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Abstract
This article mainly studies a collocation spectral method for two-dimensional (2D)
Sobolev equations. To this end, a collocation spectral model based on the Chebyshev
polynomials for the 2D Sobolev equations is first established. And then, the existence,
uniqueness, stability, and convergence of the collocation spectral numerical solutions
are discussed. Finally, some numerical experiments are provided to verify the
corrections of theoretical results. This implies that the collocation spectral model is
very effective for solving the 2D Sobolev equations.
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1 Introduction
Because any bounded closed domain � in R

2 can be approximately filled with several
rectangles [ai, bi] × [ci, di] (i = 1, 2, . . . , I), for convenience and without losing universality,
let us just assume that � = [a, b]× [c, d] ⊂R

2, whose boundary is denoted by ∂�, consider
the following two-dimensional (2D) Sobolev equations:

⎧
⎪⎪⎨

⎪⎪⎩

ut – ε�ut – γ�u = f (x, y, t), (x, y, t) ∈ � × [0, T],

u(x, y, t) = ϕ(x, y, t), (x, y, t) ∈ ∂� × [0, T],

u(x, y, 0) = u0(x, y), (x, y) ∈ �,

(1)

where ut = ∂u/∂t, �u = ∂2u/∂x2 +∂2u/∂y2, �ut = ∂2ut/∂x2 +∂2ut/∂y2, T is the total time, ε
and γ are two given positive constants, f (x, y, t) is given source term, u0(x, y) and ϕ(x, y, t)
are initial and boundary value functions, respectively. For the sake of convenience, but
without loss of generality, we assume ϕ(x, y, t) = 0 in the following analysis.

The Sobolev equations hold very significant physical background so that they have be-
come a class of important evolution partial differential equations (PDEs) and have been
successfully used to many numerical simulations in mathematical and physical problems,
such as the exchange in different media (see [1]) and the moisture migration in soil (see
[2]). In particular, the Sobolev equations can be used to depict the porous phenomena
saturated into rocks with cracks (see [3, 4]). However, the Sobolev equations in the real-
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world problems usually include the complex known data, such as the complicated initial
and boundary value conditions, or the intricate source term, or the discontinuous coef-
ficients, so that they have no analytic solution. Thus, they have to depend on numerical
solutions.

At present, finite difference scheme (FDS), finite element method (FEM), finite volume
element method (FVEM), and spectral method are considered to be four well-known nu-
merical methods. By comparison, the spectral method can attain higher accuracy be-
cause it adopts Fourier and orthogonal polynomials to approximate unknown function,
but other numerical methods use ordinary polynomials or difference quotient. Especially,
with the rapid development of the electronic computers, the spectral method has achieved
great success in many applied fields (see, e.g., [5, 6]). The spectral method is a weighted
residual way for PDEs and is usually classified as the Galerkin spectral method, the collo-
cation spectral method (CSM), and the spectral element method, which are used to solve
the second-order elliptic, parabolic, hyperbolic, hydromechanics PDEs, and so on (see [4–
10]).

Although FDS, FEM, and FVEM have been used to solve the Sobolev equations (see
[3, 4, 10–13]), the spectral method, especially CSM, has yet not been used to solve the
2D Sobolev equations, except a Fourier spectral method has been used to solve the one-
dimensional Sobolev equations in [14]. Therefore, in this article, we first develop a CSM
for the 2D Sobolev equations. And then, we provide the existence, uniqueness, stability,
and convergence for its CSM solutions. Finally, we give some numerical experiments to
verify the correctness of theoretical results. Moreover, it is shown that the CSM scheme
is very effective for solving the 2D Sobolev equations.

The rest of this article is arranged as follows. In Sect. 2, we first review the basic theory
of spectral-collocation method and some Sobolev spaces. And then, in Sect. 3, we build
the CSM scheme for the 2D Sobolev equations and analyze the existence, uniqueness,
stability, and convergence of the CSM solutions. Next, in Sect. 4, we use some numerical
experiments to verify that the results of numerical computations accord with the theoreti-
cal analysis and to certify that the CSM scheme is very efficient for solving the 2D Sobolev
equations. Finally, we offer the main conclusions and discussion in Sect. 5.

