t) converges to u0(t) pointwise for all t ∈R.
Hence, it follows from (3.5) and (3.6) that

∣
∣u0(t)

∣
∣ ≤ ξ for t ∈ (–∞, –T] ∪ [T , +∞). (3.7)

Since eQ(t) ≥ e0 > 0 on [–T , T] = J , the operator defined by S : E → H1(J) : u → u|J is a
linear continuous map. Hence un → u0 in H1(J). The Sobolev theorem implies that un →
u0 uniformly on J , hence there is n0 ∈N such that

∫ T

–T
eQ(t)∣∣∇W

(

t, un(t)
)

– ∇W
(

t, u0(t)
)∣
∣
∣
∣un(t) – u0(t)

∣
∣dt < ε for n ≥ n0. (3.8)
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It follows from (L), (3.2), (3.3), (3.5), (3.6), (3.7), and Young’s inequality that
∫

R\[–T ,T]
eQ(t)∣∣∇W

(

t, un(t)
)

– ∇W
(

t, u0(t)
)∣
∣
∣
∣un(t) – u0(t)

∣
∣dt

≤
∫

R\[–T ,T]
eQ(t)(∣∣∇W

(

t, un(t)
)∣
∣ +

∣
∣∇W

(

t, u0(t)
)∣
∣
)(∣

∣un(t)
∣
∣ +

∣
∣u0(t)

∣
∣
)

dt

≤ ε

∫

R\[–T ,T]
eQ(t)γ

(∣
∣un(t)

∣
∣
p–1 +

∣
∣u0(t)

∣
∣
p–1)(∣

∣un(t)
∣
∣ +

∣
∣u0(t)

∣
∣
)

dt

≤ 2ε

∫

R\[–T ,T]
eQ(t)γ

(∣
∣un(t)

∣
∣
p +

∣
∣u0(t)

∣
∣
p)dt

≤ 2ξp–2ε

∫

R\[–T ,T]
eQ(t)γ

(∣
∣un(t)

∣
∣
2 +

∣
∣u0(t)

∣
∣
2)dt

≤ 2ξp–2ε

∫

R\[–T ,T]
eQ(t)[(L(t)un(t), un(t)

)

+
(

L(t)u0(t), u0(t)
)]

dt

≤ 2ξp–2ε
(‖un‖2 + ‖u0‖2)

≤ 2ξp–2ε
(

C2
2 + ‖u0‖2), n ∈N. (3.9)

It follows from (3.8) and (3.9) that
∫

R

eQ(t)∣∣∇W
(

t, un(t)
)

– ∇W
(

t, u0(t)
)∣
∣
∣
∣un(t) – u0(t)

∣
∣dt → 0 as n → ∞. (3.10)

From (2.2), as n → ∞, we have

0 ← 〈

ϕ′(un) – ϕ′(u0), un – u0)
〉

= ‖un – u0‖2 +
∫

R

eQ(t)a(t)
(∣
∣un(t)

∣
∣
p–2un(t) –

∣
∣u0(t)

∣
∣
p–2u0(t)

)(

un(t) – u0(t)
)

dt

–
∫

R

eQ(t)(∇W
(

t, un(t)
)

– ∇W
(

t, u0(t)), un(t) – u0(t)
)

dt. (3.11)

It is easy to see that, for any ς > 1, there exists a constant C3 > 0 such that

(|x|ς–1x – |y|ς–1y
)

(x – y) ≥ C3|x – y|ς+1, ∀x, y ∈ R. (3.12)

Hence, there exists a constant C4 > 0 such that
∫

R

eQ(t)a(t)
(∣
∣un(t)

∣
∣
p–2un(t) –

∣
∣u0(t)

∣
∣
p–2u0(t)

)(

un(t) – u0(t)
)

dt

≥ C4

∫

R

eQ(t)a(t)
∣
∣un(t) – u0(t)

∣
∣
p dt. (3.13)

It follows from (3.10), (3.11), and (3.13) that

‖un‖ → ‖u0‖ as n → ∞ (3.14)

and
∫

R

eQ(t)a(t)
∣
∣un(t)

∣
∣
p dt →

∫

R

eQ(t)a(t)
∣
∣u0(t)

∣
∣
p dt as n → ∞. (3.15)
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Hence, it follows from (3.14) and (3.15) that un → u0 in E. This shows that ϕ satisfies the
(PS)-condition.

