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Abstract
This article is devoted to the study of a nonlinear Schrödinger equation with an
x-periodic and t-quasi-periodic quintic nonlinear term. It is proved that the equation
admits small-amplitude, linearly stable, real analytic, and quasi-periodic solutions for
most values of frequency vector. By utilizing the measure estimation of infinitely
many small divisors, we construct a real analytic, symplectic change of coordinates
which can transform the Hamiltonian into some sixth order Birkhoff normal form. We
show an infinite-dimensional KAM theorem for non-autonomous Schrödinger
equations and apply the theorem to prove the existence of quasi-periodic solutions.
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1 Introduction
In this paper, a Schrödinger equation with an x-periodic and t-quasi-periodic quintic non-
linear term

iut – uxx + m̃u + εg(ωt, x)|u|4u = 0, (1)

under the Dirichlet boundary conditions

u(t, 0) = u(t,π ) = 0 (2)

is considered, where m̃ is real; ε is a small positive parameter; ω ∈ [�, 2�]κ (� > 0) is a
κ-dimensional frequency vector; κ ≥ 1 is an integer; and the function g(ωt, x) = g(ϑ , x),
(ϑ , x) ∈ T

κ × [0,π ] is real analytic in (ϑ , x) and quasi-periodic in t. We aim to explore
whether the boundary value problem (1) with (2) has real analytic, linearly stable, and
quasi-periodic solutions.

We study this equation as an infinite-dimensional Hamiltonian system. There are two
main approaches to construct the periodic and quasi-periodic solutions. One is the Craig–
Wayne–Bourgain (CWB) method and the other is the infinite-dimensional KAM theory.
The KAM method can capture more properties of quasi-periodic solutions such as their
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Whitney smooth dependence on parameters, their Floquet forms, zero Lyapunov expo-
nents, and linear stability. The KAM theory for partial differential equations was origi-
nated by Kuksin [1–3] and Wayne [4]. In this paper, we apply the KAM theory as well as
Birkhoff normal forms to attain real analytic quasi-periodic solutions.

Kuksin and Pöschel [5] developed the KAM method to study the existence of small am-
plitude quasi-periodic solutions corresponding to any finite number of Fourier modes for
perturbations of 1D nonlinear Schrödinger equation

iut – uxx + mu + |u|2u = 0, m > 0, (3)

with the Dirichlet boundary condition. Geng and You [6] obtained a KAM theorem for (3)
with periodic boundary conditions. One year later, they [7] gave a KAM theorem, which
can be applied to the higher-dimensional Schrödinger equations with nonlocal smooth
nonlinearity

iut – �u + Mξ u + f
(|u|2)u = 0, x ∈R

d,

where Mξ is a Fourier multiplier, f is real analytic and vanishing at zero. Liu and Yuan [8]
showed that the derivative nonlinear Schrödinger equation

iut + uxx + i
(|u|2u

)
x = 0

possesses Cantor families of smooth quasi-periodic solutions of small amplitude. We note
that the 1D nonlinear Schrödinger equation (3) is completely integrable, hence one can
perturb any finite number of Fourier modes to obtain small amplitude quasi-periodic so-
lutions, which is however not the case if the nonlinearities are of high order.

For Schrödinger equations with high order nonlinearities, Liang and You [9] obtained
quasi-periodic solutions corresponding to any finite number of admissible Fourier modes
for the Schrödinger equation

iut – uxx + mu + |u|4u = 0, m ∈R, (4)

with Dirichlet boundary conditions. Geng and Yi [10] proved that (4) with the periodic
boundary condition admits a Whitney smooth family of quasi-periodic solutions. Liang
[11] considered the Schrödinger equation

iut – uxx + |u|2pu = 0, p ∈N

and proved the existence of quasi-periodic solutions corresponding to two-dimensional
invariant tori. Geng and Wu [12] showed that the one-dimensional derivative nonlinear
Schrödinger equation

iut – uxx – i
(|u|4u

)
x = 0

admits a Whitney smooth family of real analytic quasi-periodic solutions with two Dio-
phantine frequencies. Gao and Liu [13] proved that there are many two-dimensional el-
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liptic invariant tori, and thus quasi-periodic solutions for the nonlinear wave equation

utt – uxx + mu + u5 = 0

with Dirichlet boundary conditions. Comparing these equations with cubic nonlinearities,
it is more difficult to find the quasi-periodic solutions for the equations with high order
nonlinearities.

However, the models in [10–13] cannot explicitly contain the space variable. The au-
thors in [10–12] applied the compact form condition, the generalized compact form con-
dition, or the gauge invariant property. Although these conditions simplify the normal
forms and measure estimates, the equations they [10–12] considered cannot explicitly
contain the space variable x. The x-dependent nonlinearity implies that the equation is
variant in space translations and the momentum is not conserved. After one expands the
perturbation by infinite-dimensional coordinates, the coefficients are integrals of eigen-
functions’ products. For the x-independent nonlinearity, infinite coefficients are zeros,
and one only needs to prove that essentially finite divisors are not zero. For instance, in
[10], the coefficients with k1n1 + k2n2 +

∑
n(αn –βn)n �= 0 are zero, and the authors can only

discuss the divisors with k1n1 + k2n2 +
∑

n(αn – βn)n = 0. In multi-dimensional equations,
the x-dependent nonlinearity has the effect that the normal form is not diagonal in the
purely elliptic directions.

Eliasson and Kuksin [14] considered the d-dimensional nonlinear Schrödinger equation

–iu̇ = �u + V (x) ∗ u + ε
∂F(x, u, ū)

∂ū
,

where V (x) =
∑

V̂ (a)ei〈a,x〉 is an analytic function and F is real analytic. They proved that
the solution u persists as a quasi-periodic solution which has all Lyapunov exponents equal
to zero and whose linearized equation is reducible to constant coefficients. This potential
term is a convolution, and the nonlinear term cannot depend on t. Bambusi et al. [15] dealt
with a degenerate KAM theory for lower-dimensional elliptic tori of infinite-dimensional
Hamiltonian systems and applied it to the wave equation

utt – uxx + V (x)u + ξu + f (x, u) = 0.

They used the mass ξ ∈ R as a parameter. The result cannot be used to (1), since g(ωt, x)
has κ parameters. Eliasson et al. [16] thought the case with constant-coefficient nonlin-
earity g(x, u) = g(u) is significantly easier than the general case. They [16] proved a KAM
result for the nonlinear beam equation on the d-dimensional torus

utt + �2u + mu + g(x, u) = 0, t ∈R, x ∈ T
d, (5)

where g(x, u) = 4u3 + O(u4). They showed that, for generic m > 0, most of the small am-
plitude invariant finite dimensional tori of the linear equation persist as invariant tori of
the nonlinear equation. However, the nonlinearity u3 in (5) is still constant-coefficient and
cannot depend on x. Jiao and Wang [17] constructed quasi-periodic solutions for a quasi-
periodically forced and x-dependent one-dimensional Schrödinger equation. Their fre-
quency vector is fixed, the boundary condition is parameterized, and the nonlinear term



Wang et al. Boundary Value Problems  (2018) 2018:76 Page 4 of 30

is cubic. Berti and Bolle [18] presented existence results of C∞ quasi-periodic solutions
for Schrödinger equations with a multiplicative potential. Their proofs are based on an im-
proved Nash–Moser iterative scheme and a multi-scale inductive analysis for the inverse
linearized operators. Berti et al. [19] introduced a weighted majorant norm of vector field
to handle the problem about the x variable. In this paper, we only assume g is bounded,
i.e., (H2). The decay property plays an important role, e.g., (51).

For an equation with a constant-coefficient nonlinearity, a constant-coefficient symplec-
tic transformation can change one Hamiltonian to another; while for an equation with a
variable-coefficient nonlinearity, a constant-coefficient transformation is not sufficient.
For (1), we construct a quasi-periodic symplectic transformation. For quasi-periodically
forced equation, see [20, 21].

Equation (1) is quasi-periodically forced, and has an x-dependent quintic nonlinear-
ity. This equation simultaneously has three characters, which makes the problem more
intricate and difficult. To the best of our knowledge, there are no results regarding the
quasi-periodic solutions for (1) by the KAM method.

Observing that (1) has a quintic term, we would like to eliminate the non-normal form
terms and get a sixth order Birkhoff normal form. Our purpose is that the remained terms
after normal form procedure must have the form of |qi|2|qj|2|qk|2 or |qi|2|qj|2|wk|2. To
obtain the normal form, we construct a symplectic transformation. But the coefficients
of this transformation have divisors. Thus, we choose the indices (the admissible index)
to control the divisors not equal to zero. Since the nonlinearity of (1) quasi-periodically
depends on t, the transformation should be quasi-periodic. To deal with the variable x,
motivated by [17], we divide the perturbation to the mean value part and the non-mean
value part. With the help of the admissible index, the term with respect to the mean value,
i.e., 1

6
∑

i,j,d,l,m,n Gijdlmnqiqjqdq̄lq̄mq̄n, can be changed to normal form easily. However, the
left term 1

6
∑

|k|≥1,i,j,d,l,m,n Gk,ijdlmnei〈k,ϑ〉qiqjqdq̄lq̄mq̄n can not. To resolve this problem, we
add the small divisor condition

∣∣〈k,ω〉 + λi + λj + λd – λl – λm – λn
∣∣ ≥ �εη0

|k|κ+η1
.

