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1 Introduction
Difference equations occur in many fields [1, 20], such as economics, discrete optimiza-
tion, computer science. In the past decade, discrete p-Laplacian problems and difference
equations have become a hot topic; see [11–19, 21, 22] and [25, 26]. Among the methods
used are the method of upper and lower solutions, fixed point theory, Leray–Schauder de-
gree, mountain pass lemma and the linking theorem. Recently, a lot of new results [5–11,
16, 23, 24] have been established by using variational methods.

In these last years, the existence and multiplicity of solutions for nonlinear discrete prob-
lems subject to various boundary value conditions have been widely studied by using dif-
ferent methods (see, e.g. [2–4] and [12–19, 21]). Bai et al. [2, 3] studied the second-order
difference equations with Neumann boundary value conditions. D’Aguì et al. [16] inves-
tigated the existence of positive solutions for a discrete two point nonlinear boundary
value problem with p-Laplacian in the case where the nonlinear term is p-sublinear at
zero. However, little work has been done that has referred to anti-periodic boundary value
problems with the discrete p-Laplacian operators in the case where the nonlinearities are
p-sublinear at zero.

The idea of this paper comes from the method in [6, 9, 16]. One obtained two distinct
critical points for functionals unbounded from below without p-superlinear nonlinearities
at zero. The loss of p-superlinear condition at zero puts some critical points theorems
cannot be immediately used. Therefore, In this paper, we mainly deal with the existence
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and multiplicity of solutions for anti-periodic boundary value problems

⎧
⎨

⎩

–�[a(k – 1)φp(�u(k – 1))] = λf (k, u(k)),

u(0) = –u(T), u(1) = –u(T + 1),
(1.1)

for k ∈ [1, T], where p > 1 is a fixed real number and φp(t) = |t|p–2t for all t ∈ R. a(k) > 0
and a(0) = a(T), f : [1, T] × R → R, is continuous and is p-sublinear at zero in the sec-
ond variable for all k ∈ [1, T]. Moreover, � is the forward difference operator defined by
�u(k) = u(k + 1) – u(k), �2u(k) = �(�u(k)).

The rest of this paper is organized as follows. In Sect. 2, we establish the variational
structure associated with (1.1), and provide some preliminary results. In Sect. 3, we state
our main results and give examples. In Sect. 4, we provide the proofs of the main results.

2 Variational structure and some preliminaries
In this section, we establish a variational structure which reduces the existence of solutions
for (1.1) to the existence of critical points of the corresponding functional.

Throughout this paper, we always assume that the following conditions are satisfied:
(a) a(k) > 0 for all k ∈ [1, T] and a(0) = a(T). Let ā and a∗ be the maximum and

minimum of {a(k)}, respectively.
(f) f (k, u) is continuous in u and F(k, u) =

∫ u
0 f (k, s) ds for u ∈ R and k ∈ [1, T].

We define the set E as

E =
{

u =
{

u(k)
}|u(T + 1) = –u(1), u(k) ∈ R for k ∈ [1, T + 1]

}
.

Then E is a vector space with au + bv = {au(k) + bv(k)} for u, v ∈ E and a, b ∈ R. Obviously,
E is isomorphic to RT and hence E can be equipped with the norm ‖ · ‖p as

‖u‖p =

( T∑

k=1

∣
∣u(k)

∣
∣p

) 1
p

for u ∈ E.

We also define norms ‖ · ‖∞ and ‖ · ‖ in E by

‖u‖∞ = max
{∣
∣u(k)

∣
∣ : 1 ≤ k ≤ T

}

and

‖u‖ =

[

a(T)
∣
∣u(1) + u(T)

∣
∣p +

T–1∑

k=1

a(k)
∣
∣�u(k)

∣
∣p

]1/p

respectively. Consider the functionals �(u), �(u) and Iλ(u)on E defined by

�(u) =
a(T)

p
∣
∣u(1) + u(T)

∣
∣p +

T–1∑

k=1

a(k)
p

∣
∣�u(k)

∣
∣p, (2.1)

�(u) =
T∑

k=1

F
(
k, u(k)

)
(2.2)
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and

Iλ(u) = �(u) – λ�(u)

=
a(T)

p
∣
∣u(1) + u(T)

∣
∣p +

T–1∑

k=1

a(k)
p

∣
∣�u(k)

∣
∣p – λ

T∑

k=1

F
(
k, u(k)

)
. (2.3)

Then the partial derivatives of �(u) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂�(u)
∂u(1) = –a(1)φp(�u(1)) + a(T)φp(u(1) + u(T)),
∂�(u)
∂u(2) = a(1)φp(�u(1)) – a(2)φp(�u(2)),

. . . ,
∂�(u)

∂u(T–1) = a(T – 2)φp(�u(T – 2)) – a(T – 1)φp(�u(T – 1)),
∂�(u)
∂u(T) = a(T – 1)φp(�u(T – 1)) + a(T)φp(u(1) + u(T)).

