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Abstract
In this paper, we investigate the fractional p-Kirchhoff -type system:

⎧
⎪⎪⎨

⎪⎪⎩

M(
∫

R2N
|u(x)–u(y)|p
|x–y|N+ps dx dy)(–�)spu =μg(x)|u|β–2u + a

a+bh(x)|u|a–2u|v|b , in �,

M(
∫

R2N
|v(x)–v(y)|p
|x–y|N+ps dx dy)(–�)spv = σ f (x)|v|β–2v + b

a+bh(x)|v|b–2v|u|a , in �,

u = v = 0, in R
N \ �,

where � ⊂ R
N is a smooth bounded domain, (–�)sp is the fractional p-Laplacian

operator with 0 < s < 1 < p and ps < N. a > 1, b > 1 satisfy 2 < a + b < p∗
s . 1 < β < p∗

s ,
p∗
s =

Np
N–ps is the fractional critical exponent. μ, σ are two real parameters.

M(t) = k + λtτ , k > 0, λ, τ ≥ 0, τ = 0 if and only if λ = 0. The weight functions g, f , h
change sign in � and satisfy suitable conditions. By using the Nehari manifold
method, it is proved that the system has at least two solutions provided that
2 < a + b < p ≤ p(τ + 1) < β < p∗

s and (μ,σ ) belongs to a certain subset of R2. Also, by
using the mountain pass theorem, we prove that there exist λ1 ≥ λ0 such that the
system admits at least a nontrivial solution for λ ∈ (0,λ0) and no nontrivial solution for
λ > λ1 under the assumptions μ = σ = 0 and p < a + b <min{p(τ + 1),p∗

s }.
MSC: 35R11; 35A15; 35J60

Keywords: Fractional p-Kirchhoff system; Multiplicity; Sign-changing weight
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1 Introduction
In this paper, we investigate the multiplicity of solutions to the following fractional elliptic
system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M(
∫

R2N
|u(x)–u(y)|p
|x–y|N+ps dx dy)(–�)s

pu = μg(x)|u|β–2u + a
a+b h(x)|u|a–2u|v|b in �,

M(
∫

R2N
|v(x)–v(y)|p
|x–y|N+ps dx dy)(–�)s

pv = σ f (x)|v|β–2v + b
a+b h(x)|v|b–2v|u|a in �,

u = v = 0 in R
N \ �,

(1.1)

where � ⊂ R
N is a smooth bounded domain, 0 < s < 1 < p and ps < N . a > 1, b > 1 satisfy

2 < a + b < p∗
s . 1 < β < p∗

s , p∗
s = Np

N–ps is the fractional critical exponent. μ, σ are two real
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parameters. M(t) = k + λtτ , k > 0, λ, τ ≥ 0, τ = 0 if and only if λ = 0. The weight functions
g , f , h change sign in � and satisfy further assumption which will be given later. (–�)s

p is
the fractional p-Laplacian operator defined on smooth functions by

(–�)s
pm(x) = 2 lim

ε→0+

∫

RN \Bε (x)

|m(x) – m(y)|p–2(m(x) – m(y))
|x – y|N+ps dy, x ∈R

N .

Problem (1.1) is related to the stationary analogue of the following Kirchhoff model:

ρutt –
(

p0

h
+

E
2L

∫ L

0
u2

x dx
)

uxx = 0

which was proposed by Kirchhoff in 1883 as a generalization of the well-known D’Alem-
bert wave equation for free vibrations of elastic strings, where ρ , p0, h, E, L are constants
which represent some physical meanings, respectively. Indeed, Kirchhoff’s model takes
into account the changes in length of the string produced by transverse vibrations. In par-
ticular, Kirchhoff’s equation models several physical and biological systems, we refer to
[1] for more details. The Kirchhoff type equation and system have attracted attention and
have been discussed by many authors, we refer to [9, 14, 21–23, 29] and the references
therein.

Up to now, a great attention has been paid to the study of the fractional Laplacian equa-
tion and system, see, for example, [4, 5, 10, 11, 13, 18, 22, 23, 29, 30, 33]. In particular, the
fractional and nonlocal operators of elliptic type arise in a quite natural way in many differ-
ent applications, such as continuum mechanics, phase transition phenomena, population
dynamics, and game theory, as they are the typical outcome of stochastic stabilization of
Lévy processes, see [2, 8]. The literature on fractional nonlocal operators and their appli-
cations is very interesting and quite large, see, for example, [4, 20, 25, 28]. For the basic
properties of fractional Sobolev spaces, we refer the readers to [12].

During the past ten years, by using the Nehari manifold and Fibering maps, several
authors have solved semilinear and quasilinear elliptic problems with critical nonlinear-
ity and subcritical nonlinearity, see [6, 7, 15–17, 19, 24, 26, 31, 32, 34] and the refer-
ences therein. Particularly, in [10], Chen and Deng considered the following fractional
p-Laplacian system:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)s
pu = μ|u|β–2u + 2a

a+b |u|a–2u|v|b in �,

(–�)s
pv = σ |v|β–2v + 2b

a+b |v|b–2v|u|a in �,

u = v = 0 in R
n \ �,

(1.2)

where a > 1, b > 1, 1 < β < p < a + b < p∗
s , μ > 0, σ > 0. Using the Nehari manifold method,

they proved (1.2) has at least two nontrivial solutions when 0 < μ
p

p–q + σ
p

p–q < C for some
C > 0.

In [24], Rasouli and Afrouzi investigated the following elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

–�qu + n(x)|u|q–2u = μg(x)|u|β–2u x ∈ �,

–�qv + n(x)|v|q–2v = σ f (x)|v|β–2v x ∈ �,

|∇u|q–2 ∂u
∂n = a

a+b |u|a–2u|v|b, |∇v|q–2 ∂v
∂n = b

a+b |u|a|v|b–2v, x ∈ ∂�,

(1.3)
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where a > 1, b > 1, 2 < a + b < q < β < p∗, (μ,σ ) ∈ R
2 \ {(0, 0)}, g(x), f (x) ∈ C(�) are func-

tions which change sign in �. Using the Nehari manifold method, they proved (1.3) admits
at least two solutions when (μ,σ ) belongs to a certain subset of R2.

However, to our best knowledge, there are few results on a fractional p-Kirchhoff system
with sign-changing concave-convex nonlinearity, especially for parameters meeting a+b <
p ≤ p(τ + 1) < β < p∗

s or p < a + b < min{p(τ + 1), p∗
s }. Motivated by the above and the idea of

[6, 9, 10, 24], in this paper, we are concerned with the multiplicity of solutions for system
(1.1).