Step 2. From (W1), there exists δ ∈ (0, 1) such that

∣
∣∇W (t, x)

∣
∣ ≤ γ

2
|x|p–1 for |t| ≥ R, |x| ≤ δ. (3.16)

By (3.16), we have

∣
∣W (t, x)

∣
∣ ≤ γ

2p
|x|p for |t| ≥ R, |x| ≤ δ. (3.17)

Let

C5 = sup

{
W1(t, x)

γ

∣
∣
∣t ∈ [–R, R], x ∈ R, |x| = 1

}

. (3.18)

Set σ = min{1/(2pC5 + 1)1/(μ–2), δ} and ‖u‖ =
√

2e0
√

γ σ := ρ , it follows from Lemma 2.1
that |u(t)| ≤ σ ≤ δ < 1 for t ∈R. From Lemma 2.4(i), (L), and (3.18), we have

∫ R

–R
eQ(t)W1

(

t, u(t)
)

dt ≤
∫

{t∈[–R,R]:u(t) �=0}
eQ(t)W1

(

t,
u(t)
|u(t)|

)
∣
∣u(t)

∣
∣
μ dt

≤ C5γ

∫ R

–R
eQ(t)∣∣u(t)

∣
∣
μ dt

≤ C5σ
μ–2

∫ R

–R
eQ(t)γ

∣
∣u(t)

∣
∣
2 dt

≤ C5σ
μ–2

∫ R

–R
eQ(t)(L(t)u(t), u(t)

)

dt

≤ 1
2p

∫ R

–R
eQ(t)(L(t)u(t), u(t)

)

dt. (3.19)

By Lemma 2.2, (L), (W3), (3.17), and (3.19), we have

ϕ(u) =
1
2
‖u‖2 +

1
p

∫

R

eQ(t)a(t)
∣
∣u(t)

∣
∣
p dt –

∫

R

eQ(t)W
(

t, u(t)
)

dt

≥ 1
2
‖u‖2 +

1
p
∥
∥u(t)

∥
∥

p
p,a –

∫

R\[–R,R]
eQ(t)W

(

t, u(t)
)

dt –
∫ R

–R
eQ(t)W1

(

t, u(t)
)

dt

≥ 1
2
‖u‖2 +

C6

p
‖u‖p

2 –
1

2p

∫

R\[–R,R]
γ eQ(t)∣∣u(t)

∣
∣
p dt –

1
2p

∫ R

–R
eQ(t)(L(t)u(t), u(t)

)

dt

≥ 1
2
‖u‖2 +

C6

p
‖u‖p

2 –
δp–2

2p

∫

R\[–R,R]
eQ(t)(L(t)u(t), u(t)

)

dt

–
1

2p

∫ R

–R
eQ(t)(L(t)u(t), u(t)

)

dt

≥ 1
2
‖u‖2 +

C6

p
‖u‖p

2 –
1

2p

∫

R\[–R,R]
eQ(t)(L(t)u(t), u(t)

)

dt

–
1

2p

∫ R

–R
eQ(t)(L(t)u(t), u(t)

)

dt
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=
1
2
‖u‖2 +

C6

p
‖u‖p

2 –
1

2p

∫

R

eQ(t)(L(t)u(t), u(t)
)

dt

≥ p – 1
2p

‖u‖2,

where C6 is a positive constant. Therefore, we can choose a constant α > 0 depending on
ρ such that ϕ(u) ≥ α for any u ∈ E with ‖u‖ = ρ .

Step 3. From Lemma 2.4(ii) and (2.3), we have, for any u ∈ E,

∫ 4

–4
eQ(t)W2

(

t, u(t)
)

dt

=
∫

{t∈[–4,4]:|u(t)|>1}
eQ(t)W2

(

t, u(t)
)

dt +
∫

{t∈[–4,4]:|u(t)|≤1}
eQ(t)W2

(

t, u(t)
)

dt

≤
∫

{t∈[–4,4]:|u(t)|>1}
eQ(t)W2

(

t,
u(t)
|u(t)|

)
∣
∣u(t)

