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Abstract
In this paper, we introduce a method based on replacement of the unknown function
by truncated series of the well-known shifted Chebyshev (of third-kind) expansion of
functions. We give an approximate formula for the integer derivative of this
expansion. We state and prove some theorems on the convergence analysis. By
means of collocation points the introduced method converts the proposed problem
to solving a system of algebraic equations with shifted Chebyshev coefficients. As an
application for this efficient numerical method, we employ it in solving the system of
ordinary differential equation that describes the thin film flow and heat transfer with
the effect of thermal radiation, magnetic field, and slip velocity.
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1 Introduction
The thin film fluid flow has become dependent on many theoretical and experimental
studies in recent years due to its widespread applications in industry and engineering
such as continuous casting, crystal growing, tinning of copper wires, chemical process-
ing equipment, and wire and fiber coating. Many authors studied the thin film fluid flow
and heat transfer under different cases; see, for example, [1–10]. In [11], the authors stud-
ied the flow of an incompressible liquid film down a wavy incline and applied the Galerkin
method with only one ansatz function to the Navier–Stokes equations. They derived a
second-order weighted residual integral boundary layer equation to describe eddies in the
troughs of the wavy bottom. Marin [12] considered a cylinder made of a microstretch ther-
moelastic material for which one plane end is subjected to plane boundary data varying
harmonically in time. On the lateral surface and other bases, we have zero body force and
heat supply. Finally, Melvin and Herman [13] presented algorithmic matters of a computer
code to solve linear two-point boundary-value problems. The proposed method used a
superposition coupled with an orthonormalization procedure and a variable-step Runge–
Kutta–Fehlberg integration scheme. Just and Stempien [14] studied the Pareto optimal
control system for a nonlinear one-dimensional extensible beam equation and its Galerkin
approximation. In [15], the authors proposed a modified and simple algorithm for frac-
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tional modeling arising in unidirectional propagation of long wave in dispersive media by
using the fractional homotopy analysis transform method. The proposed technique can be
used to solve nonlinear problems without using the Adomian and He’s polynomials, which
can be considered as a clear advantage of this new algorithm over decomposition and
the homotopy perturbation transform method. This modified method yields an analytical
and approximate solution in terms of a rapidly convergent series with easily computable
terms. Also, exploiting variational methods and the existence of multiple weak solutions
for a class of elliptic Navier boundary problems involving the p-biharmonic operator are
investigated in [16]. Finally, the radiative effects for some bidimensional thermoelectric
problems are investigated in [17].

After these previous publications, a number of researchers have successfully applied
several numerical methods in this field. Among these numerical methods, the Chebyshev
collocation method is a general approximate analytical method used to get the solutions
for some of nonlinear differential equations. The Chebyshev collocation method has some
advantages for handling this class of problems, in which the Chebyshev coefficients for
the solution can be calculated very easily by numerical programs. For this reason, this
method is much faster than the other methods. Chebyshev polynomials are a well-known
family of orthogonal polynomials on the interval [–1, 1] with many applications. They are
widely used because of their good properties in the approximation of functions [18–20].
Some of these properties take a very concise form in the case of the Chebyshev polyno-
mials, making them of leading importance among orthogonal polynomials. The Cheby-
shev polynomials belong to an exclusive class of orthogonal polynomials, known as Jacobi
polynomials, which correspond to weight functions of the form (1 – x)α(1 + x)β and which
are solutions of Sturm–Liouville equations. The Chebyshev collocation method is used to
solve many problems in many papers, for example, [18–20].

In this work, we use the properties of Chebyshev polynomials to derive an approximate
formula of the integer derivative of the approximate solution and estimate an error upper
bound of this formula. Due to a high accuracy of this method, it is inevitable to use it to
solve numerically the resulting nonlinear system of ordinary differential equations, which
describe a flow and heat transfer of thin liquid film affected by the presence of thermal
radiation and magnetic field.