To state our main result precisely, we introduce some notations. Let 0 < s < 1 < p with
ps < N . Define

W =
{

v|v : RN →R is measurable, v|� ∈ Lp(�), and
∫

Q

|v(x) – v(y)|p
|x – y|N+ps dx dy < +∞

}

,

where Q = R
2N \ (�c × �c) with �c = R

N \ �, this space is endowed with the norm

‖v‖W = ‖v‖Lp(�) +
(∫

Q

|v(x) – v(y)|p
|x – y|N+ps dx dy

)1/p

. (1.4)

We denote the space W0 = {v | v ∈ W , v = 0 a.e. in �c} or equivalently the closure of C∞
0 (�)

in W and introduce the norm

‖v‖ = ‖v‖W0 =
(∫

Q

|v(x) – v(y)|p
|x – y|N+ps dx dy

)1/p

, ∀v ∈ W0. (1.5)

Then (W0,‖ · ‖W0 ) is a uniformly convex Banach space, see [33, Theorem 2.4]. By results
of [12, 15, 33], W0 is continuously embedded in Lr(�) for any 1 ≤ r ≤ p∗

s and compact for
whenever 1 ≤ r < p∗

s , then there exists Cr > 0 such that, for r ∈ [1, p∗
s ],

‖v‖r = ‖v‖Lr(�) ≤ Cr‖v‖W0 = Cr‖v‖, ∀v ∈ W0. (1.6)

For convenience, for some β ∈ (1, p∗
s ), we denote C∗ = Cβ .

For the product space X = W0 × W0, we introduce the norm

∥
∥(u, v)

∥
∥ =

∥
∥(u, v)

∥
∥

X =
(‖u‖p

W0
+ ‖v‖p

W0

)1/p =
(‖u‖p + ‖v‖p)1/p, ∀(u, v) ∈ X. (1.7)

Then (X,‖ · ‖X) is a reflexive Banach space.
Our main results are as follows.

Theorem 1.1 Let 0 < s < 1 < p with ps < N , � ⊂R
N is a smooth bounded domain, (μ,σ ) ∈

R
2\{(0, 0)}, M(t) = k + λtτ , k > 0, λ, τ ≥ 0, τ = 0 if and only if λ = 0. Assume
(H0) a + b < p ≤ p(τ + 1) < β < p∗

s = Np
N–ps ;

(H1) g, f ∈ C(�) with g± = max{±g, 0} �≡ 0 and f ± = max{±f , 0} �≡ 0;
(H2) h ∈ L

β
β–a–b (�) with meas({x ∈ � : h(x) > 0}) > 0,

then there exists θ∗ > 0 such that when μ, σ satisfy

0 <
(|μ|‖g‖∞

) p
β–p +

(|σ |‖f ‖∞
) p

β–p < θ∗,

problem (1.1) admits at least two solutions in X.
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Theorem 1.2 Let 0 < s < 1 < p with ps < N , � ⊂R
N is a smooth bounded domain, μ = σ =

0, M(t) = k + λtτ , k > 0, λ, τ > 0. Assume
(H′

0) p < a + b < min{p(τ + 1), p∗
s }.

In addition, suppose that one of the following holds:

(H3) h ∈ L
p∗s

p∗s –a–b (�) with meas({x ∈ � : h(x) > 0}) > 0;
(H4) h ∈ L∞(�) with meas({x ∈ � : h(x) > 0}) > 0,

then there exist λ1 ≥ λ0 > 0 such that problem (1.1) admits at least a nontrivial solution in
X for λ ∈ (0,λ0) and no nontrivial solution in X for λ > λ1.

The organization of this paper as follows. In Sect. 2, we give some notations and prop-
erties of the Nehari manifold. In Sect. 3, we give the proof of Theorem 1.1. In Sect. 4, by
applying the mountain pass theorem, we give the proof of Theorem 1.2.

2 Nehari manifold
Throughout this section we assume that all the conditions in Theorem 1.1 hold.

To simplify notations, for (v, w) ∈ X, we set

B(v, w) = M
(‖v‖p)

∫

Q

|v(x) – v(y)|p–2(v(x) – v(y))(w(x) – w(y))
|x – y|N+ps dx dy. (2.1)

Definition 2.1 We say that the couple (u, v) ∈ X is a weak solution to (1.1) if

B(u, w1) + B(v, w2)

=
∫

�

(
μg(x)|u|β–2uw1 + σ f (x)|v|β–2vw2

)
dx

+
a

a + b

∫

�

h(x)|u|a–2u|v|bw1 dx +
b

a + b

∫

�

h(x)|v|b–2v|u|aw2 dx

for any (w1, w2) ∈ X.

Clearly, the weak solutions to (1.1) are exactly the critical points of the following func-
tional:

Jμ,σ (u, v) =
k
p
∥
∥(u, v)

∥
∥p +

λ

α
G(u, v) –

1
β

L(u, v) –
1
q

H(u, v), (2.2)

where

α = p(τ + 1),

G(u, v) = ‖u‖α + ‖v‖α ,

q = a + b,

L(u, v) =
∫

�

(
μg(x)|u|β + σ f (x)|v|β)

dx,

H(u, v) =
∫

�

h(x)|u|a|v|b dx.

(2.3)



Wei et al. Boundary Value Problems  (2018) 2018:78 Page 5 of 18

A direct computation shows that Jμ,σ ∈ C1(X,R) and

〈
J ′

μ,σ (u, v), (w1, w2)
〉

= B(u, w1) + B(v, w2) –
∫

�

(
μg(x)|u|β–2uw1 + σ f (x)|v|β–2vw2

)
dx

–
a
q

∫

�

h(x)|u|a–2u|v|bw1 dx –
b
q

∫

�

h(x)|v|b–2v|u|aw2 dx (2.4)

for all (u, v), (w1, w2) ∈ X.
We consider the Nehari manifold

Sμ,σ =
{

(u, v) ∈ X\{(0, 0)
} | 〈J ′

μ,σ (u, v), (u, v)
〉
= 0

}
.

Thus, (u, v) ∈ Sμ,σ if and only if

〈
J ′

μ,σ (u, v), (u, v)
〉
= k

∥
∥(u, v)

∥
∥p + λG(u, v) – L(u, v) – H(u, v) = 0. (2.5)

Denote

μ,σ (u, v) =
〈
J ′

μ,σ (u, v), (u, v)
〉

= k
∥
∥(u, v)

∥
∥p + λG(u, v) – L(u, v) – H(u, v).

Then, for (u, v) ∈ Sμ,σ ,

〈
 ′

μ,σ (u, v), (u, v)
〉

= kp
∥
∥(u, v)

∥
∥p + λαG(u, v) – βL(u, v) – qH(u, v)

= k(p – q)
∥
∥(u, v)

∥
∥p + λ(α – q)G(u, v) – (β – q)L(u, v) (2.6)

= k(p – β)
∥
∥(u, v)

∥
∥p + λ(α – β)G(u, v) + (β – q)H(u, v). (2.7)

Obviously, Sμ,σ can be divided into the following three parts:

S+
μ,σ =

{
(u, v) ∈ Sμ,σ | 〈 ′

μ,σ (u, v), (u, v)
〉
> 0

}
,

S0
μ,σ =

{
(u, v) ∈ Sμ,σ | 〈 ′

μ,σ (u, v), (u, v)
〉
= 0

}
,

S–
μ,σ =

{
(u, v) ∈ Sμ,σ | 〈 ′

μ,σ (u, v), (u, v)
〉
< 0

}
.