2 The basic theory of CSM and some Sobolev spaces
2.1 The basic theory of spectral-collocation method
The rationale of the spectral methods is to approximate the solution u of PDE with a fi-
nite sum uN . In CSM, the approximate function uN ∈ PN is denoted by its values at the
Gauss-type interpolation points. In this study, we shall adopt the more common points,
i.e., the so-called Chebyshev–Gauss–Lobatto (CGL) points (see [6]), as the interpolation
nodes.

The Chebyshev polynomials are some special Jacobi polynomials, which are orthogonal
with the Chebyshev weight function ω(x) = 1/

√
1 – x2 over [–1, 1], namely

∫ 1

–1
Tm(x)Tn(x)ω(x) dx = γnδm,n,

where γn = ‖Tn‖2
ω =

∫ 1
–1 T2

n (x)ω(x) dx.
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Let {xj}N
j=0 and {yk}N

k=0 be two sets of space nodes, i.e., the CGL points in x and y direc-
tions, respectively, and {ωk}N

k=0 be a set of weights. Then they are, respectively, defined
by

xk = – cos
πk
N

, yk = – cos
kπ

N
, ωk =

π

ckN
, 0 ≤ k ≤ N , (2)

where c0 = cN = 2 and ck = 1 (k = 1, 2, . . . , N – 1). They hold the following property (see,
e.g., [5]).

Theorem 1 Let {xk}N
k=0, {yk}N

k=0, and {ωk}N
k=0 be the sets of CGL quadrature nodes and

weights, respectively. Then there holds

∫ 1

–1

∫ 1

–1
p(x, y)ω(x)ω(y) dx dy =

N∑

j=0

N∑

k=0

p(xj, yk)ωjωk , ∀p(x, y) ∈ P2N–1. (3)

The fundamental of CSM is to get an approximation solution for u(x, y) by a sum

uN (x, y) =
N∑

j=0

N∑

k=0

uN (xj, yk)hj(x)hk(y), (4)

where uN (x, y) ∈ PN , the interpolation nodes {xj}N
j=0 and {yk}N

k=0 are the CGL points given
by (2), and {hj(x)}N

j=0 and {hk(y)}N
j=0 are the Lagrange basis polynomials associated with the

sets of the CGL points {xj}N
j=0 and {yk}N

k=0, respectively.
Moreover, the derivative of uN (x, y) at xk is denoted by

∂uN (xk , y)
∂x

=
N∑

j=0

N∑

l=0

uN (xj, yl)h
′
j(xk)hl(y), 0 ≤ k ≤ N . (5)

The first-order derivative of hj(x) at the CGL points can be denoted by the following ex-
plicit formulas:

h
′
j(xk) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

– 2N2+1
6 , k = j = 0,

ck
cj

(–1)k+j

xk –xj
, k 	= j, 0 ≤ k, j ≤ N ,

– xk
2(1–x2

k ) , 1 ≤ k = j ≤ N – 1,
2N2+1

6 , k = j = N ,

(6)

where c0 = cN = 2 and ck = 1 (k = 1, 2, . . . , N – 1). By replacing x in (5) and (6) with y, we
easily obtain the computational approach of ∂uN (x, yk)/∂y.

2.1.1 Some useful Sobolev spaces
First, we provide some useful Sobolev spaces, whose detailed descriptions can be found
in relative Reference [15].
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Let � ∈R
n (n = 1, 2) be a bounded open domain with boundary ∂�, and let L2(�) denote

the set of all square-integrable functions defined on �.
For a non-negative integer m, and α = (α1,α2, . . . ,αn) (αi ≥ 0 are integer and |α| =

∑n
i=1 αi), define

Hm(�) =
{

u ∈ L2(�) : Dαu ∈ L2(�), 0 ≤ |α| ≤ m
}

,

equipped with the norm and semi-norm as follows, respectively:

‖u‖m =
( ∑

0≤|α|≤m

∥
∥Dαu

∥
∥2

0

)1/2

, |u|m =
( ∑

|α|=m

∥
∥Dαu

∥
∥2

0

)1/2

.