The basic ordinary differential equations that describe the thin film liquid layer flow and
heat transfer can be summarized as follows [21]:

f ′′′ + γ

[
ff ′′ – S

η

2
f ′′ – f ′2 – (S + M)f ′

]
= 0, (1)

1
Pr

(1 + R)θ ′′ + γ

[
f θ ′ – 2f ′θ –

S
2
[
3θ + ηθ ′]] = 0, (2)

f (0) = 0, f (1) =
1
2

S, θ (0) = 1, (3)

f ′′(1) = 0, f ′(0) = 1 + δf ′′(0), θ ′(1) = 0, (4)

where the prime denotes differentiation with respect to η, S is the unsteadiness parameter,
M is the magnetic parameter, R is the radiation parameter, δ is the slip velocity parameter,
γ is the dimensionless film thickness, and Pr is the Prandtl number. Here, we must refer
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that the previous system of equations is a generalization of the pioneering research of
Wang [21]. Our problem can be reduced to the Wang problem by taking M = R = δ = 0.

2 Procedure of solution
2.1 Approximate the solution and its convergence analysis
The Chebyshev polynomials of the third kind of degree n are defined as

Ch3n(x) =
cos((n + 0.5)ϕ)

cos(0.5ϕ)
, x = cos(ϕ), 0 ≤ ϕ ≤ π .

It well known that this family of polynomials is orthogonal on the interval [–1, 1] with
respect to the weight function w(x) =

√
(1 + x)/(1 – x):

∫ 1

–1
w(x)Ch3r(x)Ch3s(x) dx =

⎧⎨
⎩

0 if r �= s,

π if r = s.

These polynomials are widely used because of their good properties in the approximation
of functions and can be determined by the following recurrence formula [22]:

Ch3n+1(x) = 2xCh3n(x) – Ch3n–1(x), Ch30(x) = 1,

Ch31(x) = 2x – 1, n = 1, 2, . . . .

In this paper, we use these polynomials on the interval [0, 1], that is, the so-called shifted
Chebyshev polynomials by introducing the change of variable x = 2t – 1, T̄n(t) = Ch3n(2t –
1), where T̄0(t) = 1, T̄1(t) = 4t – 3. The most used and useful formula of T̄n(t) is given
analytically:

T̄n(t) =
n∑

k=0

(–1)k22n–2k (2n + 1)
(2n – k + 1)

(k + 1)
(2n – 2k + 2)

tn–k , n = 2, 3, . . . .

Every function �(t) ∈ L2[0, 1] can be expressed as a linear combination of {T̄i(t)}∞i=0 as

�(t) =
∞∑
i=0

aiT̄i(t) (5)

with the coefficients ai, i = 0, 1, . . . , given by

ai =
2
π

∫ 1

0
w̄(t)�(t)T̄i(t) dt, i = 0, 1, . . . , (6)

where w̄(t) =
√

t
1–t is the shifted weight function.

By taking the first m + 1 terms of (5) we obtain the following approximation:

�m(t) =
m∑

i=0

aiT̄i(t). (7)

Theorem 1 Suppose that the function �(t) satisfies the following conditions:
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1. The second derivative �′′(t) is a square-integrable function on [0, 1], i.e.,
�′′(t) ∈ L2[0, 1];

2. The second derivative �′′(t) is bounded on [0, 1], i.e., |�′′(t)| ≤ � for some constant �.
Then the infinite series (5) of the shifted Chebyshev expansion is uniformly convergent, and

|ai| < �/i2, i = 1, 2, . . . . (8)

Proof We will use the change of variables in the integration of formula (6) for ai by using
the transformation 2t – 1 = cos(ϕ) to obtain

ai =
2
π

∫ π

0
y
(
0.5

(
1 + cos(ϕ)

))
cos

(
(i + 0.5)ϕ

)
cos(0.5ϕ) dϕ.