Set

θ0 =
[

k(p – q)
(β – q)Cβ

∗

] p
β–p

[
k(β – p)

(β – q)Cq
∗‖h‖ β

β–q

] p
p–q

and

�θ0 =
{

(μ,σ ) ∈R
2\{(0, 0)

}
: 0 <

(|μ|‖g‖∞
) p

β–p +
(|σ |‖f ‖∞

) p
β–p < θ0

}
.

Lemma 2.2 For any (μ,σ ) ∈ �θ0 , we have S0
μ,σ = ∅.
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Proof We argue by contradiction, then there exists (μ,σ ) ∈ �θ0 such that S0
μ,σ �= ∅. For

(u, v) ∈ S0
μ,σ , from (2.6) and (2.7), we can deduce that

k(p – q)
∥
∥(u, v)

∥
∥p ≤ k(p – q)

∥
∥(u, v)

∥
∥p + λ(α – q)G(u, v) = (β – q)L(u, v) (2.8)

and

k(β – p)
∥
∥(u, v)

∥
∥p ≤ k(β – p)

∥
∥(u, v)

∥
∥p + λ(β – α)G(u, v) = (β – q)H(u, v). (2.9)

By the Sobolev embedding theorem and Hölder’s inequality, we get

L(u, v) =
∫

�

(
μg(x)|u|β + σ f (x)|v|β)

dx

≤ |μ|‖g‖∞‖u‖β

β + |σ |‖f ‖∞‖v‖β

β

≤ Cβ
∗
(|μ|‖g‖∞‖u‖β + |σ |‖f ‖∞‖v‖β

)

≤ Cβ
∗
[(|μ|‖g‖∞

) p
β–p +

(|σ |‖f ‖∞
) p

β–p
] β–p

p
∥
∥(u, v)

∥
∥β . (2.10)

From (2.8) and (2.10), it follows that

∥
∥(u, v)

∥
∥ ≥

[
k(p – q)

(β – q)Cβ
∗

] 1
β–p [(|μ|‖g‖∞

) p
β–p +

(|σ |‖f ‖∞
) p

β–p
]– 1

p . (2.11)

By the Sobolev embedding theorem and Hölder’s inequality, we obtain

H(u, v) =
∫

�

h(x)|u|a|v|b dx ≤ ‖h‖ β
β–q

‖u‖a
β‖v‖b

β ≤ ‖h‖ β
β–q

Cq
∗
∥
∥(u, v)

∥
∥q. (2.12)

From (2.9) and (2.12), it follows that

∥
∥(u, v)

∥
∥ ≤

[
β – q

k(β – p)
‖h‖ β

β–q
Cq

∗

] 1
p–q

. (2.13)

Combining (2.11) with (2.13), it yields that

(|μ|‖g‖∞
) p

β–p +
(|σ |‖f ‖∞

) p
β–p ≥

[
k(p – q)

(β – q)Cβ
∗

] p
β–p

[
k(β – p)

(β – q)Cq
∗‖h‖ β

β–q

] p
p–q

= θ0,

which is a contradiction. �

Lemma 2.3 The functional Jμ,σ is coercive and bounded below on Sμ,σ .

Proof For every (u, v) ∈ Sμ,σ , using (2.2), (2.5), and (2.12) yields

Jμ,σ (u, v) = k
(

1
p

–
1
β

)
∥
∥(u, v)

∥
∥p + λ

(
1
α

–
1
β

)

G(u, v) –
(

1
q

–
1
β

)

H(u, v)

≥ k
(

1
p

–
1
β

)
∥
∥(u, v)

∥
∥p –

(
1
q

–
1
β

)

‖h‖ β
β–q

Cq
∗
∥
∥(u, v)

∥
∥q. (2.14)
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Hence, Jμ,σ is coercive and bounded below on Sμ,σ . �

Lemma 2.4 Assume that (u0, v0) is a local minimizer of Jμ,σ on Sμ,σ and (u0, v0) /∈ S0
μ,σ ,

then J ′
μ,σ (u0, v0) = 0.

Proof The proof is similar to that of Theorem 2.3 in [7]. �

Lemma 2.5 We have
(1) if (u, v) ∈ S+

μ,σ , then H(u, v) > 0;
(2) if (u, v) ∈ S0

μ,σ , then H(u, v) > 0 and L(u, v) > 0;
(3) if (u, v) ∈ S–

μ,σ , then L(u, v) > 0.

Proof By using (2.6) and (2.7), we arrive at the conclusion immediately. �

By Lemmas 2.2–2.3, for any (μ,σ ) ∈ �θ0 , we obtain Sμ,σ = S+
μ,σ ∪ S–

μ,σ and Jμ,σ is coer-
cive and bounded below on S+

μ,σ and S–
μ,σ .

Define

εμ,σ = inf
(u,v)∈Sμ,σ

Jμ,σ (u, v), ε+
μ,σ = inf

(u,v)∈S+
μ,σ

Jμ,σ (u, v), ε–
μ,σ = inf

(u,v)∈S–
μ,σ

Jμ,σ (u, v),

and set

�θ∗ =
{

(μ,σ ) ∈R
2\{(0, 0)

}
: 0 <

(|μ|‖g‖∞
) p

β–p +
(|σ |‖f ‖∞

) p
β–p < θ∗},

where θ∗ = ( q
p )

p
p–q θ0 < θ0. Obviously, �θ∗ ⊂ �θ0 . Then the following result is established.

Lemma 2.6 If (μ,σ ) ∈ �θ∗ , then
(i) εμ,σ ≤ ε+

μ,σ < 0;
(ii) There exists η0 = η0(a, b,β , p,μ,σ ) > 0 such that ε–

μ,σ ≥ η0.

Proof (i) For (u, v) ∈ S+
μ,σ , using (2.6), we get

k(p – q)
β – q

∥
∥(u, v)

∥
∥p +

λ(α – q)
β – q

G(u, v) > L(u, v).

This combined with (2.5) yields

Jμ,σ (u, v) = k
(

1
p

–
1
q

)
∥
∥(u, v)

∥
∥p + λ

(
1
α

–
1
q

)

G(u, v) +
(

1
q

–
1
β

)

L(u, v)

<
k(q – p)(β – p)

pqβ

∥
∥(u, v)

∥
∥p +

λ(q – α)(β – α)
αqβ

G(u, v)

< 0.

Thus, εμ,σ ≤ ε+
μ,σ < 0.

(ii) For (u, v) ∈ S–
μ,σ , by (2.6) and (2.10), we obtain

∥
∥(u, v)

∥
∥p ≤ ∥

∥(u, v)
∥
∥p +

λ(α – q)
k(p – q)

G(u, v) <
(β – q)
k(p – q)

L(u, v)
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<
(β – q)
k(p – q)

Cβ
∗
[(|μ|‖g‖∞

) p
β–p +

(|σ |‖f ‖∞
) p

β–p
] β–p

p
∥
∥(u, v)

∥
∥β .