∣
∣
� dt +

∫ 4

–4
eQ(t) max

|x|≤1
W2(t, x) dt

≤ ‖u‖�
∞

∫ 4

–4
eQ(t) max

|x|=1
W2(t, x) dt +

∫ 4

–4
eQ(t) max

|x|≤1
W2(t, x) dt

≤
(

1
√

2e0
√

γ

)�

‖u‖�

∫ 4

–4
eQ(t) max

|x|=1
W2(t, x) dt +

∫ 4

–4
eQ(t) max

|x|≤1
W2(t, x) dt

= C7‖u‖� + C8, (3.20)

where C7 = ( 1√
2e0

√
γ

)�
∫ 4

–4 eQ(t) max|x|=1 W2(t, x) dt, C8 =
∫ 4

–4 eQ(t) max|x|≤1 W2(t, x) dt. Take

ω ∈ E such that

∣
∣ω(t)

∣
∣ =

⎧

⎨

⎩

1 for |t| ≤ 2,

0 for |t| ≥ 4,
(3.21)

and |ω(t)| ≤ 1 for |t| ∈ (2, 4]. For s > 1, from Lemma 2.4(i) and (3.21), we get

∫ 2

–2
eQ(t)W1

(

t, sω(t)
)

dt ≥ sμ

∫ 2

–2
eQ(t)W1

(

t,ω(t)
)

dt = C9sμ, (3.22)

where C9 =
∫ 2

–2 eQ(t)W1(t,ω(t)) dt > 0. From (W3), (2.1), (3.20), (3.21), and (3.22), we get for
s > 1

ϕ(sω) =
s2

2
‖ω‖2 +

sp

p

∫

R

eQ(t)a(t)
∣
∣ω(t)

∣
∣
p dt +

∫

R

eQ(t)[W2
(

t, sω(t)
)

– W1
(

t, sω(t)
)]

dt

≤ s2

2
‖ω‖2 +

sp

p
‖ω‖p

p,a +
∫ 4

–4
eQ(t)W2

(

t, sω(t)
)

dt –
∫ 2

–2
eQ(t)W1

(

t, sω(t)
)

dt

≤ s2

2
‖ω‖2 +

sp

p
‖ω‖p

p,a + C7s�‖ω‖� + C8 – C9sμ. (3.23)

Since μ > � > p > 2 and C9 > 0, it follows from (3.23) that there exists s1 > 1 such that
‖s1ω‖ > ρ and ϕ(s1ω) < 0. Set e = s1ω(t), then e ∈ E, ‖e‖ = ‖s1ω‖ > ρ and ϕ(e) = ϕ(s1ω) < 0.
It is easy to see that ϕ(0) = 0. From Lemma 2.3, ϕ has a critical value c > α given by

c = inf
g∈�

max
s∈[0,1]

ϕ
(

g(s)
)

, (3.24)
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where

� =
{

g ∈ C
(

[0, 1], E
)

: g(0) = 0, g(1) = e
}

.

Hence, there exists u∗ ∈ E such that

ϕ
(

u∗) = c, ϕ′(u∗) = 0.

The function u∗ is a desired solution of problem (1.1). Since c > 0, u∗ is a nontrivial fast
homoclinic solution. The proof is complete. �

Proof of Theorem 1.2 From the proof of Theorem 1.1, we know that the condition
W2(t, x) ≥ 0 in (W3) is only used in the proofs of (3.2) and Step 2. Hence, we only need
to prove that (3.2) and Step 2 still hold if we use (W1)’ and (W3)’ instead of (W1) and
(W3), respectively. We first prove that (3.2) holds. From (W2), (W3)’, (2.1), (2.2), (3.1), and
Lemma 2.2, we have

2C1 +
2C1μ

�
‖un‖

≥ 2ϕ(un) –
2
�

〈

ϕ′(un), un
〉

=
(� – 2)

�
‖un‖2 + 2

∫

R

eQ(t)
[

W2
(

t, un(t)
)

–
1
�

(∇W2
(

t, un(t)
)

, un(t)
)
]

dt

– 2
∫

R

eQ(t)
[

W1
(

t, un(t)
)

–
1
�

(∇W1
(

t, un(t)
)

, un(t)
)
]

dt

+ 2
(

1
p

–
1
�

)∫

R

eQ(t)a(t)
∣
∣un(t)

∣
∣
p dt

≥ � – 2
�

‖un‖2 + 2C6

(
1
p

–
1
�

)

‖un‖p
2.