Now, using twice integration by parts and simple calculations, we find

ai =
1

4π

∫ π

0
�′′(0.5

(
1 + cos(ϕ)

))
ρi(ϕ) dϕ,

where

ρi(ϕ) = sin(ϕ)
[

1
i

(
sin(i – 1)ϕ

i – 1
–

sin(i + 1)ϕ
i + 1

)
+

1
i + 1

(
sin(i)ϕ

i
–

sin(i + 2)ϕ
i + 2

)]
,

|ci| =
∣∣∣∣ 1
4π

∫ π

0
�′′(0.5

(
1 + cos(ϕ)

))
ρi(ϕ) dϕ

∣∣∣∣
≤ �

4π

∫ π

0

∣∣ρi(ϕ)
∣∣dϕ

≤ �

4

[
1
i

(
1

i – 1
+

1
i + 1

)
+

1
i + 1

(
1
i

+
1

i + 2

)]

=
�(2i2 + 2i – 1)

2(i – 1)i(i + 1)(i + 2)
.

Then, for large i, we can get the required formula (8), and hence it uniformly converges to
�(t), which completes the proof. �

Theorem 2 Suppose that �(t) ∈ Cm[0, 1]. Then the error Em = ‖�(t) – �m(t)‖ of approxi-
mation of the function �(t) by �m(t) using formula (7) can be estimated as follows:

∥∥�(t) – �m(t)
∥∥ ≤ ��m+1

(m + 1)!

√
π

2
, (9)

where � = maxt∈[0,1] �
(m+1)(t) and � = max[t0, t – t0], and Cm[0, 1] is the space of all m times

continuously differentiable functions in the interval [0, 1].

Proof We will consider the Taylor polynomial Tm(t) of degree m defined by

Tm(t) =
m∑

k=0

�(k)(t0)
(t – t0)k

k!

as an approximation of the function �(t), where t0 ∈ [0, 1].
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We know that the error of this approximation is defined by

∣∣�(t) – Tm(t)
∣∣ =

∣∣∣∣�(m+1)(τ )
(t – t0)m+1

(m + 1)!

∣∣∣∣, τ ∈ [t0, t]. (10)

Now, from these approximations and some facts we can estimate

∥∥�(t) – �m(t)
∥∥2 ≤ ∥∥�(t) – Tm(t)

∥∥2

=
∫ 1

0
w̄(t)

[
�(t) – Tm(t)

]2 dt

=
∫ 1

0
w̄(t)

[
�(m+1)(τ )

(t – t0)m+1

(m + 1)!

]2

dt

≤ �
2

[(m + 1)!]2

∫ 1

0
w̄(t)(t – t0)2m+2 dt

=
�

2

[(m + 1)!]2

∫ 1

0
(t – t0)2m+2

√
t

1 – t
dt.

Then, denoting � = max[t0, t – t0], we have

∥∥�(t) – �m(t)
∥∥2 ≤ �

2�2m+2

[(m + 1)!]2

∫ 1

0

√
t

1 – t
dt

=
�

2�2m+2

[(m + 1)!]2
π

2
.

Taking the square roots of both sides, we can get the required formula (9), which completes
the proof. �

In the following theorem,we give the main approximate formula for the integer derivative
D(n)�m(t).

Theorem 3 ([23, 24]) Suppose that we approximate the function �(t) in the form (7). Then
D(n)(�m(t)) can be defined as

D(n)(�m(t)
)

=
m∑

i=n

i–n∑
k=0

aiπ
(n)
i,k ti–k–n, π

(n)
i,k =

(–1)k22i–2k(2n + 1)(2i – k)!(i – k)!
(k!)(2i – 2k + 1)!(i – k – n)!

. (11)

Proof The proof of this theorem can be done directly with the help of formula (7) and
some properties of the third-kind shifted Chebyshev polynomials. �

2.2 Procedure solution
In this section, we propose a method to solve numerically the system of ordinary differen-
tial equations of the form (1)–(2). The unknown functions f (η) and θ (η) may be expanded
by finite series of shifted Chebyshev polynomials as

fm(η) =
m∑

k=0

fkL̄k(η), θm(η) =
m∑

k=0

θkL̄k(η). (12)
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From Eqs. (1)–(2) and (12) and formula (11) we have

m∑
i=3

i–3∑
k=3

fiπ
(3)
i,k ηi–k–3

+ γ

[( m∑
i=0

fiL̄i(η)

)( m∑
i=2

i–2∑
k=2

fiπ
(2)
i,k ηi–k–2

)
–

S
2
η

( m∑
i=2

i–2∑
k=2

fiπ
(2)
i,k ηi–k–2

)