That is,

∥
∥(u, v)

∥
∥ >

(
k(p – q)

(β – q)Cβ
∗

) 1
β–p [(|μ|‖g‖∞

) p
β–p +

(|σ |‖f ‖∞
) p

β–p
]– 1

p . (2.15)

By using (2.15) and (2.14) of Lemma 2.3, it follows that

Jμ,σ (u, v)

≥ k
(

1
p

–
1
β

)
∥
∥(u, v)

∥
∥p –

(
1
q

–
1
β

)

‖h‖ β
β–q

Cq
∗
∥
∥(u, v)

∥
∥q

=
∥
∥(u, v)

∥
∥q

[

k
(

1
p

–
1
β

)
∥
∥(u, v)

∥
∥p–q –

(
1
q

–
1
β

)

‖h‖ β
β–q

Cq
∗

]

>
(

k(p – q)
(β – q)Cβ

∗

) q
β–p [(|μ|‖g‖∞

) p
β–p +

(|σ |‖h‖∞
) p

β–p
]– q

p

[
k(β – p)

pβ

×
(

k(p – q)
(β – q)Cβ

∗

) p–q
β–p ((|μ|‖g‖∞

) p
β–p +

(|σ |‖h‖∞
) p

β–p
)– p–q

p –
(

1
q

–
1
β

)

‖h‖ β
β–q

Cq
∗

]

≥ η0 > 0,

due to (μ,σ ) ∈ �θ∗ . �

Fix (u, v) ∈ X with L(u, v) > 0, define

ϕ(t) = ktp–q∥∥(u, v)
∥
∥p + λtα–qG(u, v) – tβ–qL(u, v), t ≥ 0. (2.16)

Obviously, ϕ(0) = 0, limt→+∞ ϕ(t) = –∞, ϕ′(t) = tp–q–1g(t), where

g(t) = k(p – q)
∥
∥(u, v)

∥
∥p + λ(α – q)tα–pG(u, v) – (β – q)tβ–pL(u, v).

When λ > 0, denote

t∗ =
[

λ(α – p)(α – q)G(u, v)
(β – q)(β – p)L(u, v)

] 1
β–α

> 0.

It is easy to see that g(t) is increasing on [0, t∗) and decreasing on (t∗, +∞). Note that
g(0) = k(p–q)‖(u, v)‖p > 0 and limt→+∞ g(t) = –∞, so there exists a unique tλ > t∗ such that
g(tλ) = 0. Moreover, ϕ(t) reaches the maximum at tλ, is increasing on [0, tλ) and decreasing
on (tλ, +∞).

When λ = 0, we have

tλ = t0 =
[

k(p – q)‖(u, v)‖p

(β – q)L(u, v)

] 1
β–p

> 0. (2.17)

It is easy to show that tλ ≥ t0 for λ ≥ 0, thus

ϕ(tλ) ≥ ϕ(t0) ≥ tp–q
0

k(β – p)
β – q

∥
∥(u, v)

∥
∥p. (2.18)
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Then the following lemma holds.

Lemma 2.7 Assume (u, v) ∈ X with L(u, v) > 0 and (μ,σ ) ∈ �θ∗ , we obtain
(i) if H(u, v) ≤ 0, then there exists a unique 0 < tλ < t– such that (t–u, t–v) ∈ S–

μ,σ and

Jμ,σ
(
t–u, t–v

)
= sup

t≥0
Jμ,σ (tu, tv);

(ii) if H(u, v) > 0, then there exist unique 0 < t+ < tλ < t– such that (t+u, t+v) ∈ S+
μ,σ ,

(t–u, t–v) ∈ S–
μ,σ and

Jμ,σ
(
t+u, t+v

)
= inf

0≤t≤tλ
Jμ,σ (tu, tv), Jμ,σ

(
t–u, t–v

)
= sup

t≥0
Jμ,σ (tu, tv).

Proof (i) If H(u, v) ≤ 0, by (2.16), there exists a unique 0 < tλ < t– such that ϕ(t–) = H(u, v)
and ϕ′(t–) < 0. Note that

μ,σ
(
t–u, t–v

)
= k

(
t–)p∥∥(u, v)

∥
∥p + λ

(
t–)αG(u, v) –

(
t–)βL(u, v) –

(
t–)qH(u, v)

=
(
t–)q[

ϕ
(
t–)

– H(u, v)
]

= 0

and

k(p – q)
(
t–)p∥∥(u, v)

∥
∥p + λ(α – q)

(
t–)αG(u, v) – (β – q)

(
t–)βL(u, v) =

(
t–)q+1

ϕ′(t–)
< 0.

Thus, (t–u, t–v) ∈ S–
μ,σ . It is easy to derive

d
dt

Jμ,σ (tu, tv) = tq–1[ϕ(t) – H(u, v)
]
.

Hence, Jμ,σ (tu, tv) increases for t ∈ [0, t–) and decreases for t ∈ (t–, +∞). This implies
Jμ,σ (t–u, t–v) = supt≥0 Jμ,σ (tu, tv).

(ii) If H(u, v) > 0, it follows from (2.10), (2.12), (2.17), and (2.18) that

ϕ(0) = 0 < H(u, v) ≤ ‖h‖ β
β–q

Cq
∗
∥
∥(u, v)

∥
∥q < ϕ(t0) ≤ ϕ(tλ)

for (μ,σ ) ∈ �θ0 . Hence, there exist unique t+, t– > 0 such that t+ < tλ < t–, ϕ(t+) = H(u, v) =
ϕ(t–), ϕ′(t–) < 0 < ϕ′(t+). Similar to the argument in (i), we get (t+u, t+v) ∈ S+

μ,σ , (t–u, t–v) ∈
S–

μ,σ , and

Jμ,σ (tu, tv) ≥ Jμ,σ
(
t+u, t+v

)
, ∀t ∈ [

0, t–]
,

Jμ,σ
(
t–u, t–v

) ≥ Jμ,σ (tu, tv), ∀t ∈ [t+, +∞).

Note that Jμ,σ (t–u, t–v) ≥ ε–
μ,σ > 0. Thus

Jμ,σ
(
t+u, t+v

)
= inf

0≤t≤tλ
Jμ,σ (tu, tv), Jμ,σ

(
t–u, t–v

)
= sup

t≥0
Jμ,σ (tu, tv).

So we arrive at the conclusion. �
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Fix (u, v) ∈ X with H(u, v) > 0, define

ϕ̄(t) = ktp–β
∥
∥(u, v)

∥
∥p + λtα–βG(u, v) – tq–βH(u, v), t > 0. (2.19)

Obviously, limt→0+ ϕ̄(t) = –∞ and limt→+∞ ϕ̄(t) = 0, ϕ̄′(t) = tq–β–1ḡ(t), where

ḡ(t) = k(p – β)tp–q∥∥(u, v)
∥
∥p + λ(α – β)tα–qG(u, v) + (β – q)H(u, v).