(2.4)

This, combined with a(0) = a(T), u(0) = –u(T) and u(1) = –u(T + 1), gives us

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂�(u)
∂u(1) = –�[a(0)φp(�u(0))],
∂�(u)
∂u(2) = –�[a(1)φp(�u(1))],

. . . ,
∂�(u)

∂u(T–1) = –�[a(T – 2)φp(�u(T – 2))],
∂�(u)
∂u(T) = –�[a(T – 1)φp(�u(T – 1))].

(2.5)

Then � has continuous Gâteaux derivatives in finite dimensional space and � ∈ C1(E, R),
the Fréchet derivative is given by

〈
�′(u), v

〉
= –

T∑

k=1

�
[
a(k – 1)φp

(
�u(k – 1)

)
v(k)

]
(2.6)

for u, v ∈ E. By direct computation, we have

〈
�′(u), v

〉
=

T∑

k=1

[
a(k)φp

(
�u(k)

)]
�v(k). (2.7)

Similarly, we have � ∈ C1(E, R). The Fréchet derivative is given by

〈
� ′(u), v

〉
=

T∑

k=1

f
(
k, u(k)

)
v(k) (2.8)

for u, v ∈ E. Therefore, Iλ ∈ C1(E, R), the Fréchet derivative is given by

〈
I ′
λ(u), v

〉
=

〈
�′(u), v

〉
– λ

〈
� ′(u), v

〉
.
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The partial derivatives of Iλ are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Iλ
∂u(1) = –�[a(0)φp(�u(0))] – λf (1, u(1)),
∂Iλ

∂u(2) = –�[a(1)φp(�u(1))] – λf (2, u(2)),

. . . ,
∂Iλ

∂u(T–1) = –�[a(T – 2)φp(�u(T – 2))] – λf (T – 1, u(T – 1)),
∂Iλ

∂u(T) = –�[a(T – 1)φp(�u(T – 1))] – λf (T , u(T)).

(2.9)

Equations (2.3) and (2.9) imply that a nonzero critical point of the functional Iλ on E is a
nontrivial solution of (1.1).

Definition 2.1 Let I ∈ C1(H , R). A sequence {xj} ⊂ H is called a Palais–Smale sequence
(P.S. sequence) for I if {I(xj)} is bounded and I ′(xj) → 0 as j → +∞. We say I satisfies the
Palais–Smale condition (P.S. condition) if any P.S. sequence for I possesses a convergent
subsequence.

Our main tool is taken from [9], which we recall here for the reader’s convenience.

Theorem 2.1 ([9]) Let X be a real Banach space and let �,� : X → R be two functionals
of class C1 such that infX � = �(0) = �(0) = 0. Assume that there are r ∈ R and u∗ ∈ X,
with 0 < �(u∗) < r, such that

1
r

sup
u∈�–1(–∞,r]

�(u) <
�(u∗)
�(u∗)

, (2.10)

and for each

λ ∈ � =
(

�(u∗)
�(u∗)

, r
(

sup
u∈�–1(–∞,r]

�(u)
)–1

)

,

the functional Iλ = � – λ� satisfies the P.S. condition and it is unbounded from below.
Then for each Iλ it admits at least two nonzero critical points uλ1, uλ2 such that Iλ(uλ1) <
0 < Iλ(uλ2).

3 Main results and examples
Theorem 3.1 Assume that the conditions (a) and (f) hold. There exist two positive con-
stants b and ρ such that

F(k, u) ≥ b|u|p for k ∈ [1, T] and |u| ≥ ρ. (3.1)

There also exist two positive constants c∗ and d∗ with

d∗ <
(

a∗
ā

)1/p( 1
T

)1/q

c∗

such that

pTp–1

a∗(2c∗)p

T∑

k=1

(
max
|ξ |≤c∗

F(k, ξ )
)

< min

{
p

ā(2d∗)p

T∑

k=1

F(k, d∗),
pb

ā2(p+1)

}

, (3.2)
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where 1/p + 1/q = 1. Then, for each λ ∈ � with

� =

(

max

{
ā2(p+1)

pb
,

ā(2d∗)p

p

[ T∑

k=1

F(k, d∗)

]–1}

,
a∗(2c∗)p

pTp–1

[ T∑

k=1

(
max
|ξ |≤c∗

F(k, ξ )
)
]–1)

,

(1.1) admits at least two nonzero solutions uλ1, uλ2 such that Iλ(uλ1) < 0 < Iλ(uλ2).