–

( m∑
i=1

i–1∑
k=1

fiπ
(1)
i,k ηi–k–1

)2

– (S + M)

( m∑
i=1

i–1∑
k=1

fiπ
(1)
i,k ηi–k–1

)]
= 0, (13)

1 + R
Pr

m∑
i=2

i–2∑
k=2

θiπ
(2)
i,k ηi–k–2 + γ

[( m∑
i=0

fiL̄i(η)

)( m∑
i=1

i–1∑
k=1

θiπ
(1)
i,k ηi–k–1

)

– 2

( m∑
i=0

θiL̄i(η)

)( m∑
i=1

i–1∑
k=1

fiπ
(1)
i,k ηi–k–1

)

–
S
2

[
3

( m∑
i=0

θiL̄i(η)

)
+ η

( m∑
i=1

i–1∑
k=1

θiπ
(1)
i,k ηi–k–1

)]]
= 0. (14)

We now collocate Eqs. (13)–(14) at (m – n + 1) points ηs, s = 0, 1, . . . , m – n, as

m∑
i=3

i–3∑
k=3

fiπ
(3)
i,k ηi–k–3

s

+ γ

[( m∑
i=0

fiL̄i(ηs)

)( m∑
i=2

i–2∑
k=2

fiπ
(2)
i,k ηi–k–2

s

)
–

S
2
ηs

( m∑
i=2

i–2∑
k=2

fiπ
(2)
i,k ηi–k–2

s

)

–

( m∑
i=1

i–1∑
k=1

fiπ
(1)
i,k ηi–k–1

s

)2

– (S + M)

( m∑
i=1

i–1∑
k=1

fiπ
(1)
i,k ηi–k–1

s

)]
= 0, (15)

1 + R
Pr

m∑
i=2

i–2∑
k=2

θiπ
(2)
i,k ηi–k–2

s + γ

[( m∑
i=0

fiL̄i(ηs)

)( m∑
i=1

i–1∑
k=1

θiπ
(1)
i,k ηi–k–1

s

)

– 2

( m∑
i=0

θiL̄i(ηs)

)( m∑
i=1

i–1∑
k=1

fiπ
(1)
i,k ηi–k–1

s

)

–
S
2

[
3

( m∑
i=0

θiL̄i(ηs)

)
+ ηs

( m∑
i=1

i–1∑
k=1

θiπ
(1)
i,k ηi–k–1

s

)]]
= 0. (16)

For suitable collocation points, we use the roots of shifted Chebyshev polynomial
L̄m–n+1(η). Also, by substituting formula (12) into the boundary conditions (3)–(4) we
can obtain the following six equations:

m∑
i=0

(–1)i(2i + 1)fi = 0,
m∑

i=0

fi =
S
2

,
m∑

i=0

(–1)i(2i + 1)θi = 1,

m∑
i=0

rifi – δ

m∑
i=0

¯̄rifi = 1,
m∑

i=0

¯̄̄rifi = 0,
m∑

i=0

r̄iθi = 0,

(17)
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Table 1 Comparison of γ and –f ′′(0) with δ =M = 0 using the previous work and the Chebyshev
collocation method

S Data of [25] Present results

γ –f ′′(0) γ –f ′′(0)
1.4 0.674089 1.012781 0.6739267 1.0126853
1.6 0.331976 0.642412 0.309138 0.6423921
1.8 0.127013 0.3320138 0.1270089 0.3091378

Figure 1 The velocity distribution with different
values of S

where ri = L̄
′
i(0), r̄i = L̄

′
i(1), ¯̄ri = L̄

′′
i (0), ¯̄̄ri = L̄

′′
i (1).

Equations (15)–(16), together with five equations of the boundary conditions (17), give
a system of (2m + 2) algebraic equations, which can be solved, for the unknowns fi, θi, i =
0, 1, . . . , m, using the Newton iteration method. In our numerical study, we take m = 5, that
is, five terms of the truncated series solution (12) at η = 1.