It follows from � > p > 2 and the above inequalities that there exists a constant C2 > 0 such
that (3.2) holds. Next, we will prove that Step 2 still holds. From (W1)’, there exists δ ∈ (0, 1)
such that

∣
∣∇W (t, x)

∣
∣ ≤ γ

2
|x|p–1 for t ∈R, |x| ≤ δ. (3.25)

By (3.25), we have

∣
∣W (t, x)

∣
∣ ≤ γ

2p
|x|p for t ∈R, |x| ≤ δ. (3.26)

Let ‖u‖ =
√

2e0
√

γ δ := ρ , it follows from Lemma 2.1 that |u(t)| ≤ δ. From (L), (2.1), and
(3.26) we have that

ϕ(u) =
1
2
‖u‖ +

1
p

∫

R

eQ(t)a(t)
∣
∣u(t)

∣
∣
p dt –

∫

R

eQ(t)W
(

t, u(t)
)

dt

≥ 1
2
‖u‖2 +

1
p
‖u‖p

p,a –
1

2p

∫

R

γ eQ(t)∣∣u(t)
∣
∣
p dt
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≥ 1
2
‖u‖2 +

1
p
‖u‖p

p,a –
δp–2

2p

∫

R

γ eQ(t)∣∣u(t)
∣
∣
2 dt

≥ 1
2
‖u‖2 +

C6

p
‖u‖p

2 –
δp–2

2p

∫

R

eQ(t)(L(t)u(t), u(t)
)

dt

≥ 1
2
‖u‖2 +

C6

p
‖u‖p

2 –
1

2p

∫

R

eQ(t)(L(t)u(t), u(t)
)

dt

≥ p – 1
2p

‖u‖2.

Therefore, we can choose a constant α > 0 depending on ρ such that ϕ(u) ≥ α for any
u ∈ E with ‖u‖ = ρ . The proof of Theorem 1.2 is complete. �

4 Examples
Example 4.1 Consider the following system:

ü(t) + tu̇(t) – L(t)u(t) – |t|∣∣u(t)
∣
∣u(t) + ∇W

(

t, u(t)
)

= 0, a.e. t ∈R, (4.1)

where q(t) = t, p = 3, a = |t|, t ∈R, u ∈R
N . Let

W (t, x) =
m

∑

i=1

ai|x|μi –
n

∑

j=1

bj|x|�j , L(t) = diag
(

1 + t2, . . . , 1 + t2),

where μ1 > μ2 > · · · > μm > �1 > �2 > · · · > �n > 3, ai, bj > 0, i = 1, . . . , m, j = 1, . . . , n. Let

W1(t, x) =
m

∑

i=1

ai|x|μi , W2(t, x) =
n

∑

j=1

bj|x|�j .

Then it is easy to check that all the conditions of Theorem 1.1 are satisfied with μ = μm

and � = �1. Hence, problem (4.1) has at least one nontrivial fast homoclinic solution.

Example 4.2 Consider the following system:

ü(t) +
(

t + t3)u̇(t) – L(t)u(t) – |t|3∣∣u(t)
∣
∣
2u(t) + ∇W

(

t, u(t)
)

= 0, a.e. t ∈R, (4.2)

where q(t) = t + t3, p = 4, a = |t|3, t ∈R, u ∈ R
N . Let L be the same in Example 4.1 and

W (t, x) = a1|x|μ1 + a2|x|μ2 + a3|x|μ3 – b1(sin t)|x|�1 – b2(cos t)|x|�2 – b3|x|�3 ,

where μ1 > μ2 > μ3 > �1 > �2 > �3 > 4, a1, a2, a3 > 0, b1, b2, b3 > 0. Let

W1(t, x) = a1|x|μ1 + a2|x|μ2 + a3|x|μ3 ,

W2(t, x) = b1(sin t)|x|�1 + b2(cos t)|x|�2 + b3|x|�3 .

Then it is easy to check that all the conditions of Theorem 1.2 are satisfied with μ = μ3

and � = �1. Hence, problem (4.2) has at least one nontrivial fast homoclinic solution.
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5 Conclusions
In this paper, we study fast homoclinic solutions for a type of second-order damped vi-
bration system. The difference from other papers is that our system has both damped
vibration and L(t)u(t). Besides, we consider the term a(t)|u(t)|p–2u(t) in the system. So the
system is more general than the other papers and the results obtained are more general.
From this point, our work is valued.
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