Remark 3.1 If all the conditions of Theorem 3.1 are satisfied and f (k, u) is odd in u for
each k ∈ [1, T], then (1.1) admits at least four nonzero solutions ±uλ1, ±uλ2 such that
Iλ(–uλ1) = Iλ(uλ1) < 0 < Iλ(uλ2) = Iλ(–uλ2).

Corollary 3.1 Assume that the conditions (a) and (f) hold. If f (k, u) is odd in u for each
k ∈ [1, T], and

lim|s|→+∞
F(k, s)
|s|p = +∞, lim

s→0+

F(k, s)
sp = +∞ (3.3)

for all k ∈ [1, T], then, for each λ ∈ �∗ with

�∗ =

(

0,
a∗(2c∗)p

pTp–1

[ T∑

k=1

(
max
|ξ |≤c∗

F(k, ξ )
)
]–1)

,

(1.1) admits at least four nonzero solutions ±uλ1 and ±uλ2.

Example 3.1 Let p = 4, T = 2, a(k) = k and

f (k, u) = u5 + u

for all k ∈ [1, T]. Then, for each λ ∈ (0, 3/8), it is easy to check that all the conditions of
Corollary 3.1 are satisfied, (1.1) admits at least four nonzero solutions.

Theorem 3.2 Assume that the conditions (a) and (f) hold, T = 2, a∗ = ā = a, f (k, x) ≥ 0 for
all x < 0, k ∈ [1, T]. Put

L+
∞(k) = lim

s→+∞
F(k, s)

sp , L+
∞ = min

k∈[1,T]
L+

∞(k). (3.4)

If L+∞ > 0 and there exist two positive constants c∗ and d∗ with

d∗ <
(

1
2

)1/q

c∗

such that

p
2acp

∗

T∑

k=1

(
max
|ξ |≤c∗

F(k, ξ )
)

< min

{
p

a(2d∗)p

T∑

k=1

F(k, d∗),
pL+∞

a2(p+1)

}

, (3.5)
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where 1/p + 1/q = 1. Then, for each λ ∈ � with

� =

(

max

{
a2(p+1)

pL+∞
,

a(2d∗)p

p

[ T∑

k=1

F(k, d∗)

]–1}

,
2acp

∗
p

[ T∑

k=1

(
max
|ξ |≤c∗

F(k, ξ )
)
]–1)

,

(1.1) admits at least two nonzero solutions uλ1, uλ2 such that Iλ(uλ1) < 0 < Iλ(uλ2).

Corollary 3.2 Assume that the conditions (a) and (f) hold, T = 2, a∗ = ā = a, f (k, x) ≥ 0 for
all x < 0, k ∈ [1, T]. If

lim
s→+∞

F(k, s)
sp = +∞ and lim

s→0+

F(k, s)
sp = +∞, (3.6)

for all k ∈ [1, T], then, for each λ ∈ �∗ with

�∗ =

(

0,
2acp

∗
p

[ T∑

k=1

(
max
|ξ |≤c∗

F(k, ξ )
)
]–1)

,

(1.1) admits at least two nonzero solutions.

Example 3.2 Let p = 2, T = 2, a(k) = 4 and

f (k, u) = eu

for k ∈ [1, T]. Then, for each λ ∈ (0, 2
e–1 ), it is easy to check that all the conditions of Corol-

lary 3.2 are satisfied, (1.1) admits at least two nonzero solutions.

4 Proofs of main results
In order to prove Theorem 3.1, we need the following lemmas.

Lemma 4.1 If u ∈ E and p > 1, then

a∗
p

(
2
T

)p T∑

k=1

∣
∣u(k)

∣
∣p ≤ �(u) ≤ ā2(p+1)

p

T∑

k=1

∣
∣u(k)

∣
∣p

and

2
T

a1/p
∗ ‖u‖p ≤ ‖u‖ ≤ 2(2ā)1/p‖u‖p.