3 Results and discussion
Firstly, to verify the accuracy of our numerical scheme, a comparison of the computed val-
ues of –f ′′(0) is made by Noor and Hashim [25]. This comparison is illustrated in Table 1.
Note that there is a close agreement between our data and the previous published work
of [25], which lends confidence to the proposed numerical method.

Also, in this section, we discuss and analyze the solution of the described problem via
figures that result from using the Chebyshev collocation method. Since the problems that
arise in industrial and technological situations are highly nonlinear, it may be difficult to
get analytical solutions to this type problems. One such problem, which occurs in the
tinning of copper wires, polymer industry, and crystal growing, involves the thin flow of a
Newtonian fluid past a stretching sheet. A relatively new method, called the shifted Cheby-
shev collocation, is very beneficial for developing solutions that are valid even for moderate
to large values of parameters. This method depends on the series solution. One of the chief
factors that influences the convergence of the solution series is the type of base functions
used to express the solution. After applying the shifted Chebyshev collocation method,
the solutions of the nonlinear system of ODEs (1)–(4) are presented through Figs. 1–7.

Figure 1 highlights the effect of S on the dimensionless velocity f ′(η). These plots re-
veal the fact that increasing values of the parameter S results in enhancing the velocity
distribution along the thin film region, but the reverse is observed for the film thickness.
The dimensionless temperature for different values of unsteadiness parameter S is dis-
played in Fig. 2. Note that both the free surface temperature θ (γ ) and the dimensionless
temperature increases with the increase in S.
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Figure 2 The temperature distribution with
different values of S

Figure 3 The velocity distribution with different
values of M

Figure 4 The temperature distribution with
different values of M

The influence of magnetic parameter M on the dimensionless velocity is presented in
Fig. 3. Observed that, along the sheet, the dimensionless velocity increases with an in-
crease in the M parameter, but the reverse trend is away from the sheet. Also, we further
find that the increasing value of the parameter M leads to decreasing the film thickness.
In Fig. 4, we depict the effect of the same parameter M on the dimensionless tempera-
ture. Note that, with the increasing values of magnetic parameter M, both the free surface
temperature θ (γ ) and the dimensionless temperature increase inside the film region.

Figure 5 represents the variation of velocity profiles for different values of the slip veloc-
ity parameter δ. From this plot it is evident that, along the sheet, the effect of increasing
values of the parameter δ is responsible for thinning the film thickness and decreasing the
dimensionless velocity. Figure 6 displays the temperature θ (η) profiles versus η for various
values of the same parameter δ. It is elucidating that both the dimensionless temperature
distribution and the free surface temperature θ (γ ) increase with an increase in parameter
δ. Figure 7 depicts the effect of the radiation parameter R on the temperature profile. It is
interesting to note that the dimensionless temperature distribution increases as the radia-
tion parameter R increases. Likewise, some qualitative behaviors for the thin film flow and
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Figure 5 The velocity distribution with different
values of δ

Figure 6 The temperature distribution with
different values of δ

Figure 7 The temperature distribution with
different values of R

heat transfer characteristics are demonstrated in the same figure, in which the thickness
for the film is fixed for changing the values of the radiation parameter R.

4 Conclusion and remarks
This numerical study highlights the lineaments of radiation parameter, velocity slip pa-
rameter, magnetic number, and the unsteadiness parameter in the flow and heat transfer
for a Newtonian thin liquid film. We use the Chebyshev collocation method to investi-
gate the approximate solution of the resulting nonlinear system of ODEs for the proposed
problem. Numerical evaluations of the closed-form results are performed, and graphical
results are obtained to illustrate the details of the thin film flow and heat transfer charac-
teristics and their dependence on some physical parameters. On the basis of the obtained
results, we can see the following observations:

(1) The effect of increasing both the values of the unsteadiness parameter and the
magnetic parameter increases both the dimensionless velocity and the
dimensionless temperature throughout the film layer.
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(2) The temperature distribution can be affected by changing the values of the velocity
slip parameter and the thermal radiation parameter.

(3) Because of the presence of slip velocity parameter, there may be a lower velocity
distribution near the stretching sheet and also thinning the film thickness.
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