Clearly, limt→0+ ḡ(t) = (β – q)H(u, v) > 0, limt→+∞ ḡ(t) = –∞ and ḡ(t) decreases on (0, +∞).
Then there exists a unique t̄λ > 0 such that ḡ(t̄λ) = 0. Moreover, ϕ̄(t) reaches the maximum
at t̄λ, is increasing on (0, t̄λ) and decreasing on (t̄λ, +∞). In particular, when λ = 0, we have

t̄λ = t̄0 =
[

(β – q)H(u, v)
k(β – p)‖(u, v)‖p

] 1
p–q

> 0. (2.20)

It is easy to prove that t̄0 ≥ t̄λ for λ ≥ 0, thus

ϕ̄(t̄λ) ≥ ϕ̄(t̄0) ≥ (t̄0)q–β p – q
β – p

H(u, v). (2.21)

Then the following lemma holds.

Lemma 2.8 Assume (u, v) ∈ X with H(u, v) > 0 and (μ,σ ) ∈ �θ∗ , we obtain
(i) if L(u, v) ≤ 0, then there exists a unique 0 < t̄+ < t̄λ such that (t̄+u, t̄+v) ∈ S+

μ,σ and

Jμ,σ
(
t̄+u, t̄+v

)
= inf

t≥0
Jμ,σ (tu, tv);

(ii) if L(u, v) > 0, then there exist unique 0 < t̄+ < t̄λ < t̄– such that (t̄+u, t̄+v) ∈ S+
μ,σ ,

(t̄–u, t̄–v) ∈ S–
μ,σ and

Jμ,σ
(
t̄+u, t̄+v

)
= inf

0≤t≤t̄λ
Jμ,σ (tu, tv), Jμ,σ

(
t̄–u, t̄–v

)
= sup

t≥0
Jμ,σ (tu, tv).

Proof Using (2.19), (2.20), and (2.21), similar to the proof of Lemma 2.7, we can get the
conclusion of Lemma 2.8. �

3 Proof of Theorem 1.1
Throughout this section, we still assume that all the conditions in Theorem 1.1 hold.

To prove Theorem 1.1, we first prove the following two propositions.

Proposition 3.1 Assume (μ,σ ) ∈ �θ∗ , then Jμ,σ has a minimizer (u+
0 , v+

0 ) in S+
μ,σ and sat-

isfies
(1) Jμ,σ (u+

0 , v+
0 ) = ε+

μ,σ ;
(2) (u+

0 , v+
0 ) is a solution of problem (1.1) such that u+

0 �≡ 0, v+
0 �≡ 0.

Proof By Lemma 2.3, we have Jμ,σ is coercive and bounded below on S+
μ,σ . Hence, there

exists a minimizing sequence {(un, vn)} ⊂ S+
μ,σ , bounded in X. Since X is reflexive, there is

a subsequence, still denoted by {(un, vn)} and (u+
0 , v+

0 ) ∈ X such that, as n → ∞,

un ⇀ u+
0 in W0; un → u+

0 in Lr(�);
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vn ⇀ v+
0 in W0; vn → v+

0 in Lr(�)

for all r ∈ [1, p∗
s ). By [3, Theorem 1.2.7], there exists ρ(x) ∈ Lr(�) such that

for all n,
∣
∣un(x)

∣
∣ ≤ ρ(x),

∣
∣vn(x)

∣
∣ ≤ ρ(x) a.e. in �;

un → u+
0 , vn → v+

0 a.e. in � as n → ∞

for all r ∈ [1, p∗
s ). By the dominated convergence theorem, we obtain

lim
n→∞ H(un, vn) = H

(
u+

0 , v+
0
)
, lim

n→∞ L(un, vn) = L
(
u+

0 , v+
0
)
.

In view of (un, vn) ∈ S+
μ,σ , then

Jμ,σ (un, vn) = k
(

1
p

–
1
β

)
∥
∥(un, vn)

∥
∥p + λ

(
1
α

–
1
β

)

G(un, vn) +
(

1
β

–
1
q

)

H(un, vn)

>
(

1
β

–
1
q

)

H(un, vn),

and

lim
n→∞Jμ,σ (un, vn) = ε+

μ,σ < 0.

It follows H(u+
0 , v+

0 ) > 0, in particular, u+
0 �≡ 0, v+

0 �≡ 0. Next, we show that un → u+
0 in W0,

vn → v+
0 in W0. If not, then either

∥
∥u+

0
∥
∥ < lim inf

n→∞ ‖un‖ or
∥
∥v+

0
∥
∥ < lim inf

n→∞ ‖vn‖. (3.1)

Fix (u, v) ∈ X with H(u, v) > 0, denote

ψ(u,v)(t) = ϕ̄(t) – L(u, v), t > 0,

where ϕ̄(t) is given by (2.19). Obviously, limt→0+ ψ(u,v)(t) = –∞, limt→+∞ ψ(u,v)(t) = –L(u, v),
ψ ′

(u,v)(t) = ϕ̄′(t), then we get that ϕ(u,v)(t) reaches the maximum at t̄λ, is increasing on (0, t̄λ)
and decreasing on (t̄λ, +∞). Note that H(u+

0 , v+
0 ) > 0, by Lemma 2.8, there exists a unique

0 < t+
0 < t̄λ(u+

0 , v+
0 ) such that (t+

0 u+
0 , t+

0 v+
0 ) ∈ S+

μ,σ and

Jμ,σ
(
t+
0 u+

0 , t+
0 v+

0
)

= inf
0≤t≤t̄λ(u+

0 ,v+
0 )
Jμ,σ

(
tu+

0 , tv+
0
)
. (3.2)

Note that (t+
0 u+

0 , t+
0 v+

0 ) ∈ S+
μ,σ ⊂ Sμ,σ and the definition of ϕ̄(t), it is easy to derive

ψ(u+
0 ,v+

0 )
(
t+
0
)

= ϕ̄
(
t+
0
)

– L
(
u+

0 , v+
0
)

= 0. (3.3)

It follows from (3.1) and (3.3) that

ψ(un ,vn)
(
t+
0
)

> 0 for large enough n.
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Since (un, vn) ∈ S+
μ,σ , we get t̄λ(un, vn) > 1. Moreover, we can deduce that ψ(un ,vn)(1) = ϕ̄(1)–

L(un, vn) = 0 and ψ(un ,vn)(t) increases on (0, t̄λ(un, vn)). This implies, for all n, ψ(un ,vn)(t) ≤
0,∀t ∈ (0, 1]. Thus

1 < t+
0 < t̄λ

(
u+

0 , v+
0
)
. (3.4)

It follows from (3.1), (3.2), and (3.4) that

Jμ,σ
(
t+
0 u+

0 , t+
0 v+

0
) ≤ Jμ,σ

(
u+

0 , v+
0
)

< lim
n→∞Jμ,σ (un, vn) = ε+

μ,σ ,

which is a contradiction. Thus

un → u+
0 in W0, vn → v+

0 in W0.