Obviously, the parameters set satisfying the condition should not be empty, which can
be indicated by estimating their measure bigger than zero. The estimate is a complex and
meticulous job. But the difficulty is more than that. The analyticity and regularity of trans-
formation are difficult to be proved in the space la,s. To this end, we use the Fourier co-
sine expansion and construct an inequality—Lemma 3.3. After we obtain the sixth order
normal form, we scale this normal form and establish a KAM theorem to find out the
quasi-periodic solution.

If parameters satisfy the small divisor conditions, we can retain them in the original
parameter set �. If parameters do not satisfy these conditions, we throw them away. Gen-
erally, if � is not big, such as [0, 1]κ+b, then the measure of thrown parameters set is almost
zero and the left “good” parameters set �ε possesses a positive measure. But if we choose
� = [0, 1]κ+b in this paper, then �ε is too small and has a negative measure. So we select
� = [ε– 1

12 , 2ε– 1
12 ]κ+b. There are two purposes. One is to obtain �ε with positive measure.

The other is to ensure the smallness of vector field |XP|∗r . Although the thrown parameters
set is big, the � is also big and the “good” parameters set �ε still has a positive measure.
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Unfortunately, since the measure of � reduces as k + b reduces, we only can find quasi-
periodic solutions for κ + b > 12.

The paper is organized as follows. In Sect. 2, the main result, remarks, and comments
are given, and we transform the equation to an infinite-dimensional Hamiltonian system.
Section 3 is devoted to a sixth order Birkhoff normal form. In Sect. 4, we show an infinite-
dimensional KAM theorem and the measure estimates. Using this theorem, we prove our
main result. Conclusions are made in Sect. 5. A few of lemmas are proved in the last section
(Appendix).

2 The Hamiltonian setting
When ε = 0, equation (1) becomes

iut – uxx + m̃u = 0. (6)

Let φj(x) =
√

2
π

sin jx and λj = j2 + m̃, j ∈ Z
+ := {1, 2, . . .} be the basic modes and their fre-

quencies for the linear Schrödinger equation (6) with Dirichlet boundary conditions, re-
spectively. Every solution of (6) can be written as a super-position of the basic modes,
namely

u(t, x) =
∑

j≥1

qj(t)φj(x), qj(t) = q0
j eiλjt .

Concerning the existence of quasi-periodic solutions for the nonlinear Schrödinger
equation (1) with (2), we prove the following Theorem 2.1 which is the main result of
this paper. Before that, we first make some assumptions. Define D1(σ1) := {ϑ || Imϑ | < σ1},
D2(2a) := {x|| Im x| < 2a},

|g|σ1,2a := sup
(ϑ ,x)∈D1(σ1)×D2(2a)

∣∣g(ϑ , x)
∣∣,

and |g|2a := supx∈D2(2a) |g(ϑ , x)| for every fixed ϑ ∈ D1(σ1). We assume σ̃1 to be a fixed small
positive number. Throughout this paper, we suppose that:

(H1) g(ϑ , x) = g0 +
∑

k∈Zκ\{0}gk(x)ei〈k,ϑ〉, 0 �= g0 ∈R, where 〈·, ·〉 denotes the standard inner
product in C

κ .
(H2) For some σ1 > σ̃1 and a > 0, g analytically in ϑ , x extends to the domain D1(σ1) ×

D2(2a) and g is bounded in D1(σ1) × D2(2a) with finite norm |g|σ1,2a.
(H3) ∂2k+1

x g(ϑ , 0) = 0,∀k ∈N.

Theorem 2.1 Let b ≥ 2 be an integer with κ + b > 12. Assume (H1), (H2), and (H3) hold.
For each admissible index set I = {n1 < n2 < · · · < nb} ⊂ Z

+, there is a constant ε∗ such
that, for any 0 < ε < ε∗, there exist a subset � ⊂ [�, 2�]κ with meas� > 0 and a subset
�ε ⊂ � × [0, 1]b with meas�ε > 0 which satisfy that for any ξ = (ω,ςn1 , . . . ,ςnb ) ∈ �ε , the
boundary value problem (1) with (2) has a quasi-periodic solution.

Remark 2.1 Equation (1) has a large Cantor family of rotational κ + b-dimensional tori
with frequency vector ω̂∗, where ω̂∗ = (ω∗1,ω∗2, . . . ,ω∗κ ,�∗n1 ,�∗n2 , . . . ,�∗nb ), with ω∗i =
ωi + O(ε), 1 ≤ i ≤ κ , and �∗nj = λnj + O(ε), 1 ≤ j ≤ b.
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Remark 2.2 In (H2), g is defined in the strip D2(2a). In fact, g can be defined in any strip
D2(â) as long as â > a. The fixed positive a will be used to define the Hilbert space la,s

below.

Remark 2.3 The definition (Definition 3.1) of admissible index sets is given in Sect. 3.
There exists an infinite admissible index set I (see Sect. 3).

Remark 2.4 We use “meas” to represent the Lebesgue measure.

Remark 2.5 In this paper, C denotes a universal constant if we do not care about its value.

Remark 2.6 Using the method of this paper, we cannot expect an existence result of quasi-
periodic solutions u(t, x) with the same frequency vector ω as g . That is because we add
extra parameters while we use the KAM method. Extra parameters cause solutions with
additional frequencies.

Remark 2.7 Actually, g may be identified with analytic functions which are even on x ∈R,
periodic in x, and quasi-periodic in t. However, equation (1) is defined on x ∈ [0,π ]. So we
put forward the hypothesis (H3) so that g(ωt, ·) can be even expanded on R analytically.

We study equation (1) with (2) as the Hamiltonian system

u̇ = i∇H(u), H =
1
2

(Au, u) +
ε

6

∫ π

0
g(ωt, x)|u|6 dx,

where A = – d2

dx2 +m̃, the inner product (u, v) = Re
∫ π

0 uv̄ dx, and the gradient of H is defined
with respect to (·, ·).

Introduce the coordinates q = (q1, q2, . . .) through the ansatz

u(t, x) =
∑

j≥1

qj(t)φj(x).

The coordinates are taken from the Hilbert space la,s (a > 0, s > 1
2 ) of all complex valued

infinite sequences

la,s = la,s(C) :=
{

z = (z1, z2, . . .), zi ∈C, i ≥ 1 s.t.
(‖z‖a,s

)2 =
∑

i≥1

|zi|2i2se2ai < ∞
}

.

Thus, we obtain the Hamiltonian

H = � + εG, (7)

where

� =
1
2

∑

j≥1

λj|qj|2 and G =
1
6

∫ π

0
g(ωt, x)

∣∣
∣∣
∑

j≥1

qj(t)φj(x)
∣∣
∣∣

6

dx.
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The corresponding equations of motion are

q̇j = 2i
∂H
∂ q̄j

, j ≥ 1, (8)

with respect to the symplectic structure i
2
∑

dqj ∧ dq̄j on la,s.

Lemma 2.1 Let I ⊆R be an interval and a curve I → la,s, t → q(t) be an analytic solution
of (8), then

u(t, x) =
∑

j≥1

qj(t)φj(x) (9)

is a classical solution of (1) that is analytic on I × [0,π ].

From the above lemma, u is a classical solution of (1). So we need to find a solution
having the form (9). The proof is common and we omit it. Details can be found in [5].

Introducing a pair of action-angle variables (J ,ϑ) ∈ R
κ × T

κ (Tκ := R
κ/2πZκ ), one can

obtain an equivalent Hamiltonian that does not depend on the time variable. The au-
tonomous formulation of our problem is reached as follows:

q̇j = 2i
∂H
∂ q̄j

, j ≥ 1, ϑ̇ = ω, J̇ = –ε
∂G
∂ϑ

= –ε
∂

∫ π

0 χ dx
∂ϑ

,

which is a Hamiltonian system with the Hamiltonian

H = 〈ω, J〉 +
1
2

∑

j≥1

λj|qj|2 + εG(q,ϑ) (10)

and the symplectic structure dϑ ∧ dJ + i
2
∑

dqi ∧ dq̄i, where 〈·, ·〉 is the standard inner
product in C

κ .
To continue our investigation for Hamiltonian (10), we need to establish the regularity

of the nonlinear Hamiltonian vector field XG associated to G.
Let l2

b and L2, respectively, be the Hilbert spaces of all bi-infinite, square summated se-
quences with complex coefficients and all square-integrable complex-valued functions on
[–π ,π ]. Suppose that

F : l2
b → L2, q �→Fq =

1√
2π

∑

j

qjeijx

is the inverse discrete Fourier transform, which defines an isometry between the two
spaces. The subspaces la,s

b ⊂ l2
b consist, by definition, of all bi-infinite sequences with the

finite form

(‖q‖a,s
)2 = |q0|2 +

∑

i

|qi|2|i|2se2a|i|.

Through F they define subspaces W a,s[–π ,π ] ⊂ L2[–π ,π ] that are normed by setting
‖Fq‖a,s = ‖q‖a,s. The following Lemma 2.2 has been proven in [5]. Using it, we can prove
a regularity result—Lemma 2.3.
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Lemma 2.2 For a > 0 and s > 1
2 , the space la,s

b is a Hilbert algebra with respect to convolu-
tion of the sequences (q ∗ p)j :=

∑
k qj–kpk , and

‖q ∗ p‖a,s ≤ c‖q‖a,s‖p‖a,s,

where the constant c depends only on s. Consequently, W a,s is a Hilbert algebra with respect
to multiplication of functions.

Lemma 2.3 The Hamiltonian vector-field XG is real analytic as a map from some neigh-
borhood of origin in la,s into la,s, with ‖Gq̄‖a,s = O((‖q‖a,s)5).

See the proof in Appendix.