Set Hm
0 (�) = {u ∈ Hm(�) : Dαu(x)|∂� = 0, |α| < m} and H–m(�) denotes the dual space of

Hm
0 (�).
Further, let ω =: ω(x, y) = ω(x)ω(y) = 1/

√
(1 – x2)(1 – y2), � = (–1, 1)2, L2

ω(�) denote the
set of all square-integrable functions defined on �, equipped with the norm

‖u‖0,ω =
(∫

�

|u|2ω d�

)1/2

,

and Hm
ω (�) := {u ∈ L2

ω(�) : Dαu ∈ L2
ω(�), 0 ≤ |α| ≤ m} be a weighted Sobolev space on �

with the CGL quadrature weight function, equipped with the norm

‖u‖m,ω =
( ∑

0≤|α|≤m

∥
∥Dαu

∥
∥2

0,ω

) 1
2

, ‖u‖0,ω =
(∫

�

|u|2ω d�

) 1
2

, ω = ω(x)ω(y).

Furthermore, set H1
0,ω(�) = {u ∈ H1

ω(�) : u|∂� = 0}, (·, ·)ω denotes the weighted inter prod-
uct of L2

ω(�) = H0
ω(�), and ‖ · ‖Hl(Hm

ω ) is the norm in the following space:

Hl(0, T ; Hm
ω (�)

) ≡
{

v(t) ∈ Hm
ω (�) : ‖v‖2

Hl(Hm
ω ) ≡

∫ T

0

l∑

i=0

∥
∥
∥
∥

di

dti v(t)
∥
∥
∥
∥

2

m,ω
dt < ∞

}

.

Next, define the H1
ω-orthogonal projection RN : H1

0,ω(�) → PN such that, for any u ∈
H1

0,ω(�), there holds

(∇(RN u – u),∇v
)

ω
= 0, ∀v ∈ PN ,

where � = [–1, 1]2 and (·, ·)ω is the inner product in L2
ω(�)2 about the Chebyshev weight

function ω = ω(x, y) = ω(x)ω(y) = 1/
√

(1 – x2)(1 – y2), or equivalently,

uN (x, y) = RN u(x, y) =
N∑

j=0

N∑

k=0

uN (xj, yk)hj(x)hk(y). (7)

Therefore, we can also approximate the unknown solution u(x, y) with RN u(x, y). In addi-
tion, RN has the following important property (see [6, Chapter III]).
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Theorem 2 For any u ∈ Hq
ω(�) with q ≥ 2, we have

‖∇RN u‖0,ω ≤ ‖∇u‖0,ω,
∥
∥∂k(RN u – u)

∥
∥

0,ω = O
(
Nk–q), 0 ≤ k ≤ q ≤ N + 1.

Finally, we provide several formulas used often in the following discussions.
(1) The Poincaré inequality

There exists a constant Cp such that

Cp‖u‖m ≤ |u|m ≤ ‖u‖m, ∀u ∈ Hm
0 (�).

(2) The Hölder inequality

∫

�

|uv|d� ≤
(∫

�

|u|2 d�

) 1
2
(∫

�

|v|2 d�

) 1
2

, ∀u, v ∈ L2(�).

(3) Green’s formula

∫

�

v�u d� = –
∫

�

∇u · ∇v d� +
∫

∂�

v
∂u
∂n

ds, ∀u ∈ H2(�),∀v ∈ H1(�),

where �u =
∑n

i=1 ∂2u/∂x2
i , ∇u = (∂u/∂x1, ∂u/∂x2, . . . , ∂u/∂xn), and n is the unit

outer normal vector on ∂�.
(4) The Cauchy inequality

ab ≤ εa2

2
+

b2

2ε
, ∀a ≥ 0, b ≥ 0, ε > 0.

3 CSM for the 2D Sobolev equations
3.1 The variational formulation for the 2D Sobolev equations
By Green’s formula, we can attain the following variational formulation for the 2D Sobolev
equations (1).

Problem 3 For t ∈ (0, T), find u ∈ H1
0,ω(�) such that

⎧
⎨

⎩

(ut , v)ω + ε(∇ut ,∇v)ω + γ (∇u,∇v)ω = (f , v)ω, ∀v ∈ H1
0,ω(�),

u(x, y, 0) = u0(x, y), (x, y) ∈ �.
(8)

For Problem 3, we have the following result of the existence, uniqueness, and stability of
the generalized solution.