Proof On the one hand,

�(u) =
a(T)

p
∣
∣u(1) + u(T)

∣
∣p +

T–1∑

k=1

a(k)
p

∣
∣�u(k)

∣
∣p

≤ ā
p

[

2p(∣∣u(1)
∣
∣p +

∣
∣u(T)

∣
∣p) +

T–1∑

k=1

2p(∣∣u(k)
∣
∣p +

∣
∣u(k + 1)

∣
∣p)

]

≤ ā
p

2p
T∑

k=1

2
∣
∣u(k)

∣
∣p =

ā2(p+1)

p

T∑

k=1

∣
∣u(k)

∣
∣p. (4.1)
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On the other hand, u(1) = –u(T + 1), for each k ∈ [1, T],

2u(k) = u(2) – u(1) + · · · + u(k) – u(k – 1) + u(k) – u(k + 1) + · · · + u(T) – u(T + 1)

≤ ∣
∣u(2) – u(1)

∣
∣ + · · · +

∣
∣u(k) – u(k – 1)

∣
∣ +

∣
∣u(k) – u(k + 1)

∣
∣ + · · · +

∣
∣u(T) + u(1)

∣
∣

=
∣
∣u(2) – u(1)

∣
∣ + · · · +

∣
∣u(k) – u(k – 1)

∣
∣ +

∣
∣u(k + 1) – u(k)

∣
∣ + · · · +

∣
∣u(T) + u(1)

∣
∣

≤
[
∣
∣u(T) + u(1)

∣
∣p +

T–1∑

k=1

∣
∣�u(k)

∣
∣p

]1/p

T1/q, (4.2)

where 1/p + 1/q = 1, that is,

‖u‖∞ ≤ 1
2

[
∣
∣u(T) + u(1)

∣
∣p +

T–1∑

k=1

∣
∣�u(k)

∣
∣p

]1/p

T1/q. (4.3)

Since

T∑

k=1

∣
∣u(k)

∣
∣p ≤ T

(‖u‖∞
)p,

this, combined with (4.3), gives us

T∑

k=1

∣
∣u(k)

∣
∣p ≤

(
T
2

)p
[
∣
∣u(T) + u(1)

∣
∣p +

T–1∑

k=1

∣
∣�u(k)

∣
∣p

]

and

�(u) ≥ a∗
p

[
∣
∣u(T) + u(1)

∣
∣p +

T–1∑

k=1

∣
∣�u(k)

∣
∣p

]

≥ a∗
p

(
2
T

)p T∑

k=1

∣
∣u(k)

∣
∣p.

The proof is complete. �

Lemma 4.2 If the condition (3.1) holds, then the functional Iλ satisfies the P.S. condition
and it is unbounded from below for all λ ∈ ( ā2(p+1)

pb , +∞).

Proof Let {Iλ(uj)} be a bounded sequence and {uj} be a sequence in E, i.e., there exists a
positive constant M such that

∣
∣Iλ(uj)

∣
∣ ≤ M for j ∈ Z+.

Let

Mρ = max
1≤k≤T

{∣
∣F(k, u) – b|u|p∣∣ : |u| ≤ ρ

}
.

It is easy to check that

F(k, u) ≥ b|u|p – Mρ for k ∈ [1, T] and u ∈ R. (4.4)
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By (4.4) and (4.1), we have

Iλ(uj) = �(uj) – λ�(uj) ≤
(

ā2(p+1)

p
– λb

)

‖uj‖p
p + TλMρ (4.5)

for j ∈ Z+. Now, we claim {uj} is bounded. In fact, ‖uj‖ → +∞, ‖uj‖p → +∞ and ā2(p+1)

p –
λb < 0, one has Iλ(uj) → –∞ and this is absurd. Hence, Iλ satisfies the P.S. condition. Next,
we prove that Iλ is unbounded from below. By (4.5), we have Iλ(un) → –∞ as ‖un‖ →
+∞. �

Proof of Theorem 3.1 Put � and � as in (2.1) and (2.2), it is easily checked that � and �

satisfy all regularity assumptions required in Theorem 2.1. So, our end is to verify condi-
tion (2.10) in Theorem 2.1. Let u ∈ �–1(–∞, r]; this means that

a∗
p

[
∣
∣u(T) + u(1)

∣
∣p +

T–1∑

k=1

∣
∣�u(k)

∣
∣p

]

≤ a(T)
p

∣
∣u(1) + u(T)

∣
∣p +

T–1∑

k=1

a(k)
p

∣
∣�u(k)

∣
∣p ≤ r,

this, combined with (4.2), gives us

∣
∣u(k)

∣
∣ ≤ 1

2

(
rp
a∗

)1/p

T1/q

for k ∈ [1, T]. Let

c∗ =
1
2

(
rp
a∗

)1/p

T1/q,

then

r =
a∗(2c∗)p

pTp–1

and

1
r

sup
u∈�–1(–∞,r]

�(u) ≤ 1
r

T∑

k=1

max
|ξ |≤c∗

F(k, ξ )

=
pTp–1

a∗(2c∗)p

T∑

k=1

max
|ξ |≤c∗

F(k, ξ ). (4.6)