3 Partial Birkhoff normal form
Since u =

∑
j≥1 qj(t)φj(x), we attain that

G(q,ϑ) =
1
6

∑

i,j,d,l,m,n

∫ π

0
g(ϑ , x)φiφjφdφlφmφn dxqiqjqdq̄lq̄mq̄n.

From (H1),

G(q,ϑ) =
1
6

∑

i,j,d,l,m,n

Gijdlmnqiqjqdq̄lq̄mq̄n

+
1
6

∑

|k|≥1,i,j,d,l,m,n

Gk,ijdlmnei〈k,ϑ〉qiqjqdq̄lq̄mq̄n, (11)

where

Gijdlmn = g0

∫ π

0
φiφjφdφlφmφn dx (12)

and

Gk,ijdlmn =
∫ π

0
gk(x)φiφjφdφlφmφn dx, |k| ≥ 1. (13)

An easy computation shows that Gijdlmn = 0 unless i ± j ± d ± l ± m ± n = 0 for at least
one combination of plus and minus signs. Denote Gijd = Gijdijd and Gi = Giiiiii. From [9], if
the index set I := {n1 < n2 < · · · < nb} satisfies

ni �= nj + nd (14)

for any i, j, d ∈ I , then

Gn1 = · · · = Gnb =
5g0

2π2 , Gninjnj =
3g0

2π2 , Gninjnd =
g0

π2

and

Gninjl =
g0

4π2

(
4 – δ

nj
ni+l – δ

ni
nj+l – δl

ni+nj

)
, Gninil =

g0

4π2

(
6 – δ

2ni
l

)
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hold, where i �= j, j �= d, d �= i, i, j, d ∈ {1, 2, . . . , b}, l /∈ I , and for v ∈ Z,

δv
i =

⎧
⎨

⎩
1, i = v,

0, otherwise.

For the convenience, we introduce vectors �ς = (i, j, d, l, m, n). Suppose that

g �ς := gijdlmn =
1
6

Gijdlmn, gk, �ς := gk,ijdlmn =
1
6

Gk,ijdlmn. (15)

Then G can be expressed as

G =
∑

i±j±d±l±m±n=0

g �ς q �ς +
∑

|k|≥1, �ς
gk, �ς ei<k,ϑ〉q �ς ,

where q �ς = qiqjqdq̄lq̄mq̄n.
We apply the method of [9] to define admissible index sets. For each index set I , define

�k , k = 0, 1, 2, 3, where �k (k = 0, 1, 2) is the set of indices (i, j, d, l, m, n) such that there are
exactly 6–k components in I , and �3 is the set of indices (i, j, d, l, m, n) such that there exist
at least three components not in I . We suppose that I0 = {(i, j, d, i, j, d)} which means that
the last three indices are of the form (i, j, d) or some permutation of it. Define N := I0 ∩�0

and M := I0 ∩ �2. Then the admissible index set can be defined as follows. It is proved
that, in Proposition 2 of [9], there exist infinitely many admissible index sets. For instance,
when b = 2, one can take I = {(n1, n2)|n1 < n2, n1 ≡ 5 or 9mod(14), n2 ≡ 8mod(14), n2 ≥
11n2

1}.

Definition 3.1 (Definition 1 in [9]) The index set I is said to be admissible if and only if
n1, n2, . . . , nb satisfy the following assumptions A–C and (14).

A. If i ± j ± d ± l ± m ± n = 0, �ς ∈ �0 \N , then λi + λj + λd – λl – λm – λn �= 0.
B. If i ± j ± d ± l ± m ± n = 0, �ς ∈ �1, then λi + λj + λd – λl – λm – λn �= 0.
C. If i ± j ± d ± l ± m ± n = 0, �ς ∈ �2 \M, then λi + λj + λd – λl – λm – λn �= 0.

Next we transform Hamiltonian (10) into some partial Birkhoff form of order six.
The following lemmas are necessary. We will apply them to proving Proposition 3.1.

The proofs of these lemmas are shown in Appendix. Define �̄ := �0 ∪ �1 ∪ �2 and ¯̄� :=
(�0 \N ) ∪ �1 ∪ (�2 \M). Assume that η1 > 1 and 0 < η0 < 1

2 are fixed.

Remark 3.1 Here the condition η1 > 1 is necessary to obtain the real analyticity of sym-
plectic change. The detailed reason can be found in the proofs of Lemmas 3.1 and 3.2.

Remark 3.2 In order to set the small divisor conditions, we take η0 > 0. To ensure the
perturbation P̃ small enough, we take 0 < η0 < 1

2 .

Lemma 3.1 There is a subset � ⊂ [�, 2�]κ such that every ω ∈ � satisfies that

∣
∣〈k,ω〉∣∣ ≥ �εη0

|k|κ+η1
for all 0 �= k ∈ Z

κ (16)
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and

meas� ≥ �κ
(
1 – C1ε

η0
)
,

where the constant C1 depends on κ .

Lemma 3.2 Assume that (i, j, d, l, m, n) ∈ �̄ and k �= 0. Then, when ε is small enough, there
is a subset � ⊂ [�, 2�]κ satisfying that, for any ω ∈ � and λi + λj + λd – λl – λm – λn �= 0,

∣∣〈k,ω〉 + λi + λj + λd – λl – λm – λn
∣∣ ≥ �εη0

|k|κ+η1
. (17)

Moreover,

meas� ≥ �κ
(
1 – C2ε

η0
)
,

where C2 is a constant depending on κ , �, n1, and nb.

Lemma 3.3 For xk ∈C and k ∈ Z
κ , if the series

∑
k[k]2κ+1|xk|2 converges, then the inequal-

ity |∑k xk|2 ≤ c
∑

k[k]2κ+1|xk|2 holds, where [k] = max{|k|, 1}, |k| = |k1|+ |k2|+ · · ·+ |kκ | and
c is a constant depending on κ .

Consider Hamiltonian (10). For each index set I , the following Proposition 3.1 holds.

Proposition 3.1 When ε is small enough, there exists a subset � ⊂ [�, 2�]κ with meas� >
0, and for every ω ∈ �, there is a real analytic, symplectic change of coordinates � which
can transform Hamiltonian (10) into its Birkhoff normal form, i.e.,

H ◦ � = � + εḠ + εĜ + ε2K ,

where

Ḡ =
5g0

12π2

b∑

j=1

|qnj |6 +
9g0

4π2

∑

i,j=1,...,b,i�=j

|qni |4|qnj |2

+
6g0

π2

∑

i,j=1,...,b,i�=j,j �=d,d �=i

|qni |2|qnj |2|qnd |2

+
3
2

∑

l /∈I

∑

i=1,...,b

Gninil|qni |4|ql|2

+ 6
∑

l /∈I

∑

i,j=1,...,b,i�=j

Gninjl|qni |2|qnj |2|ql|2, (18)

Ĝ =
∑

�ς∈�3,i±j±d±l±m±n=0

g �ς q �ς +
∑

|k|≥1

ei〈k,ϑ〉 ∑

�ς∈�3

gk, �ς q �ς , (19)

and εη0 |K | = O((‖q‖a,s)10). Moreover, the transformation � is defined in a complex neigh-
borhood D1( σ1

2 ) := {ϑ || Imϑ | < σ1
2 } of the tour Tκ and a neighborhood of the origin in la,s.
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Proof of Proposition 3.1 Step 1. We construct the symplectic transformation � . Consider
a Hamiltonian function

F = εF = ε
∑

�ς
F �ς q �ς + ε

∑

|k|≥1

ei〈k,ϑ〉∑

�ς
Fk, �ς q �ς

with coefficients

iF �ς =

⎧
⎨

⎩

g �ς
λi+λj+λd–λl–λm–λn

if i ± j ± d ± l ± m ± n = 0 and �ς ∈ ¯̄�,

0 otherwise,

and for k �= 0,

iFk, �ς =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gk, �ς
〈k,ω〉 if |k| ≥ 1, �ς ∈ �̄, and

λi + λj + λd – λl – λm – λn = 0,
gk, �ς

〈k,ω〉+λi+λj+λd–λl–λm–λn
if |k| ≥ 1, �ς ∈ �̄, and

λi + λj + λd – λl – λm – λn �= 0,

0 otherwise.

Let � = X1
F be the time-1 map of the vector field of the Hamiltonian F . Expanding at

t = 0 and using Taylor’s formula, we obtain

H ◦ � = H + {H ,F} +
∫ 1

0
(1 – t)

{{H ,F},F} ◦ Xt
F dt

= � + εG + ε{�, F}

+ ε2{G, F} + ε2
∫ 1

0
(1 – t)

{{H , F}, F
} ◦ Xt

F dt. (20)

For convenience, suppose that

I �ς :=
[
g �ς – i(λi + λj + λd – λl – λm – λn)F �ς

]
q �ς

and

Ik, �ς :=
[
gk, �ς – i

(〈k,ω〉 + λi + λj + λd – λl – λm – λn
)
Fk, �ς

]
q �ς .

In the second line of (20), we compute and obtain that

G + {�, F} = Ḡ + Ĝ, (21)

where

Ḡ : =
∑

�ς∈N or �ς∈M and i±j±d±l±m±n=0

I �ς

=
∑

�ς∈N or �ς∈M and i±j±d±l±m±n=0

g �ς q �ς
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and

Ĝ :=
∑

�ς∈�3

I �ς +
∑

|k|≥1

ei〈k,ϑ〉 ∑

�ς∈�3

Ik, �ς .

So, (18) and (19) hold true as well as

H ◦ � = � + εḠ + εĜ + ε2{G, F} + ε2
∫ 1

0
(1 – t)

{{H , F}, F
} ◦ Xt

F .