Theorem 4 If f ∈ L2(0, T ; L2
ω(�)) and u0 ∈ H1

ω(�), then there exists a unique generalized
solution for the variational formulation (8) satisfying the following stability:

‖u‖1,ω ≤ c̃
(‖u0‖1,ω + ‖f ‖L2(L2

ω)
)
, (9)

where c̃ =
√

max{1, ε, 1/(γ C2
p)}/ min{1, ε}.
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Proof Because (8) is a system of linear equations about unknown function u, to demon-
strate that there exists a unique solution for the variational formulation (8) is equivalent
to proving that equation (8) has only a zero solution when f (x, y, t) = u0(x, y) = 0.

Taking v = u in the first formula of equation (8), we have

d‖u‖2
0,ω

2 dt
+ ε

d‖∇u‖2
0,ω

2 dt
+ γ ‖∇u‖2

0,ω = (f , u)ω. (10)

By integrating (10) from 0 to t ∈ [0, T] and by the Hölder, Poincaré, and Cauchy inequali-
ties, we obtain

‖u‖2
0,ω + ε‖∇u‖2

0,ω + 2γ

∫ t

0
‖∇u‖2

0,ω dt

= ‖u0‖2
0,ω + ε‖∇u0‖2

0,ω + 2
∫ t

0
(f , u)ω dt

≤ ‖u0‖2
0,ω + ε‖∇u0‖2

0,ω +
1

γ C2
p

∫ t

0
‖f ‖2

0,ω dt + γ

∫ t

0
‖∇u‖2

0,ω dt. (11)

Therefore, when f (x, y, t) = u0(x, y) = 0, we obtain ‖u‖0,ω = ‖∇u‖0,ω = 0, which implies u =
0, namely the variational formulation (8) has a unique solution u ∈ H1

0,ω(�). Further, from
(11), we obtain (9). This completes the proof of Theorem 4. �

3.2 CSM for the 2D Sobolev equations
When solving time-dependent PDEs by CSM, we use FDS in time and the spectral method
in space. In the following discussions, for convenience, we can assume a = c = –1 and
b = d = 1 because, by employing transforms x′ = –1 + 2(x – a)/(b – a) and y′ = –1 +
2(y – c)/(d – c), we can ensure [a, b] ↔ [–1, 1] and [c, d] ↔ [–1, 1], respectively.

3.2.1 Establishment of the CSM scheme
The main idea of CSM is to seek an approximate solution at time and spatial nodes. In
this article, we will take the CGL type interpolation points as the space nodes. Namely, let
{xj}N

j=0 and {yk}N
k=0 be the space nodes in x and y directions, respectively, with

xj = – cos
jπ
N

, yk = – cos
kπ

N
,

where the positive integer N denotes the number of nodes in a certain direction. And, for
integer K > 0, let �t = T/K be the time step, i.e., K�t = T . We approximate u(x, y, n�t)
with un, the time derivative ut of u(x, y, t) at time tn = n�t with (un+1 – un)/�t, and un(x, y)
with un

N (x, y), namely

un(x, y) ≈ un
N (x, y) =

N∑

j=0

N∑

k=0

un
N (xj, yk)hj(x)hk(y), 0 ≤ n ≤ K .

Then, we obtain the following CSM scheme for the 2D Sobolev equations.
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Problem 5 Find un
N ∈ UN ≡ H1

0,ω(�) ∩ PN such that

⎧
⎪⎪⎨

⎪⎪⎩

(un+1
N – un

N , vN )ω + ε(∇un+1
N – ∇un

N ,∇vN )ω + γ�t(∇un+1
N ,∇vN )ω

= �t(f (tn+1), vN )ω, ∀vN ∈ UN , 0 ≤ n ≤ K ,

u0
N (x, y) = RN u0(x, y), (x, y) ∈ �,

(12)

where f (tn) = f (x, y, tn).

3.2.2 Existence, uniqueness, and stability of the CSM solutions
For Problem 5, we have the result of the existence, uniqueness, and stability about the
CSM solutions.

Theorem 6 If f ∈ L2(0, T ; L2
ω(�)) and u0 ∈ H1

ω(�), then there exists a unique series of so-
lutions un

N ∈ UN (n = 1, 2, . . . , K) for the CSM scheme (12) satisfying the following stability:

∥
∥∇un

N
∥
∥

0,ω ≤ ‖∇u0‖0,ω +

[
�t
γ

n∑

j=1

∥
∥f (tj)

∥
∥2

0,ω

]1/2

, n = 1, 2, . . . , K . (13)

Proof Because scheme (12) is a linear system of equations about un+1
N , in order to demon-

strate the existence and uniqueness of solutions for the CSM scheme (12), it is necessary
to prove that (12) has only zero solution when u0(x, y) = f (x, y, t) = 0.