Now, we define u∗ ∈ E by u∗ = {u∗(k)} and

u∗(k) = d∗ <
(

a∗
ā

)1/p( 1
T

)1/q

c∗

for k ∈ [1, T]. It is easy to check that �(u∗) < r and

�(u∗)
�(u∗)

≥ p
ā(2d∗)p

T∑

k=1

F(k, d∗).
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This, combined with (4.6) and (3.2), produces at once (2.10). Therefore, Theorem 2.1 en-
sures that (1.1) has at least two nonzero critical points uλ1 and uλ2. The proof is com-
plete. �

Proof of Theorem 3.2 Let {uj} be a sequence in E such that {Iλ(uj)} is bounded and I ′
λ(uj) →

0 as j → +∞. Put u+
j (k) = max{uj(k), 0} and u–

j (k) = max{–uj(k), 0} for all k ∈ [1, T], then
u+

j = {u+
j (k)} and u–

j = {u–
j (k)} for k ∈ [1, T]. Therefore, uj = u+

j – u–
j for all j ∈ Z+. Consid-

ering that L+∞ > 0 and λ ∈ ( a2(p+1)

pL+∞ , +∞), we fix λ > a2(p+1)

pL+∞ and fix l such that L+∞ > l > a2(p+1)

pλ
.

Now, we claim {u–
j } is bounded. By direct computation, we have

∥
∥u–

j
∥
∥p = a

∣
∣u–

j (1) + u–
j (T)

∣
∣p +

T–1∑

k=1

a
∣
∣�u–

j (k)
∣
∣p

= a
∣
∣–u–

j (T + 1) + u–
j (T)

∣
∣p +

T–1∑

k=1

a
∣
∣�u–

j (k)
∣
∣p

≤ –
T∑

k=1

a
[
φp

(
�uj(k)

)
�u–

j (k)
]

= –
〈
�′(uj), u–

j
〉
, (4.7)

where u–
j (T + 1) = –u–

j (1), for all j ∈ Z+. Moreover, by definition of u–
j and since f (k, x) ≥ 0

for all x < 0, we have

∥
∥u–

j
∥
∥p ≤ –

〈
�′(uj), u–

j
〉
+ λ

T∑

k=1

f
(
k, uj(k)

)
u–

j (k)

= –
〈
�′(uj), u–

j
〉
+ λ

〈
� ′(uj), u–

j
〉

= –
〈
I ′
λ(uj), u–

j
〉

(4.8)

for all j ∈ Z+. This, combined with the formulas

lim
j→+∞ I ′

λ(uj) = 0, lim
j→+∞

–〈I ′
λ(uj), u–

j 〉
‖u–

j ‖ = 0,

gives us

lim
j→+∞

∥
∥u–

j
∥
∥ = 0.

Hence, our claim is proved. Therefore, there exists Q > 0 such that ‖u–
j ‖ ≤ Q for all j ∈ Z+.

Using a similar argument to (4.2) produces at once

∣
∣u–

j (k)
∣
∣ ≤ Q

a

(
1
2

)1/p

= L (4.9)

for all k ∈ [1, T] and j ∈ Z+.
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Now, arguing by contradiction, assume that {uj} is unbounded, that is, {u+
j } is un-

bounded. From

lim
s→+∞

F(k, s)
sp ≥ L+

∞ > l,

there exists δ > 0 such that F(k, s) > lsp for all s > δ and k ∈ [1, T]. Let

Mδ = max
1≤k≤T

{∣
∣F(k, u) – l|u|p∣∣ : –L ≤ u ≤ δ

}
.

Then it is easy to check that

F
(
k, uj(k)

) ≥ l
∣
∣uj(k)

∣
∣p – Mδ for k ∈ [1, T] and j ∈ Z+. (4.10)

This, combined with (4.1), gives us

Iλ(uj) =
1
p
‖uj‖p – λ�(uj) ≤ a2(p+1)

p
‖uj‖p

p – λl‖uj‖p
p + TλMδ ,

that is,

Iλ(uj) ≤
(

a2(p+1)

p
– λl

)

‖uj‖p
p + TλMδ

for j ∈ Z+. Since ‖uj‖ → +∞ and ā2(p+1)

p – λl < 0, one has Iλ(uj) → –∞ and this is absurd.
Hence Iλ satisfies the P.S. condition.

Finally, we prove that Iλ is unbounded from below. Arguing as before, we have Iλ(un) →
–∞ as ‖un‖ → +∞. The rest of the proof is similar to Theorem 3.1 and is omitted. The
proof is complete. �
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