Step 2. We prove that � is real analytic.
CLAIM. The vector-field of the Hamiltonian XF is real analytic in a complex neigh-

borhood ϑ ∈ D1( σ1
2 ) of Tκ and some neighborhood of the origin in la,s. Furthermore, it

satisfies

‖Fq̄‖a,s ≤ C
εη0

(‖q‖a,s
)5. (22)

The vector-field of F is

XF =
(

0, –
∂F
∂ϑ

, 2i
∂F
∂ q̄

, –2i
∂F
∂q

)
.

Firstly, we discuss – ∂F
∂ϑ

. For ϑ ∈ D1( σ1
2 ) and q ∈ la,s,

∣∣
∣∣
∂F
∂ϑ

∣∣
∣∣
D1( σ1

2 )
=

∣∣
∣∣
∑

|k|≥1

ei〈k,ϑ〉ik
∑

�ς∈�̄

Fk, �ς q �ς
∣∣
∣∣
D1( σ1

2 )

≤
∑

|k|≥1

e
|k|σ1

2 |k|
∑

�ς∈�̄

|Fk, �ς ||q �ς |. (23)

However, with the even extension of g on x ∈ [–π ,π ], we obtain the Fourier cosine expan-
sion

gk(x) =
∑

τ∈Z
gτ

k cos τx,

which together with (15), (13), and Lemma 3.2 yields the estimate of Fk, �ς :

|Fk, �ς | ≤ C
|k|κ+η1

εη0

∑

τ ,τ+i±j±d±l±m±n=0

∣∣gτ
k
∣∣, (24)

where C is dependent on � and I .
It follows from (23) and (24) that

∣∣
∣∣
∂F
∂ϑ

∣∣
∣∣
D1( σ1

2 )
≤ C

εη0

∑

|k|≥1

e
|k|σ1

2 |k|κ+η1+1

×
( ∑

τ+i±j±d±l±m±n=0, �ς∈�̄

∣∣gτ
k
∣∣|qi||qj||qd||q̄l||q̄m||q̄n|

)
.



Wang et al. Boundary Value Problems  (2018) 2018:76 Page 13 of 30

However, from Lemma A.1 in [22], we have

∣
∣gτ

k
∣
∣ < |g|σ1,2ae–|k|σ1 e–2a|τ |, k �= 0. (25)

So
∣∣
∣∣
∂F
∂ϑ

∣∣
∣∣
D1( σ1

2 )
≤ C

εη0

∑

|k|≥1

e– |k|σ1
2 |k|κ+η1+1

×
( ∑

τ+i±j±d±l±m±n=0, �ς∈�̄

e–2a|τ ||qi||qj||qd||q̄l||q̄m||q̄n|
)

. (26)

Suppose that

w̃ = (. . . , w̃–2, w̃–1, w̃0, w̃1, w̃2, . . .) (27)

and the component w̃τ = e–2a|τ | for τ ∈ Z, then

‖w̃‖2
a,s =

∑

τ

|w̃τ |2[τ ]2se2a|τ | =
∑

τ

e–4a|τ |[τ ]2se2a|τ | =
∑

τ

e–2aτ [τ ]2s.

Since
∑

τ e–2a|τ |[τ ]2s is convergent, w̃ ∈ la,s
b . Assuming

wj = |qj|, w–j = |q̄j|, w0 = 0 (28)

for j ≥ 1, it follows from (26) that

∣∣
∣∣
∂F
∂ϑ

∣∣
∣∣
D1( σ1

2 )
≤ C

εη0

∑

|k|≥1

e– |k|σ1
2 |k|κ+η1+1(w̃ ∗ w ∗ w ∗ w ∗ w ∗ w ∗ w)0. (29)

Since

�
{

k ∈ Z
κ : |k| = l

} ≤ 2κ lκ–1, l ∈ Z
+, (30)

we obtain, from (29) and Lemma 2.2,

∣
∣∣
∣
∂F
∂ϑ

∣
∣∣
∣
D1( σ1

2 )
≤ ‖w̃ ∗ w ∗ w ∗ w ∗ w ∗ w ∗ w‖a,s

C
εη0

∑

l≥1

l2κ+η1 e– lσ1
2

≤ C
εη0

‖w̃ ∗ w ∗ w ∗ w ∗ w ∗ w ∗ w‖a,s
∑

l≥1

l2κ+η1 e– lσ̃1
2

≤ C
εη0

‖q‖6
a,s.

Secondly, we discuss ‖ ∂F
∂ q̄ ‖a,s. ‖ ∂F

∂q ‖a,s can be discussed in the same way.
Since

(‖Fq̄‖a,s
)2 =

∑

l≥1

|Fq̄l |2e2all2s, (31)
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we need to estimate |Fq̄l |2. It is evident that

|Fq̄l |2 ≤ C(F0l)2 + C(F1l)2, (32)

where

F0l =
∣
∣∣

∑

i±j±d±l±m±n=0, �ς∈ ¯̄�
F �ς qiqjqdq̄mq̄n

∣
∣∣

and

F1l =
∣
∣∣
∣
∑

|k|≥1

ei〈k,ϑ〉∑
�ς∈�̄

Fk, �ς qiqjqdq̄mq̄n

∣
∣∣
∣.

For F �ς , according to the definition of admissible set, the divisor

δ := λi + λj + λd – λl – λm – λn �= 0.

So, |δ| ≥ 1 holds for all �ς ∈ ¯̄�. Therefore,

F2
0l ≤ C

( ∑

�ς∈ ¯̄�,±i±j±d±m±n=l

|qiqjqdq̄mq̄n|
)2

.

It follows from (28) that

F2
0l ≤ C

(
(w ∗ w ∗ w ∗ w ∗ w)l

)2.

So, using Lemma 2.2, we have

∑

l≥1

F2
0ll

2se2al ≤ C
∑

|l|≥1

∣
∣(w ∗ w ∗ w ∗ w ∗ w)l

∣
∣2|l|2se2a|l|

≤ C
(‖w ∗ w ∗ w ∗ w ∗ w‖a,s

)2 ≤ C
(‖q‖5

a,s
)2, (33)

where C depends on g and I .
Supposing that � = � ∩ �, according to Lemmas 3.1 and 3.2,

meas� ≥ �κ
(
1 – Cεη0

)

holds and meas� > 0 when ε is small enough. In the following, we assume ω ∈ �. Thus
(16) and (17) are true. Using Lemma 3.3 and (24),

F2
1l ≤ C

∑

|k|≥1

[k]2κ+1∣∣ei〈k,ϑ〉∣∣2
(∑

�ς∈�̄

|Fk, �ς ||qiqjqdq̄mq̄n|
)2

≤ C
ε2η0

∑

|k|≥1

[k]4κ+2η1+1∣∣ei〈k,ϑ〉∣∣2
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×
( ∑

τ+i±j±d±l±m±n=0, �ς∈�̄

∣∣gτ
k
∣∣|qi||qj||qd||q̄m||q̄n|

)2

.

From (25), we have

F2
1l ≤ C

ε2η0

∑

|k|≥1

[k]4κ+2η1+1∣∣ei〈k,ϑ〉∣∣2e–2|k|σ1

×
( ∑

τ+i±j±d±l±m±n=0, �ς∈�̄

e–2a|τ ||qi||qj||qd||q̄m||q̄n|
)2

.

It is derived from (27) and (28) that

F2
1l ≤ C

ε2η0

∑

|k|≥1

[k]4κ+2η1+1∣∣ei〈k,ϑ〉∣∣2e–2|k|σ1
(
(w̃ ∗ w ∗ w ∗ w ∗ w ∗ w)l

)2.

For all (ϑ , x) ∈ D1(σ1/2) × D2(2a),

F2
1l ≤ C

ε2η0

∑

|k|≥1

[k]4κ+2η1+1eσ1|k|e–2|k|σ1
(
(w̃ ∗ w ∗ w ∗ w ∗ w ∗ w)l

)2

≤ C
ε2η0

(
(w̃ ∗ w ∗ w ∗ w ∗ w ∗ w)l

)2 ∑

|k|≥1

[k]4κ+2η1+1e–|k|σ1 . (34)

Since (30) holds, we obtain, from (34),

F2
1l ≤ C

ε2η0

(
(w̃ ∗ w ∗ w ∗ w ∗ w ∗ w)l

)2 ∑

j≥1

j5κ+2η1 e–jσ1

≤ C
ε2η0

(
(w̃ ∗ w ∗ w ∗ w ∗ w ∗ w)l

)2 ∑

j≥1

j5κ+2η1 e–jσ̃1 .

Therefore,

∑

l≥1

F2
1ll

2se2al ≤ C
ε2η0

∑

|l|≥1

∣∣(w̃ ∗ w ∗ w ∗ w ∗ w ∗ w)l
∣∣2|l|2se2a|l|

≤ C
ε2η0

(‖w̃ ∗ w ∗ w ∗ w ∗ w ∗ w‖a,s
)2 ≤ C

ε2η0

(‖q‖5
a,s

)2,

which together with (31), (32), and (33) yields that

(‖Fq̄‖a,s
)2 ≤ C

∑

l≥1

(
F2

0l + F2
1l
)
l2se2al ≤ C

ε2η0

(‖q‖5
a,s

)2,

for 0 < ε < 1, where the constant C depends on �, g, σ̃1, a,κ ,I , η1, and s. The analyticity
of XF follows from the analyticity of each component function and its local boundedness.
The claim is proved.