By taking vN = un+1
N – un

N in the first equation of (12), we have

∥
∥un+1

N – un
N
∥
∥2

0,ω + ε
∥
∥∇un+1

N – ∇un
N
∥
∥2

0,ω + γ�t
∥
∥∇un+1

N
∥
∥2

0,ω

= γ�t
(∇un+1

N ,∇un
N
)

0,ω + �t
(
f (tn+1), un+1

N – un
N
)

0,ω. (14)

Then, by the Hölder and Cauchy inequalities, we obtain

∥
∥un+1

N – un
N
∥
∥2

0,ω + ε
∥
∥∇un+1

N – ∇un
N
∥
∥2

0,ω + γ�t
∥
∥∇un+1

N
∥
∥2

0,ω

≤ γ�t
2

∥
∥∇un+1

N
∥
∥2

0,ω +
γ�t

2
∥
∥∇un

N
∥
∥2

0,ω +
�t2

2
∥
∥f (tn+1)

∥
∥2

0,ω +
1
2
∥
∥un+1

N – un
N
∥
∥2

0,ω. (15)

By summing (15) from 1 to n and using the second formula of (12), we obtain

n∑

j=0

∥
∥uj+1

N – uj
N
∥
∥2

0,ω + 2ε

n∑

j=0

∥
∥∇uj+1

N – ∇uj
N
∥
∥2

0,ω + γ�t
∥
∥∇un+1

N
∥
∥2

0,ω

≤ γ�t‖∇u0‖2
0,ω + �t2

n∑

j=0

∥
∥f (tj+1)

∥
∥2

0,ω, n = 0, 1, 2, . . . , K – 1. (16)

Thus, from (16), we obtain ‖∇un+1
N ‖ω = 0 (n = 0, 1, . . . , K – 1) when f = u0 = 0, which im-

plies un
N = 0 (n = 1, 2, . . . , K ). In other words, the CSM scheme (12) has a unique series

of solutions. From (16), we immediately attain (13). This completes the proof of Theo-
rem 6. �
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3.2.3 The convergence of the CSM solutions
For the series of solutions of Problem 5, we have the following conclusion of conver-
gence.

Theorem 7 Under the same conditions of Theorem 6, if the solutions of Problem 3 u(tn) ∈
Hq

ω(�) (2 ≤ q ≤ N + 1), when �t = O(N–1), the errors between the solution for Problem 3
and the series of solutions of Problem 5 have the following estimates:

∥
∥∇(

u(tn) – un
N
)∥
∥

0,ω = O
(
�t, N1–q), 1 ≤ n ≤ K , 2 ≤ q ≤ N + 1. (17)

Proof Let en
1 = u(tn) – un, en

2 = un – RN un, and en
3 = RN un – un

N .
(1) First, estimate en

1 .
If we adopt (un+1 – un)/�t to approximate ut , we obtain the following semi-discretize

formulation of equation (8) about time:

1
�t

(
un+1 – un, v

)

ω
+

ε

�t
(∇un+1 – ∇un,∇v

)

ω
+ γ

(∇un+1,∇v
)

ω

=
(
f (tn+1), v

)

ω
, ∀v ∈ H1

0,ω(�). (18)

At time t = tn, by applying Taylor’s expansion to (8) and subtracting (18), taking v = en+1
1 –

en
1 , we obtain

∥
∥en+1

1 – en
1
∥
∥2

0,ω + ε
∥
∥∇(

en+1
1 – en

1
)∥
∥2

0,ω + γ�t
∥
∥∇en+1

1
∥
∥2

0,ω

=
�t2

2
(
utt

(
ξn

1
)
, en+1

1 – en
1
)

ω

+
ε�t2

2
(∇utt

(
ξn

2
)
,∇(

en+1
1 – en

1
))

ω

+ γ�t
(∇en+1

1 ,∇en
1
)