This implies

Jμ,σ (un, vn) → Jμ,σ
(
u+

0 , v+
0
)

= ε+
μ,σ as n → ∞.

Namely, (u+
0 , v+

0 ) is a minimizer of Jμ,σ on S+
μ,σ . By Lemma 2.4, (u+

0 , v+
0 ) is a solution of

problem (1.1) such that u+
0 �≡ 0, v+

0 �≡ 0. �

Proposition 3.2 Assume (μ,σ ) ∈ �θ∗ , then Jμ,σ has a minimizer (u–
0 , v–

0 ) in S–
μ,σ and sat-

isfies
(1) Jμ,σ (u–

0 , v–
0 ) = ε–

μ,σ ;
(2) (u–

0 , v–
0 ) is a solution of problem (1.1) such that (u–

0 , v–
0 ) �≡ (0, 0).

Proof Since Jμ,σ is coercive and bounded below on S–
μ,σ , there exists a minimizing se-

quence {(un, vn)} ⊂ S–
μ,σ , bounded in X. Note that X is reflexive, then there is a subse-

quence, still denoted by {(un, vn)} and (u–
0 , v–

0 ) ∈ X such that, as n → ∞,

un ⇀ u–
0 in W0; un → u–

0 in Lr(�);

vn ⇀ v–
0 in W0; vn → v–

0 in Lr(�)

for all r ∈ [1, p∗
s ). By [3, Theorem 1.2.7], there exists �(x) ∈ Lr(�) such that

for all n,
∣
∣un(x)

∣
∣ ≤ �(x),

∣
∣vn(x)

∣
∣ ≤ �(x) a.e. in �;

un → u–
0 , vn → v–

0 a.e. in � as n → ∞

for all r ∈ [1, p∗
s ). By the dominated convergence theorem, we obtain

lim
n→∞ H(un, vn) = H

(
u–

0 , v–
0
)
, lim

n→∞ L(un, vn) = L
(
u–

0 , v–
0
)
.

Moreover, by (2.6), we have

L(un, vn) >
k(p – q)
β – q

∥
∥(un, vn)

∥
∥p. (3.5)
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Using (2.10) and (3.5), there exists a positive constant c such that

L(un, vn) > c > 0.

This implies

L
(
u–

0 , v–
0
)

> 0.

In particular, (u–
0 , v–

0 ) �≡ (0, 0). Next, we show that un → u–
0 in W0, vn → v–

0 in W0. If not,
then either

∥
∥u–

0
∥
∥ < lim inf

n→∞ ‖un‖ or
∥
∥v–

0
∥
∥ < lim inf

n→∞ ‖vn‖. (3.6)

By Lemma 2.7, there exists a unique t–
0 > tλ(u–

0 , v–
0 ) > 0 such that (t–

0 u–
0 , t–

0 v–
0 ) ∈ S–

μ,σ . In view
of (un, vn) ∈ S–

μ,σ , it follows Jμ,σ (tun, tvn) ≤ Jμ,σ (un, vn) for t ≥ 0. By (3.6), we have

Jμ,σ
(
t–
0 u–

0 , t–
0 v–

0
)

< lim inf
n→∞ Jμ,σ

(
t–
0 un, t–

0 vn
) ≤ lim

n→∞Jμ,σ (un, vn) = ε–
μ,σ ,

which is a contradiction. Thus

un → u–
0 in W0, vn → v–

0 in W0.

This implies

Jμ,σ (un, vn) → Jμ,σ
(
u–

0 , v–
0
)

= ε–
μ,σ as n → ∞.

Namely, (u–
0 , v–

0 ) is a minimizer of Jμ,σ on S–
μ,σ . By Lemma 2.4, (u–

0 , v–
0 ) is a solution of

problem (1.1) such that (u–
0 , v–

0 ) �≡ (0, 0). �

Proof of Theorem 1.1 By Propositions 3.1 and 3.2, we obtain that when (μ,σ ) ∈ �θ∗ , prob-
lem (1.1) has at least two solutions (u+

0 , v+
0 ) and (u–

0 , v–
0 ) such that (u+

0 , v+
0 ) ∈ S+

μ,σ , (u–
0 , v–

0 ) ∈
S–

μ,σ , where u+
0 �≡ 0, v+

0 �≡ 0 and (u–
0 , v–

0 ) �≡ (0, 0). Note that S+
μ,σ ∩ S–

μ,σ = ∅, then these two
solutions are distinct. This finishes the proof. �

4 Proof of Theorem 1.2
Throughout this section, we assume that all the conditions in Theorem 1.2 hold.

Since μ = σ = 0, then (2.2) becomes

J (u, v) = J0,0(u, v) =
k
p
∥
∥(u, v)

∥
∥p +

λ

α
G(u, v) –

1
q

H(u, v), (4.1)

where α, G(u, v), q, H(u, v) are as in (2.3).
If (H3) holds, we derive from Hölder’s inequality and (1.6) that

H(u, v) =
∫

�

h(x)|u|a|v|b dx ≤ ‖h‖ p∗s
p∗s –q

Cq
p∗

s

∥
∥(u, v)

∥
∥q. (4.2)
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If (H4) holds, similarly, we have

H(u, v) =
∫

�

h(x)|u|a|v|b dx ≤ ‖h‖∞Cq
q
∥
∥(u, v)

∥
∥q. (4.3)

The proof of Theorem 1.2 is mainly dependent on the following mountain pass theorem.

Lemma 4.1 ([27]) Let X be a real Banach space, suppose that I ∈ C1(X,R) satisfies (PS)
with I(0) = 0. In addition,

(A1) there exist positive numbers δ and d such that I(u) ≥ d if ‖u‖X = δ;
(A2) there exists v ∈ X such that ‖v‖X > δ and I(v) < 0.
Then there exists a critical value e ≥ d for I . Moreover, e can be characterized as

e = inf
�∈�

max
0≤t≤1

I
(
�(t)

)
,

where

� =
{
� ∈ C

(
[0, 1], X

) | �(0) = 0,�(1) = v
}

.

Next, we will prove that the functional J defined by (4.1) satisfies (PS).
Recall that we say J satisfies the (PS) condition at the level c ∈ R (shortly: J satisfies

(PS)c) if every sequence {(un, vn)} ⊂ X along with J (un, vn) → c and J ′(un, vn) → 0 as n →
∞ has a converging subsequence (in X). We say J satisfies the (PS) condition (shortly: J
satisfies (PS)) if J satisfies (PS)c for each c ∈R.

Lemma 4.2 Any (PS)c sequence {(un, vn)} for J is bounded in X.