Step 3. Similar to the proof of (22), we attain that |Ĝ| = O(‖q‖6
a,s). Finally, we estimate K .

Suppose that

K = {G, F} +
∫ 1

0
(1 – t)

{{H , F}, F
} ◦ Xt

F dt.
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By using Lemma 2.3 and (22), and from the fact that

∣∣{�, F}∣∣ = |Ḡ + Ĝ – G| = O
(‖q‖6

a,s
)
,

we obtain

∣
∣{G, F}∣∣ ≤ C

εη0

(‖q‖a,s
)10 and

∣
∣{{�, F}, F

}∣∣ ≤ C
εη0

(‖q‖a,s
)10.

Furthermore,

∣∣{{G, F}, F
}∣∣ ≤ C

ε2η0

(‖q‖a,s
)14

and (7) hold. Hence, |K | ≤ C
εη0 (‖q‖a,s)10 for ‖q‖a,s ≤ 1. This completes the proof. �

We introduce the symplectic polar and complex coordinates by setting

⎧
⎨

⎩
qnj =

√
2ςj + 2Ije–iθj , 1 ≤ j ≤ b,

qj =
√

2wj, j ∈ Z1,

where ςj ∈ [0, 1] and Z1 := Z
+\I . Then the Hamiltonian is changed to

H =
∑

1≤i≤κ

ωiJi +
∑

1≤j≤b

�jIj +
∑

l∈Z1

�̂lwlw̄l + P, (35)

with symplectic structure
∑

1≤i≤κ dϑi ∧ dJi +
∑

1≤j≤b dθj ∧ dIj + i
∑

l∈Z1
dwl ∧ dw̄l , where

P = εĞ + εĜ + ε2K ,

Ğ =
10g0

3π2

b∑

j=1

(
I3

j + 3I2
j ςj + ς3

j
)

+
18g0

π2

∑

i�=j,i,j=1,...,b

(
ςjς

2
i + ςjI2

i + 2ςiIiIj + IjI2
i
)

+
48g0

π2

∑

i�=j,j �=d,d �=i,i,j,d=1,...,b

(ςiςjςd + ςiIjId + IiςjId + IiIjςd + IiIjId)

+ 12
∑

l∈Z1

b∑

i=1

GninilI
2
i |wl|2 + 48

∑

l∈Z1

∑

i�=j,i,j=1,...,b

GninjlIiIj|wl|2,

�j = λj +
2g0ε

π2

(
5ς2

j + 18
∑

i�=j,i=1,...,b

ςiςj + 9
∑

i�=j,i=1,...,b

ς2
i

+ 72
∑

i�=j,i�=d,d �=j,i,d=1,...,b

ςiςd

)
, j = 1, . . . , b,

and

�̂l = λl + 12ε

b∑

i=1

Gninilς
2
i + 48ε

∑

i�=j,i,j=1,...,b

Gninjlςiςj, l ∈ Z1.
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For any ω– ∈ � fixed and ω ∈ ¯̄� := {ω ∈ � | |ω – ω–| ≤ ε
7
6 }, we introduce the new param-

eter ω̄ as follows:

ω = ω– + ε
7
6 ω̄, ω̄ ∈ [0, 1]κ .

Clearly, ¯̄� × [0, 1]b ⊂ � × [0, 1]b.
Scaling the variables as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̄ = ε
1
6 ˜̄ω,

ς = ε
1
6 ς̃ ,

w = ε
1

12 w̃,

w̄ = ε
1

12 ¯̃w,

I = ε
1
6 Ĩ,

J = ε
1
6 J̃ ,

one can obtain a Hamiltonian system given by the rescaled Hamiltonian

H̃ = ε– 1
2 H

(
ϑ , ε

1
6 J̃ , θ , ε

1
6 Ĩ, ε

1
12 w̃, ε

1
12 ¯̃w, ε

1
6 ˜̄ω, ε

1
6 ς̃

)

=
∑

1≤i≤m

ω̃iJ̃i +
∑

1≤j≤b

�̃j Ĩj +
∑

l∈Z1

˜̂
�lw̃l ¯̃lw + P̃,

where

ω̃i( ˜̄ω) = ε– 1
3 ω–i + ε ˜̄ωi, 1 ≤ i ≤ κ , (36)

�̃j(ς̃ ) = ε– 1
3 λnj +

2g0ε

π2

(
5ς̃2

j + 18
∑

i�=j,i=1,...,b

ς̃iς̃j + 9
∑

i�=j,i=1,...,b

ς̃2
i

+ 72
∑

i�=d,d �=j,i�=ji,d=1,...,b

ς̃iς̃d

)
, j = 1, . . . , b, (37)

˜̂
�l(ς̃ ) = ε– 1

3 λl + 12ε

b∑

i=1

Gninilς̃
2
i + 48ε

∑

i�=j,i,j=1,...,b

Gninjlς̃iς̃j, l ∈ Z1. (38)

Clearly,

ω = ε
1
3 ω̃, � = ε

1
3 �̃ , �̂ = ε

1
3 ˜̂
�.

Next, we introduce some notations. Assume that

D(σ , r) :=
{

(ϑ , J̃ , θ , Ĩ, w̃, ˜̄w) : | Imϑ | < σ , | Im θ | < σ , |Ĩ| < r2,‖w̃‖a,s < r,‖ ¯̃w‖a,s < r
}

is a complex neighborhood of Tκ × {J̃ = 0} × T
b × {Ĩ = 0} × {w̃ = 0} × { ¯̃w = 0}, where | · |

denotes the sup-norm for complex vectors. For p (p ≥ 1) order Whitney smooth function
F(ξ ), define

‖F‖∗
� = max

{
sup
ξ∈�

|F|, . . . , sup
ξ∈�

∣∣
∣∣
∂pF
∂ξp

∣∣
∣∣

}
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and

‖F‖∗� = max

{
sup
ξ∈�

∣∣∣
∣
∂F
∂ξ

∣∣∣
∣, . . . , sup

ξ∈�

∣∣∣
∣
∂pF
∂ξp

∣∣∣
∣

}
.

If F(ξ ) is a vector function from ξ to la,s(Rn), which is p order Whitney smooth on ξ ,
define ‖F‖∗

a,s,� = ‖(‖Fi(ξ )‖∗
�)i‖a,s (‖F‖∗

Rn ,� = maxi(‖Fi(ξ )‖∗
�)). If F(η, ξ ) is a vector func-

tion from D(σ , r) × � to la,s, define ‖F‖∗
a,s,D×� = supη∈D(σ ,r) ‖F‖∗

a,s,�. We usually omit
D for brevity. For functions F , a corresponding Hamiltonian vector field is defined as
XF = (FJ̃ , –Fϑ , FĨ , –Fθ , iF ¯̃w, –iFw̃)T . Denote the weighted norm for XF by letting

|XF |∗r,D(σ ,r)×� =
1
r2 ‖Fϑ‖∗

� +
1
r2 ‖Fθ‖∗

� + ‖FĨ‖∗
� +

1
r
‖Fw̃‖∗

a,s,� +
1
r
‖F ¯̃w‖∗

a,s,�.

In the following, we suppose p = 2. Fix σ0 = σ1
2 and r = r0, where 0 < r0 < 1 and r0 is fixed.

On D(σ0, r0) and for ξ̃ = ( ˜̄ω, ς̃ ) ∈ [ β

2 , 3β]κ+b, from Prop. 3.1 we can get that

|P̃| ≤ |ε ˜̂G| + |ε ˜̆G| +
∣
∣ε2K̃

∣
∣ ≤ Cε

7
8 .

Using Cauchy estimates, we have that

|XP̃|∗r,D(σ ,r)×� ≤ C
σ

ε
7
8 β–2

on D(σ , r) with σ = min{ σ0
2 , 1

2 }, r = r0
2 , � = [β , 2β]κ+b, and β will be denoted later. Since

(ω̄,ς ) ∈ [0, 1]k+b, we assume

3β < ε– 1
6 . (39)

For simplicity, we still denote H̃ by H , J̃ by J , Ĩ by I , w̃ by w, ¯̃w, by w̄, ω̃ by ω, �̃ by � , ˜̂
�

by �̂, ˜̄ω by ω̄, ς̃ by ς , and P̃ by P.

Remark 3.3 Actually, we eventually take β = ε– 1
12 as ε is small enough. The reason can be

found in Sect. 4.1.

4 An infinite-dimensional KAM theorem
Consider small perturbations of an infinite-dimensional Hamiltonian in the parameter
dependent normal form

N =
∑

1≤i≤κ

ωi(ω̄)Ji +
∑

1≤j≤b

�j(ς )Ij +
∑

l∈Z1

�̂l(ς )wlw̄l

on a phase space

Pa,s = T
κ ×R

κ ×T
b ×R

b × la,s × la,s � (ϑ , J , θ , I, w, w̄),

where

ωi =
ω–i

ε
1
3

+ O
(
ω̄1), �j =

j2 + · · ·
ε

1
3

+ O
(
ς2), �̂l =

l2 + · · ·
ε

1
3

+ O
(
ς2),
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a > 0, s > 1/2; the dots stand for finite lower order terms of j and l, respectively; ω– ∈
� is a constant vector; and O(ω̄p) and O(ςp) mean pth order terms in ω̄1, . . . , ω̄κ and
ς1, . . . ,ςb, respectively. Denote �1 = [β , 2β]κ , �2 = [β , 2β]b, and � := �1 × �2. Suppose
that ‖ω‖∗,�1 ≤ M11, ‖�‖∗,�2 ≤ M12, ‖�̂j‖∗,�2 ≤ M2, and max{M11, M12} + M2 ≥ 1. Define
M = (max{M11, M12} + M2)2.