ω
, (19)

where tn ≤ ξn
1 , ξn

2 ≤ tn+1. By using the Hölder and Cauchy inequalities, we obtain

∥
∥en+1

1 – en
1
∥
∥2

0,ω + ε
∥
∥∇(

en+1
1 – en

1
)∥
∥2

0,ω + γ�t
∥
∥∇en+1

1
∥
∥2

0,ω

≤ 1
2

(
�t2

2

)2∥
∥utt

(
ξn

1
)∥
∥2

0,ω +
1
2
∥
∥en+1

1 – en
1
∥
∥2

0,ω

+
ε

2

(
�t2

2

)2∥
∥∇utt

(
ξn

2
)∥
∥2

0,ω

+
ε

2
∥
∥∇(

en+1
1 – en

1
)∥
∥2

0,ω +
γ�t

2
(∥
∥∇en+1

1
∥
∥2

0,ω +
∥
∥∇en

1
∥
∥2

0,ω

)
. (20)

Further, we obtain

γ�t
∥
∥∇en+1

1
∥
∥2

0,ω ≤ �t4

4
∥
∥ut

(
ξn

1
)∥
∥2

0,ω +
ε�t4

4
∥
∥∇utt

(
ξn

2
)∥
∥2

0,ω

+ γ�t
∥
∥∇en

1
∥
∥2

0,ω. (21)
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As e0
1 = 0, by summing (21) from 0 to n, we obtain

∥
∥∇en+1

1
∥
∥2

0,ω ≤ �t3

4γ

n∑

j=0

(∥
∥ut

(
ξ1

j)∥∥2
0,ω + ε

∥
∥∇utt

(
ξ2

j)∥∥2
0,ω

)
,

namely

∥
∥∇en+1

1
∥
∥

0,ω ≤ C�t, 0 ≤ n ≤ K – 1, (22)

where C2 = �t
4γ

∑n
j=0(‖utt(ξn

1 )‖2
0,ω + ε‖utt(ξn

2 )‖2
0,ω).

(2) Next, estimate e2.
The estimate of e2 can be immediately obtained by Theorem 2, i.e.,

∥
∥∇en

2
∥
∥

0,ω = O
(
N1–q), n = 1, 2, . . . , K , 2 ≤ q ≤ N + 1. (23)

(3) Finally, discuss the estimate of e3 = RN un – un
N .

By subtracting Problem 5 from (18) taking v = vN ∈ UN , we obtain

(
un+1 – un+1

N –
(
un – un

N
)
, vN

)

ω
+ γ�t

(∇(
un+1 – un+1

N
)
,∇vN

)

ω

+ ε
(∇(

un+1 – un+1
N –

(
un – un

N
))

,∇vN
)

ω
= 0, ∀vN ∈ UN . (24)

By Theorem 2, (24), the property of RN , and the Hölder and Cauchy inequalities, we
have

∥
∥en+1

3 – en
3
∥
∥2

0,ω + ε
∥
∥∇(

en+1
3 – en

3
)∥
∥2

0,ω + γ�t
∥
∥∇en+1

3
∥
∥2

0,ω

=
(
un+1 – un –

(
un+1

N – un
N
)
, en+1

3 – en
3
)

+
(
RN un+1 – un+1 –

(
RN un – un), en+1

3 – en
3
)

+ ε
(∇(

un+1 – un+1
N –

(
un – un

N
))

,∇(
en+1

3 – en
3
))

+ ε
(∇(

RN un+1 – un+1 –
(
RN un – un)),∇(

en+1
3 – en

3
))

+ γ�t
(∇(

RN un+1 – un+1),∇(
en+1

3 – en
3
))

+ γ�t
(∇(

un+1 – un+1
N

)
,∇(

en+1
3 – en

3
))

=
(
RN un+1 – un+1 –

(
RN un – un), en+1

3 – en
3
)

≤ 1
2
∥
∥en+1

3 – en
3
∥
∥2

0,ω +
∥
∥RN un+1 – un+1∥∥2

0,ω +
∥
∥RN un – un∥∥2

0,ω

≤ 1
2
∥
∥en+1

3 – en
3
∥
∥2

0,ω + CN–2q, n = 0, 1, . . . , K – 1, 2 ≤ q ≤ N + 1. (25)

When �t = O(N–1), from (25), we attain

∥
∥∇en

3
∥
∥

0,ω = O
(
N–q–1/2), n = 1, 2, . . . , K , 2 ≤ q ≤ N + 1. (26)

By combining (22)–(23) with (26), we attain (17). This completes the proof of Theo-
rem 7. �
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By using the Nietzsche technique and Theorem 7, we easily obtain the following L2
ω

norm error estimates.