Proof Let the sequence {(un, vn)} ⊂ X satisfy

J (un, vn) → c, J ′(un, vn) → 0 as n → ∞. (4.4)

If (H ′
0) and (H3) are true, by (4.2), we take s > α and obtain that, for large n,

c + 1 +
∥
∥(un, vn)

∥
∥

≥ J (un, vn) – s–1J ′(un, vn)(un, vn) ≥ λ

(
1
α

–
1
s

)

G(un, vn) +
(

1
s

–
1
q

)

H(un, vn)

≥ λ

2τ

(
1
α

–
1
s

)
∥
∥(un, vn)

∥
∥α +

(
1
s

–
1
q

)

‖h‖ p∗s
p∗s –q

Cq
p∗

s

∥
∥(un, vn)

∥
∥q. (4.5)

This implies that {(un, vn)} is bounded in X.
If (H ′

0) and (H4) hold, substituting H(un, vn) in (4.5) by (4.3), we conclude that {(un, vn)}
is bounded in X. This finishes the proof. �

In view of the sequence {(un, vn)} given by (4.4) is a bounded sequence in X, there is a
subsequence, still denoted by {(un, vn)} and (u, v) ∈ X such that ‖(un, vn)‖ ≤ M,‖(u, v)‖ ≤



Wei et al. Boundary Value Problems  (2018) 2018:78 Page 15 of 18

M with some constant M > 0 and, as n → ∞,

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ u in W0, un → u in Lr(�),∀r ∈ [1, p∗
s );

vn ⇀ v in W0, vn → v in Lr(�),∀r ∈ [1, p∗
s );

un → u, vn → v a.e. in �.

(4.6)

Lemma 4.3 Let {(un, vn)} be a (PS)c sequence and satisfy (4.6). Then the following state-
ments hold:

(i) (un, vn) → (u, v) in X as n → ∞, that is, J satisfies (PS).
(ii) (u, v) ∈ X is a critical point for J .

Proof (i)

〈
J ′(un, vn)(un – u, 0)

〉
= Pn –

a
q

∫

�

h(x)|un|a–2un(un – u)|vn|b dx,

where

Pn = M
(‖un‖p)

∫

Q

|ωn|p–2ωn(ωn – ω)
|x – y|N+ps dx dy, ωn = un(x) – un(y),ω = u(x) – u(y).

Obviously, 〈J ′(un, vn)(un – u, 0)〉 → 0 as n → ∞ since J ′(un, vn) → 0. By the dominated
convergence theorem, we obtain

∫

�

h(x)|un|a–2un(un – u)|vn|b dx → 0 as n → ∞.

This implies Pn → 0asn → ∞. Moreover, the fact un ⇀ u in W0 implies Qn → 0, where
Qn = M(‖un‖p)

∫

Q
|ω|p–2ω(ωn–ω)

|x–y|N+ps dx dy.
Therefore,

Pn – Qn = M
(‖un‖p)

∫

Q

[|ωn|p–2ωn – |ω|p–2ω](ωn – ω)
|x – y|N+ps dx dy → 0 as n → ∞. (4.7)

Notice that there are the well-known vector inequalities given by

〈|η|p–2η – |ξ |p–2ξ ,η – ξ
〉 ≥ Sp|η – ξ |p, p ≥ 2,

〈|η|p–2η – |ξ |p–2ξ ,η – ξ
〉 ≥ S̃p|η – ξ |2(|η| + |ξ |)p–2, 1 < p < 2,

(4.8)

for all η, ξ ∈ R
N , where Sp, S̃p > 0 are constants depending only on p. Combining (4.7) with

(4.8), it follows

un → u in W0 as n → ∞.

Similarly, we can also prove

vn → v in W0 as n → ∞.
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Therefore,

(un, vn) → (u, v) in X as n → ∞.

This implies that J satisfies (PS).
(ii) Note that J ∈ C1(X,R), using (un, vn) to be a (PS)c sequence and (i) of Lemma 4.3,

we can prove that (u, v) ∈ X is a critical point for J . �

Proof of Theorem 1.2 By Lemmas 4.2–4.3, we have that the functional J satisfies (PS).
Next, we prove that J satisfies (A1) and (A2). By (4.2) and (4.3), we get

J (u, v) ≥ k
p
∥
∥(u, v)

∥
∥p +

λ

α
G(u, v) –

l
q
∥
∥(u, v)

∥
∥q

≥ k
p
∥
∥(u, v)

∥
∥p +

λ

2τ α

∥
∥(u, v)

∥
∥α –

l
q
∥
∥(u, v)

∥
∥q,

where l = max{Cq
p∗

s
‖h‖ p∗s

p∗s –q
, Cq

q‖h‖∞}. Denote

φ(z) = zp
(

k
p

+
b

2τ α
zα–p –

l
q

zq–p
)

, z > 0.

It is easy to verify that there exist z1, d > 0 such that φ(z1) ≥ d. Let δ = z1, we get J (u, v) ≥ d
if ‖(u, v)‖ = δ. Thus, condition (A1) is satisfied.

Furthermore, we verify (A2). By (H3) or (H4), we can choose u0, v0 ∈ C∞
0 (�), u0 �≡ 0, v0 �≡

0, such that ‖u0‖ = ‖v0‖ = 1 and
∫

�
h(x)|u0|a|v0|b dx > 0. Let

J (tu0, tv0) = tpγ (t), γ (t) = B1 + λB2tα–p – B3tq–p, t ≥ 0, (4.9)

where

B1 =
2k
p

> 0, B2 =
2
α

> 0, B3 =
∫

�

h(x)|u0|a|v0|b dx > 0.

Then there exist λ0 > 0 and large tλ > 2– 1
p δ such that J (tλu0, tλv0) < 0 for λ ∈ (0,λ0),

where δ is in (A1). Let q0 = tλu0, w0 = tλv0, then ‖(q0, w0)‖ > δ and J (q0, w0) < 0. Hence,
by Lemma 4.1, there exists (u1, v1) ∈ X with (u1, v1) ≥ d > 0 which is a solution of problem
(1.1) under the assumptions in Theorem 1.2. In addition, it is easy to verify u1 �≡ 0, v1 �≡ 0.
We now prove the second part of Theorem 1.2. If (u, v) is a nontrivial solution of problem
(1.1), combining (4.2)–(4.3) with Young’s inequality, we get

k
∥
∥(u, v)

∥
∥p +

λ

2τ

∥
∥(u, v)

∥
∥α ≤ k

∥
∥(u, v)

∥
∥p + λG(u, v) =

∫

�

h(x)|u|a|v|b dx

≤ l
∥
∥(u, v)

∥
∥q ≤ k

∥
∥(u, v)

∥
∥p +

λ1

2τ

∥
∥(u, v)

∥
∥α , (4.10)

where l = max{Cq
p∗

s
‖h‖ p∗s

p∗s –q
, Cq

q‖h‖∞}, λ1 = 2τ ( q–p
α–p )( α–q

α–p )
α–q
q–p l

α–p
q–p k– α–q

q–p . This implies 0 < λ ≤
λ1. In other words, if λ > λ1, there is no nontrivial solution of problem (1.1). This finishes
the proof. �



Wei et al. Boundary Value Problems  (2018) 2018:78 Page 17 of 18

Acknowledgements
The authors thank the anonymous referees for invaluable comments and suggestions which improved the presentation
of this manuscript.