For the Hamiltonian H = N + P, there exists κ + b-dimensional, linearly stable torus
T κ+b

0 = T
κ × {0} ×T

b × {0, 0, 0} with frequencies ω̂ = (ω(ω̄),� (ς )) when P = 0, where

ω̂i =

⎧
⎨

⎩
ωi(ω̄), 1 ≤ i ≤ κ ,

�i–κ (ς ), κ + 1 ≤ i ≤ κ + b.

Our aim is to prove the persistence of a large portion of this family of linearly stable rota-
tional tori under small perturbations. Suppose that the perturbation P is real analytic in
the space variables, C2 in (ω̄,ς ), and for each ξ = (ω̄,ς ) ∈ � its Hamiltonian vector field
XP = (PJ , –Pϑ , PI , –Pθ , iPw̄, –iPw)T defines near T κ+b

0 a real analytic map XP : Pa,s → Pa,s.
Under the above assumptions, we have the following theorem.

Theorem 4.1 Suppose that H = N + P satisfies

ε = |XP|∗r,D(σ ,r)×� ≤ γ σ 2(1+μ),

where γ depends on κ , b, τ and M, μ = 3τ + 2 + (κ + b)/2. Then there exists a Cantor set
�̃ε ⊂ �, a Whitney smooth family of torus embedding � : Tκ+b ×�̃ε →Pa,s and a Whitney
smooth map ˜̂ω∗ = (ω̃∗, �̃∗) : �̃ε →R

κ+b such that, for each ξ ∈ �̃ε , the map � restricted to
T

κ+b × {ξ} is a real analytic embedding of a rotational torus with frequencies ˜̂ω∗(ξ ) for the
Hamiltonian H at ξ .

Each embedding is real analytic on | Imϑ | < σ
2 and | Im θ | < σ

2 , and

|� – �0|∗r ≤ cε
1
2 , ‖ ˜̂ω∗ – ˜̂ω‖∗ ≤ cε

uniformly on that domain and �̃ε , where �0 is the trivial embedding Tκ+b × � → T κ+b
0 .

Remark 4.1 In fact, the parameter τ > 2κ + 2b + 5 is required. The reason can be found in
the proofs of Lemmas 4.2 and 4.3.

Remark 4.2 The regularity of the vector-field is XP : Pa,s → Pa,s′ with s′ = s. In this theo-
rem, one cannot expect s′ > s, since the original equation explicitly contains x.

Assume

εβ < 1. (40)

From (36), (37), and (38), noticing b ≥ 2, we get that M11 = 1, M12 = 2|g0|(144b–252)
π2

and M2 = |g0|(96b–24)
π2 . Obviously, max{M11, M12} ≥ 1 and M2 > 0. So, we can take M =

(max{M11, M12} + M2)2. Note that M is independent of ε.
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Assuming

β–2 < 1, (41)

we have that

|XP|∗r,D(r,σ ) = ε ≤ ε
3
4

σ
, (42)

as ε is small enough. According to the assumption, we need

ε
3
4

σ
≤ γ σ 2(1+μ).

So, we can take ε ≤ (γ σ 3+2μ) 4
3 . According to the reference [9], one can take γ =

γ 6
0

202(1+μ)(cM2)6 , where γ0 ≤ 1
c(M+1)2212+4μ . Therefore, ε ≤ ( γ 6

0
2020(1+μ)(cM2)6 σ 2μ+3) 4

3 .
Suppose x = (ϑ , θ ) and y = (J , I), where

xi =

⎧
⎨

⎩
ϑi, 1 ≤ i ≤ κ ,

θi–κ , κ + 1 ≤ i ≤ κ + b
and yi =

⎧
⎨

⎩
Ji, 1 ≤ i ≤ κ ,

Ii–κ , κ + 1 ≤ i ≤ κ + b.

We take ξ ∈ �. Then Hamiltonian can be written as

H = N + P =
∑

1≤i≤κ+b

ω̂i(ξ )yi +
∑

l∈Z1

�̂l(ξ )wlw̄l + P(x, y, w, w̄, ξ ).

Using exactly the same KAM procedure with [9], we can prove this theorem. The proof
is standard and the detailed steps can be found in [9]. In every KAM iteration step, some
parameter sets are thrown (see [9]). So, it is necessary to identify that the measure of �̃ε

is positive. In order to settle this problem, one can estimate the measure of the thrown
parameters sets. We compute and attain that the total measure of these parameters sets,
namely �̃, is O(ε– 15

16 ). When ε is small enough, we can have meas �̃ < ε–1. The details can
be found in [9]. For clarity, we show the measure estimate in the first KAM iteration step
and put the proof in Sect. 4.1.

We take β = ε– 1
12 in terms of (39), (40), (41), and (43). So meas� = ε– κ+b

12 . If κ +b > 12, the
meas �̃ε > 0, where �̃ε := �\�̃. Therefore, there exists a Cantor set �̃ε ⊂ � with positive
measure such that, for each ξ ∈ �̃ε , the map � restricted to T

κ+b × {ξ} is a real analytic
embedding of a rotational torus with frequencies ˜̂ω∗(ξ ) for the Hamiltonian H at ξ . By
applying Theorem 4.1, we get Theorem 2.1.

Remark 4.3 By using the method of this paper, one cannot expect quasi-periodic solutions
for κ + b ≤ 12. This is mainly because when κ + b reduces, meas� = ε– κ+b

12 reduces. But
meas �̃ < ε–1. So meas �̃ε may be not positive.

4.1 Measure estimates in the first step
The thrown parameter sets in the first step are

(⋃

k �=0

A1
k1

)
∪

(⋃

k

(
A1

k2 ∪ A1
k3 ∪ A1

k4
)
)

,
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where

A1
k1 =

{
ξ ∈ � :

∣
∣〈k, ω̂〉∣∣ <

ε
1
6

Ak

}
,

A1
k2 =

⋃

i∈Z1

B1,1
ki =

⋃

i∈Z1

{
ξ ∈ � :

∣
∣〈k, ω̂〉 + �̂i

∣
∣ <

ε
1
6

Ak

}
,

A1
k3 =

⋃

i,j∈Z1

B1,11
kij =

⋃

i,j∈Z1

{
ξ ∈ � :

∣∣〈k, ω̂〉 + �̂i + �̂j
∣∣ <

ε
1
6 (|i – j| + 1)

Ak

}
,

A1
k4 =

⋃

i,j∈Z1,i�=j

B1,12
kij =

⋃

i,j∈Z1,i�=j

{
ξ ∈ � :

∣
∣〈k, ω̂〉 + �̂i – �̂j

∣
∣ <

ε
1
6 (|i – j| + 1)

Ak

}
,

where Ak = 1 + |k|τ . Clearly, meas(A1
02 ∪ A1

03 ∪ A1
04) = 0. We show the measure estimate of

the most complex condition A1
k3. The others can be estimated by the similar method.

Lemma 4.1 (Lemma 1.1 in [23]) Suppose that f (x) is an mth differentiable function on the
closure Ī of I , where I ⊂ R is an interval. Let Ih = {x||f (x)| < h}, h > 0. If for some constant
d > 0, |f (m)(x)| ≥ d for ∀x ∈ I , then meas Ih ≤ ch 1

m , where c = 2(2 + 3 + · · · + m + d–1).

We omit the proof of Lemma 4.1. See [23] for details.

Lemma 4.2 For τ > 2κ + 2b + 5, meas(
⋃

k �=0 A1
k3) = O(ε 1

12 ε–1).

Proof Without loss of generality, we assume i ≥ j and i, j ∈ Z1. Since Gnk nk i, Gnk ndi ≤ C
hold for any 1 ≤ k ≤ b and any i ∈ Z1, |δ| ≤ εC1β

2 is true, where

δ = 12ε

b∑

k=1

Gnk nk iς
2
k + 12ε

b∑

k=1

Gnk nk jς
2
k

+ 48ε
∑

k,d=1,...,b,k �=d

Gnk ndiςkςd + 48ε
∑

k,d=1,...,b,k �=d

Gnk ndjςkςd,

and C1 depends on g0 and b.
Assume

εβ2 < 1. (43)

So, when i ≥ c|k|,

|�̂i + �̂j|
1 + |i – j| =

|ε– 1
3 λi + ε– 1

3 λj + δ|
1 + |i – j| ≥ |ε– 1

3 λi + ε– 1
3 λj|

1 + |i – j| –
εβ2C1

1 + |i – j|

≥ ε– 1
3 λi – ε– 1

3 λj

2|i – j| – εβ2C1 ≥ ε– 1
3

2
c|k| – εβ2C1 (44)

hold. However,

|〈k, ω̂〉|
1 + |i – j| ≤ |k||ω̂| ≤ C2|k|

(
1
ε

1
3

+ εβ2
)

(45)
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is true, where C2 depends on I and g0. Hence, from (44) and (45), we have

|�̂i + �̂j + 〈k, ω̂〉|
1 + |i – j| ≥ |�̂i – �̂j|

1 + |i – j| –
|〈k, ω̂〉|

1 + |i – j|

≥ ε– 1
3

2
c|k| – εβ2C1 –

C2|k|
ε

1
3

– C2|k|εβ2.

It follows that, when c > 4C2 + 4C1 + 2 and ε < 1,

|�̂i + �̂j + 〈k, ω̂〉|
1 + |i – j| > 1.