Corollary 8 Under the same conditions of Theorem 6, when �t = O(N–1), the L2
ω norm

error estimates between the solution for Problem 3 and the series of solutions of Problem 5
are as follows:

∥
∥u(tn) – un

N
∥
∥

0,ω = O
(
�t2, N–q), 1 ≤ n ≤ K , 2 ≤ q ≤ N + 1. (27)

Remark 1 The error estimates in Theorem 7 and Corollary 8 attain an optimal order be-
cause one can only ensure u ∈ H1(0, T ; H2

ω(�)) when f ∈ L2(0, T ; L2
ω(�)) and u0 ∈ H1

ω(�).
Theorem 6 shows that the CSM scheme, i.e., Problem 5 for the 2D Sobolev equations, has
a unique series of solutions which is stable and continuously depends on the initial value
and source functions. This theoretically ensures that Problem 5 is effective and reliable for
solving the 2D Sobolev equations.

4 Numerical experiments
In this section, we give some numerical experiments to verify the correction of the theo-
retical results of the CSM scheme, i.e., Problem 5 for the 2D Sobolev equations.

In the 2D Sobolev equation (1), we took �̄ = [–1, 1] × [–1, 1], ε = 1/π2, γ = 2/π2, ϕ = 0,
u0(x, y) = 1 – cos 2πx cos 2πy, and f (x, y, t) = 2(cos 2πx cos 2πy – 1) exp(–2t). Thus, we can
find the analytical solutions for the Sobolev equations (1) as follows:

u(x, y, t) = (1 – cos 2πx cos 2πy) exp(–2t), (x, y, t) ∈ [–1, 1] × [–1, 1] × [0,∞).

When we take time step �t = 0.01 and the number of nodes in every direction N =
100, from Corollary 8, the theoretical errors between the analytical solution and the CSM
solutions uk

N (k = 1, 2, . . . , K) should be O(10–4).
By the CSM scheme (12), we obtained the CSM numerical solutions at T = 0, 0.3, 0.5,

0.9, depicted in (a)’s of Figs. 1 to 4, respectively. The analytical solutions at the same time
nodes are depicted in (b)’s of Figs. 1 to 4, respectively. Each pair of photos in Figs. 1 to 4
are almost the same.

Photos (a), (b), and (c) in Fig. 5 show the errors between the analytical solutions and
the CSM solutions when t = 0.3, t = 0.5, and t = 0.9, respectively, which indicate that the

Figure 1 (a) The analytical solution when t = 0. (b) The CSM solution when t = 0
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Figure 2 (a) The analytical solution when t = 0.3. (b) The CSM solution when t = 0.3

Figure 3 (a) The analytical solution when t = 0.5. (b) The CSM solution when t = 0.5

Figure 4 (a) The analytical solution when t = 0.9. (b) The CSM solution when t = 0.9

numerical computational errors accord with the theoretical ones, because both errors are
O(10–4). This implies that the CSM scheme is very efficient and feasible for solving the 2D
Sobolev equations (1).

5 Conclusions and discussion
In this work, we have established the CSM scheme by means of the Chebyshev polyno-
mials for the 2D Sobolev equations, analyzed the the existence, uniqueness, stability, and
convergence of the CSM solutions. We have also used some numerical experiments to
check the feasibility and effectiveness of the CSM scheme and to verity that the numerical
computing results accord with the theoretical analysis ones. Moreover, it is shown that the
CSM scheme is very valid and feasible for solving the 2D Sobolev equations.

Even if we only study CSM for the 2D Sobolev equations, the CSM scheme can be easily
and effectively used to solve for the Sobolev equations in a three-dimensional space or the
Sobolev equations with complex geometric domains.



Jin and Luo Boundary Value Problems  (2018) 2018:83 Page 12 of 13

Figure 5 Errors between the analytical solutions and the CSM solutions: (a) at t = 0.3, (b) at t = 0.5, and (c) at
t = 0.9
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