Funding
This work is supported by the National Natural Science Foundation of China (No. 11571092) and China Postdoctoral
Science Foundation (No. 2017M611664).

Abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Each of the authors contributed to each part of this study equally, all authors read and approved the final manuscript.

Author details
1College of Science, Hohai University, Nanjing, P.R. China. 2College of Science, Nanjing Audit University, Nanjing,
P.R. China. 3College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao,
P.R. China. 4College of Science, Nanjing University of Posts and Telecommunications, Nanjing, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 February 2018 Accepted: 9 May 2018

References
1. Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput.

Math. Appl. 49(1), 85–93 (2005)
2. Applebaum, D.: Lévy processes-from probability of finance quantum groups. Not. Am. Math. Soc. 51, 1336–1347

(2004)
3. Badiale, M., Serra, E.: Semilinear Elliptic Equations for Beginners: Existence Results Via the Variational Approach.

Springer, London (2010) https://doi.org/10.1007/978-0-85729-227-8
4. Barrios, B., Colorado, E., De Pablo, A., Sanchez, U.: On some critical problems for the fractional Laplacian operator.

J. Differ. Equ. 252, 6133–6162 (2012)
5. Brändle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave-convex elliptic problem involving the fractional

Laplacian. Proc. R. Soc. Edinb. A 143, 39–71 (2013)
6. Brown, K.J., Wu, T.F.: A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight

function. J. Math. Anal. Appl. 337, 1326–1336 (2008)
7. Brown, K.J., Zhang, Y.: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function.

J. Differ. Equ. 193, 481–499 (2003)
8. Caffarelli, L.: Nonlocal equations, drifts and games. In: Nonlinear Partial Differential Equations. Abel Symposia, vol. 7,

pp. 37–52 (2012)
9. Chen, C.S., Chen, Q.: Infinitely many solutions for p-Kirchhoff equation with concave-convex nonlinearities in R

N .
Math. Methods Appl. Sci. 39, 1493–1504 (2016)

10. Chen, J.W., Deng, B.S.: The Nehari manifold for non-local elliptic operators involving concave-convex nonlinearities.
Z. Angew. Math. Phys. 66, 1387–1400 (2015)

11. Chen, J.W., Deng, B.S.: The Nehari manifold for a fractional p-Laplacian system involving concave-convex
nonlinearities. Nonlinear Anal., Real World Appl. 27, 80–92 (2016)

12. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136,
521–573 (2012)

13. Dong, X.Y., Bai, Z.B., Zhang, S.Q.: Positive solutions to boundary value problems of p-Laplacian with fractional
derivative. Bound. Value Probl. 2017, Article ID 5 (2017). https://doi.org/10.1186/s13661-016-0735-z

14. Figueiredo, G.M.: Existence of a positive solutions for a Kirchhoff equation with critical growth via truncation
argument. J. Math. Anal. Appl. 401(2), 706–713 (2013)

15. Goyal, S., Sreenadh, K.: A Nehari manifold for non-local elliptic operator with concave-convex non-linearities and
sign-changing weight function. Proc. Math. Sci. 125(4), 545–558 (2015)

16. Hsu, T.S.: Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities.
Nonlinear Anal. 71, 2688–2698 (2009)

17. Hsu, T.S., Lin, H.L.: Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities. Proc. R.
Soc. Edinb. A 139(6), 1163–1177 (2009)

18. Lu, C.N., Fu, C., Yang, H.W.: Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation
effect in stratified fluid and conservation laws as well as exact solutions. Appl. Math. Comput. 327, 104–116 (2018)

19. Lu, F.Y.: The Nehari manifold and application to a semilinear elliptic system. Nonlinear Anal. 71, 3425–3433 (2009)
20. Molica Bisci, G., Repovs, D.: Higher nonlocal problems with bounded potential. J. Math. Anal. Appl. 420, 591–601

(2014)

https://doi.org/10.1007/978-0-85729-227-8
https://doi.org/10.1186/s13661-016-0735-z


Wei et al. Boundary Value Problems  (2018) 2018:78 Page 18 of 18

21. Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in R
N involving nonlocal operators. Rev. Mat. Iberoam. 32(1),

1–22 (2016)
22. Pucci, P., Xiang, Q.M., Zhang, B.L.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations

involving the fractional p-Laplacian in R
N . Calc. Var. 54, 2785–2806 (2015)

23. Pucci, P., Xiang, Q.M., Zhang, B.L.: Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations.
Adv. Nonlinear Anal. 5(1), 27–55 (2016)

24. Rasouli, S.H., Afrouzi, G.A.: The Nehari manifold for a class of concave-convex elliptic systems involving the
p-Laplacian and nonlinear boundary condition. Nonlinear Anal. 73, 3390–3401 (2010)

25. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898
(2012)

26. Song, H.X., Chen, C.S., Yan, Q.L.: Existence of multiple solutions for a p-Laplacian system in R
N with sign-changing

weight functions. Can. Math. Bull. 59(2), 417–434 (2016)
27. Struwe, M.: Variational methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,

3rd edn. A Series of Modern Surveys in Mathematics, vol. 34. Springer, New York (2000).
https://doi.org/10.1007/978-3-662-04194-9

28. Teng, K.M.: Two nontrivial solutions for hemivariational inequalities driven by nonlocal elliptic operators. Nonlinear
Anal., Real World Appl. 14, 867–874 (2013)

29. Wang, L., Zhang, B.L.: Infinitely many solutions for Schrödinger–Kirchhoff type equations involving the fractional
p-Laplacian and critical exponent. Electron. J. Differ. Equ. 2016, Article ID 339 (2016)

30. Wei, Y., Su, X.: Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian. Calc. Var.
Partial Differ. Equ. 52(1–2), 95–124 (2015)

31. Wu, T.F.: The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions. Nonlinear
Anal. 68, 1733–1745 (2008)

32. Wu, T.F.: On semilinear elliptic equations involving critical Sobolev exponents and sign-changing. Commun. Pure
Appl. Anal. 7, 383–405 (2008)

33. Xiang, Q.M., Zhang, B.L., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the nonlocal fractional
p-Laplacian. J. Math. Anal. Appl. 424, 1021–1041 (2015)

34. Yuan, Q., Chen, C.S., Yang, H.W.: Existence of positive solutions for a Schrödinger–Poisson system with bounded
potential and weighted functions in R

3 . Bound. Value Probl. 2017, Article ID 151 (2017).
https://doi.org/10.1186/s13661-017-0886-6

https://doi.org/10.1007/978-3-662-04194-9
https://doi.org/10.1186/s13661-017-0886-6

	Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
	Abstract
	MSC
	Keywords

	Introduction
	Nehari manifold
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