When j ≥ c|k|, since i ≥ j, i ≥ c|k| also holds and we can get the same result. We only need
to deal with the case

max{i, j} ≤ c|k|. (46)

Suppose that

f (ξ ) := 〈k, ω̂〉 + �̂i + �̂j.

The set B1,11
kij is equivalent to

{
ω̄ ∈ �1,ς ∈ �2 : |f | <

ε
1
6 (|i – j| + 1)

1 + (|k(1)| + |k(2)|)τ
}

,

where

f =
〈
k(1),ω(ω̄)

〉
+

〈
k(2),� (ς )

〉
+ �̂i(ς ) + �̂j(ς ),

k(1) := (k11, k12, . . . , k1m) ∈ Z
κ and k(2) := (k21, k22, . . . , k2b) ∈ Z

b.
Case 1. When k(1) �= 0, there exists t0 satisfying ∂f (ξ )

∂ω̄t0
= k1t0ε �= 0. So, | ∂f (ξ )

∂ω̄t0
| ≥ ε. By using

Lemma 4.1, from (46), we have that

meas

( ⋃

k(1) �=0

A1
k3

)
≤

∑

k �=0

∑

i,j≤c|k|

2ε
1
6 (|i – j| + 1)

εAk
≤

∑

k �=0

2ε
1
6 3c|k|
ε|k|τ

≤
∑

k �=0

6cε
1
6

ε|k|τ–1 ≤
∑

l �=0

6cε
1
6

εlτ–1 2κ+blκ+b–1 ≤ C
ε

1
6

ε

∑

l �=0

1
lτ–(κ+b) .

When τ > (κ +b)+1, the last series
∑

l �=0 lτ–(κ+b) is convergent. Therefore, meas(
⋃

k �=0 A1
k3) =

O(ε
1
6 ε–1).

Case 2. When k(1) = 0 and k(2) �= 0 hold, we have f (ξ ) = 〈k(2),� 〉 + �̂i + �̂j. Clearly, the
1st to κth elements of the vector ∂f (ξ )

∂ξ
are zeros. We only calculate the (κ + 1)th to (κ + b)th
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elements of the vector ∂2f (ξ )
∂ξ2 . It follows that

π2

2εg0
· ∂2f
∂ς2

1
= 10k21 + 18k22 + · · · + 18k2b + 3

(
c1 + c′

1
)
,

π2

2εg0
· ∂2f
∂ς2

2
= 18k21 + 10k22 + · · · + 18k2b + 3

(
c2 + c′

2
)
,

· · ·
π2

2εg0
· ∂2f
∂ς2

b
= 18k21 + 18k22 + · · · + 10k2b + 3

(
cb + c′

b
)
,

(47)

where ci, c′
i = 5 or 6 for i = 1, . . . , b, and no more than two 5s in {c1, c2, . . . , cb, c′

1, c′
2, · · · , c′

b}.
Then there exists t0 (1 ≤ t0 ≤ b) s.t.

π2

2εg0
· ∂2f
∂ς2

t0

�= 0. (48)

Otherwise, suppose that the equalities in (47) are all zeros and we can get that

k21 =
–3

8(9b – 4)
[
(13 – 9b)

(
c1 + c′

1
)

+ 9
(
c2 + c′

2 + · · · + cb + c′
b
)]

. (49)

However, contradictions follow according to the cases below.
Case a. Two “5s” in {c1, c2, . . . , cb, c′

1, c′
2, . . . , c′

b}.
Case a.1. Assume c1 = 5, c′

1 = 6 and there is one 5 in {c2, . . . , cb, c′
2, . . . , c′

b}. It follows that
k21 = – 3(9b+26)

72b–32 . Obviously, k21 /∈ Z. Similarly, we get the same result for the case that c1 = 6,
c′

1 = 5.
Case a.2. Assume c1 = 6, c′

1 = 6 and there are two 5s in {c2, . . . , cb, c′
2, . . . , c′

b}. It follows
that |k21| = – 45

4(9b–4) . So k21 /∈ Z.
Case a.3. Assume c1 = 5 and c′

1 = 5. It follows that |k21| = 3(18b+22)
8(9b–4) . If b = 2, . . . , 5, it is clear

that k21 /∈ Z. If b ≥ 6, then 0 < |k21| < 1.
Case b. Only one “5” in {c1, c2, . . . , cb, c′

1, c′
2, . . . , c′

b}.
Case b.1. Assume c1 = 5 or c′

1 = 5. It follows that |k21| = 105+27b
72b–32 . If b = 2, |k21| = 159

112 . If
b = 2, |k21| = 93

92 . If b ≥ 4, then 0 < |k21| < 1.
Case b.2 Assume ci0 = 5 or c′

i0 = 5 for i0 �= 1. It follows that |k21| = 117
8(9b–4) . So k21 /∈ Z.

Case c. No “5” in {c1, c2, . . . , cb, c′
1, c′

2, . . . , c′
b}. It follows that k21 = – 18

9b–4 . If b = 2, then
k21 = – 9

7 . If b ≥ 3, then 0 < |k21| < 1.
Since k21 ∈ Z, we get contradictions. Thus there exists t0 (1 ≤ t0 ≤ b) s.t. (48) holds.

Furthermore, we can have | ∂2f
∂ς2

t0
| ≥ 2g0

π2 ε.
It follows that, by using of Lemma 4.1,

meas

( ⋃

k(1)=0,k(2) �=0

A1
k3

)
≤ meas

(⋃

k �=0

⋃

i,j≤c|k|
B1,11

kij

)

≤
∑

k �=0

∑

i,j≤c|k|
C

(
ε

1
6 |k|

1 + |k|τ
) 1

2 · |k|2
ε

≤ Cε
1

12 ε–1
∑

k �=0

|k|2
|k| τ–1

2
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≤ Cε
1

12 ε–1
∑

l �=0

1
l τ

2 – 3
2 –b–κ

= O
(
ε

1
12 ε–1).

Therefore, when τ > 2κ + 2b + 5, meas(
⋃

k �=0 A1
k3) = O(ε

1
6 ε–1) +O(ε 1

12 ε–1). This completes
the proof.

From (42), meas(
⋃

k �=0 A1
k3) = O(ε– 15

16 ) holds.
Similarly, we prove the same results for A1

k1, A1
k2, and A1

k4. Furthermore, the following
lemma holds. �

Lemma 4.3 For τ > 2κ + 2b + 5, meas((
⋃

k �=0 A1
k1) ∪ (

⋃
k(A1

k2 ∪ A1
k3 ∪ A1

k4))) = O(ε 1
12 ε–1) =

O(ε– 15
16 ) is true.

5 Conclusions
In this work, we proved that there exists a positive measure Cantor manifold of real ana-
lytic rotational κ + b-tori for equation (1). All the tori are small amplitude, linearly stable,
and all their orbits have zero Lyapunov exponents.

Equation (1) has three characters. It is quasi-periodically forced, the nonlinearity is x-
dependent, and the nonlinearity is quintic. To our best knowledge, it is the first time to
consider the existence of quasi-periodic solutions for (1) by the KAM method. We esti-
mate measures of infinitely many small divisors, build a variable-coefficient symplectic
transformation, and show an infinite-dimensional KAM theorem for non-autonomous
Hamiltonian systems.

Appendix

Proof of Lemma 2.3 Let q ∈ la,s. Considered as a function on [–π ,π ], u(t, x) =
∑

j≥1 qj(t) ×
φj(x) is in W a,s, with

‖u‖a,s = ‖q‖a,s. (50)

For every ϑ ∈ D1(σ1), we expand g in a Fourier series

g(ϑ , x) =
1√
2π

∑

j

gj(ϑ)eijx.

Using Lemma A.1 in [22], for every j ∈ Z, we have that

∣∣gj(ϑ)
∣∣ ≤ |g|2ae–2a|j| (51)

holds. So

(‖g‖a,s
)2 =

∣∣g0(ϑ)
∣∣2 +

∑

j �=0

∣∣gj(ϑ)
∣∣2|j|2se2a|j|

<
∑

|g|22ae–4a|j|[j]2se2a|j|
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< |g|2σ1,2a

∑

j

e–2a|j|[j]2s

< C|g|2σ1,2a,

where [j] := max{|j|, 1}. Therefore, g ∈ W a,s[–π ,π ]. It follows from (50) that, by Lemma 2.2
and the analyticity of g and |u|4u, the function g(ϑ , x)|u|4u also belongs to W a,s[–π ,π ] with

∥∥g(ϑ , x)|u|4u
∥∥

a,s ≤ C|g|σ1,2a
(‖q‖a,s

)5

in a neighborhood of the origin, where C depends on s and a. On the other hand, since

∂G
∂ q̄j

=
∫ π

0
g(ϑ , x)|u|4uφj(x) dx,

the components of Gq̄ are the Fourier coefficients of g(ϑ , x)|u|4u, so Gq̄ belongs to la,s with

‖Gq̄‖a,s ≤ C
∥∥g(ϑ , x)|u|4u

∥∥
a,s ≤ C|g|σ1,2a

(‖q‖a,s
)5,

where the last C depends on s and a. The regularity of Gq̄ follows from the regularity of
its components and its local boundedness. �

Proof of Lemma 3.1 Let 0 �= k ∈ Z
κ ,

R1
k =

{
ω ∈ [�, 2�]κ :

∣
∣〈k,ω〉∣∣ <

�εη0

|k|κ+η1

}
.

Consider two hyperplanes 〈k,ω〉 = ± �εη0
|k|κ+η1 . We have

measR1
k ≤ κ|k|–1(

√
2�)κ–1 2�εη0

|k|κ+η1
≤ 2(

√
2)κ–1κεη0

|k|κ+η1+1 �κ . (52)

It follows that

meas
⋃

0 �=k∈Zκ

R1
k ≤

∑

1≤k∈Zκ

measR1
k ≤ 2(

√
2)κ–1κεη0�κ

∑

1≤k∈Zκ

1
|k|κ+η1+1 .

So, from (30), when η1 > –1,

meas
⋃

0 �=k∈Zκ

R1
k ≤ C1ε

η0�κ

∞∑

l=1

2κ lκ–1l–(κ+η1+1) ≤ C1ε
η0�κ .

Therefore this lemma is true when we assume that � = [�, 2�]κ\(
⋃

0 �=k∈Zκ R1
k). �

Proof of Lemma 3.2 Clearly,

〈k,ω〉 + λi + λj + λd – λl – λm – λn = 〈k,ω〉 + i2 + j2 + d2 – l2 – m2 – n2.
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Assume that

f �ς ,k = 〈k,ω〉 + i2 + j2 + d2 – l2 – m2 – n2,

R �ς ,k =
{
ω ∈ [�, 2�]κ : |f �ς ,k| <

�εη0

|k|κ+η1

}
,

�̃ =
⋃

|k|≥1

⋃

�ς∈�̄

R �ς ,k , �0 =
⋃

|k|≥1

⋃

�ς∈�0

R �ς ,k ,

�1 =
⋃

|k|≥1

⋃

�ς∈�1

R �ς ,k , and �2 =
⋃

|k|≥1

⋃

�ς∈�2

R �ς ,k .

It is evident that �̃ = �0 ∪ �1 ∪ �2. Similar to (52), we can attain measR �ς ,k ≤ C εη0 �κ

|k|κ+η1+1 ,
where C depends on κ .

Case 1. If �ς ∈ �0, then from (30)

meas�0 ≤ C
∑

|k|≥1

εη0�κ

|k|κ+η1+1 (nb – n1 + 1)6

≤ C(nb – n1 + 1)6�κεη0
∑

1≤|k|=l

1
lκ+η1+1 2κ lκ–1.

If η1 > –1, then
∑

l≥1
1

lη1+2 is convergent and meas�0 ≤ C�κεη0 , where the constant C
depends on n1, nb, and κ .

Case 2. If �ς ∈ �1, we assume that l /∈ I without loss of generality. So,

∣∣〈k,ω〉 + i2 + j2 + d2 – m2 – n2∣∣ ≤ 2�|k| + 5n2
b.

When l >
√

2�|k| + 5n2
b + 1 and ε is small enough,

|f �ς ,k| ≥ l2 –
∣∣〈k,ω〉 + i2 + j2 + d2 – m2 – n2∣∣

> 2�|k| + 5n2
b + 1 –

(
2�|k| + 5n2

b
)

= 1 >
εη0�κ

|k|κ+η1
,

which implies that one only needs to consider the case 1 ≤ l ≤
√

2�|k| + 5n2
b + 1. There-

fore, if η1 > 0,

meas�1 ≤ C
∑

|k|≥1

εη0�κ

|k|κ+η1+1 (nb – n1 + 1)5
√

2�|k| + 5n2
b + 1

≤ C�κεη0 (nb – n1 + 1)5
∑

|k|≥1

1
|k|κ+η1

≤ C�κεη0 (nb – n1 + 1)5
∑

l≥1

2κ lκ–1 1
lκ+η1

≤ C�κεη0 ,

where the constant C depends on n1, nb, �, and κ .
Case 3. If �ς ∈ �2, we discuss the cases d, l /∈ I and i, d /∈ I . Other cases can be proved

in the same way.



Wang et al. Boundary Value Problems  (2018) 2018:76 Page 27 of 30

Case 3.1. Assume d, l /∈ I . We divide this case into two cases: 3.1.1 and 3.1.2 below.
Case 3.1.1. If d = l, then |f �ς ,k| = |〈k,ω〉 + i2 + j2 – m2 – n2|. Supposing that

�2,1 =
⋃

|k|≥1

⋃

�ς∈�2,d=l /∈I,i,j,m,n∈I
R �ς ,k

then we have, if η1 > –1,

meas�2,1 ≤ C
∑

|k|≥1

�κεη0

|k|κ+η1+1 (nb – n1 + 1)4

≤ C�κεη0 (nb – n1 + 1)4
∑

|k|≥1

1
|k|κ+η1+1

≤ C�κεη0 (nb – n1 + 1)4
∑

l≥1

2κ lκ–1 1
lκ+η1+1 ≤ C�κεη0 ,

where the constant C depends on n1, nb, and κ .
Case 3.1.2. If d �= l, without loss of generality, we can suppose d > l or d – l := p ≥ 1.

Clearly,

d2 – l2 = (d – l)(d + l) = p(2l + p). (53)

If l > Ñ := �|k| + 2n2
b, it is derived that |d2 – l2| ≥ 2l + p > 2Ñ + 1. Since

∣∣〈k,ω〉 + i2 + j2 – m2 – n2∣∣ ≤ 2�|k| + 4n2
b (54)

and

|f �ς ,k| ≥
∣
∣d2 – l2∣∣ –

∣
∣〈k,ω〉 + i2 + j2 – m2 – n2∣∣, (55)

we have

|f �ς ,k| > 2Ñ + 1 – 2�|k| – 4n2
b = 1 >

�εη0

|k|κ+η1

holds as ε is small enough. Therefore, we only need to consider the case 1 ≤ l ≤ Ñ . If
p > Ñ + 1, (53) induces that

∣∣d2 – l2∣∣ = 2pl + p2 > 2p = 2Ñ + 2.

It follows from (54) and (55) that

|f �ς ,k| ≥ 2Ñ + 2 – 2�|k| – 4n2
b

= 2�|k| + 4n2
b + 2 – 2�|k| – 4n2

b = 2 >
�κεη0

|k|κ+η1
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as ε is small enough. So, we only need to consider the case 1 ≤ l ≤ Ñ and 1 ≤ p ≤ Ñ + 1.
In this case, 1 ≤ d = l + p ≤ 2Ñ + 1. Supposing that

�2,2 =
⋃

|k|≥1

⋃

�ς∈�2,d �=l,d,l /∈I,i,j,m,n∈I
R �ς ,k ,

then we have, if η1 > 1,

meas�2,2 ≤ C
∑

|k|≥1

εη0�κ

|k|κ+η1+1 (nb – n1 + 1)4(�|k| + 2n2
b
)(

2�|k| + 4n2
b + 1

)

≤ C�κεη0 (nb – n1 + 1)4
∑

|k|≥1

1
|k|κ+η1–1

≤ C�κεη0 (nb – n1 + 1)4
∑

l≥1

2κ lκ–1 1
lκ+η1–1 ≤ C�κεη0 ,

where the constant C depends on �, n1, nb, and κ .
Case 3.2. Assume i, d /∈ I . When max{i, d} >

√
2�|k| + 4n2

b + 1, we have that

|f �ς ,k| ≥
∣
∣i2 + d2∣∣ –

∣
∣〈k,ω〉 + j2 – l2 – m2 – n2∣∣

≥ (
2�|k| + 4n2

b + 1
)

–
(
2�|k| + 4n2

b
)

= 1.

So, we only need to consider the case 1 ≤ i, d ≤
√

2�|k| + 4n2
b + 1. Suppose that

�2,3 =
⋃

|k|≥1

⋃

�ς∈�2,i,d /∈I,j,l,m,n∈I
R �ς ,k ,

then we have, if η1 > 0,

meas�2,3 ≤ C
∑

|k|≥1

�κεη0

|k|κ+η1+1 (nb – n1 + 1)4(2�|k| + 4n2
b + 1

)

≤ C�κεη0 (nb – n1 + 1)4
∑

|k|≥1

1
|k|κ+η1

≤ C�κεη0 (nb – n1 + 1)4
∑

l≥1

2κ lκ–1 1
lκ+η1

≤ C�κεη0 ,

where the constant C depends on �, n1, nb, and κ .
Thus, if η1 > 1, for �ς ∈ �2, there is a constant C satisfying that meas�2 ≤ C�κεη0 . Over-

all, when η1 > 1,

meas� ≥ (
1 – C2ε

η0
)
�κ ,

where we suppose that � = [�, 2�]κ \ �̃. The constant C2 depends on �, n1, nb, and κ . The
proof is completed. �
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Proof of Lemma 3.3 By the Schwarz inequality and from (30),

∣
∣∣
∣
∑

k

xk

∣
∣∣
∣

2

=
∣
∣∣
∣
∑

k

[k]κ+ 1
2 xk

[k]κ+ 1
2

∣
∣∣
∣

2

≤
∑

k

1
[k]2κ+1

∑

k

[k]2κ+1|xk|2

=
(∑

k=0

1
[k]2κ+1 +

∑

k �=0

1
[k]2κ+1

)∑

k

[k]2κ+1|xk|2

=
(

1 +
∑

|k|=1

1
[k]2κ+1

)∑

k

[k]2κ+1|xk|2

≤
(

1 +
∞∑

a=1

1
a2κ+1 2κaκ–1

)
∑

k

[k]2κ+1|xk|2

=

(

1 + 2κ

∞∑

a=1

1
aκ+2

)
∑

k

[k]2κ+1|xk|2,

where κ > 0. Since the series
∑∞

a=1
1

aκ+2 is convergent,

∣∣
∣∣
∑

k

xk

∣∣
∣∣

2

≤ c
∑

k

[k]2κ+1|xk|2.

This completes the proof. �
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