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Abstract

This paper is concerned with the dynamics for the compressible Navier-Stokes
equations with density-dependent viscosity in bounded annular domains in R2. In the
paper, we shall analyze the spherical symmetric model and establish the regularity in
H? and H* under certain assumptions imposed on the initial data.
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1 Introduction
It is well known that the compressible isentropic Navier—Stokes equations which describe

the motion of compressible fluids can be written in Eulerian coordinates as

or +div(pU) = 0, (1.1)

(pU); + div(pU ® U) — div(u(p)D(U)) - V(A(p)divU) + VP(p) =0, (1.2)

where p(x,t), U(x,t) and P(p) = p? (y > 1) stand for the fluid density, velocity and pressure,
respectively, and the strain tensor is given by

VU + (VU)T
puy = Y9+ VU (1.3)
2
The Lamé viscosity coefficients u(p), A(p) satisfy the natural restrictions
u(p) >0, u(p) + NA(p) = 0. (1.4)

For simplicity of the presentation, we consider only the viscosity terms (o) = p, A(p) =0
and D(U) = VU. Then (1.1)—(1.2) become

o¢ +div(pU) = 0, (1.5)

(oU), +div(pU ® U) + VP(p) — div(pVU) = 0. (1.6)
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We are concerned with the spherically symmetric solutions of system (1.5)—(1.6) in

bounded annular domains G = {x € R?,0 < a < |x| < b < +00}. To this end, we denote
X=r,  p=pn0,  UGH=ulr), (1.7)
r

which leads to the following system of equations for r > 0:

2pu
ot + (pu), + — = 0, (1.8)

2 2u

—(pu)r—p<—> =0. (1.9)

2
(pu); + (pu® + p7), + -

We shall consider problem (1.8)—(1.9) in the region G subject to the initial data

(0, u)(r,0) = (po, uo)(r),  r € la,b], (1.10)
and the boundary condition

u(a,t) =u(b,t)=0, te<[0,T]. (1.11)

First we find it convenient to transfer problems (1.8)—(1.11) into that in Lagrangian co-
ordinates and draw the desired results. We introduce the following coordinate transfor-
mation:

x(r, t) =/ p(s,7)s?ds, t=T1, (1.12)

then the boundaries r = a2 and r = b become

b b
x=0, x:/ ,o(s,r)szds:/ po(s)s? ds, (1.13)

a

where fﬂb 0o(s)s? ds is the total initial mass and, without loss of generality, we can normalize
it to 1. So in terms of Lagrangian coordinates, the domain G becomes 2 = (0,1). The

relations between Lagrangian and Eulerian coordinates are satisfied by

0x 9 0x 9
oo, o 1.14
oy =P o =P (1.14)

The initial boundary value problem (1.8)—(1.11) are changed to

or+ p? (rzu)x =0, (1.15)
(o) = (), - 2, (116)
(,0; u)(x’ 0) = (p()’ u())(x)7 x € [0! ]-]7 (117)

u(0,) =u(l,£)=0, t>0. (1.18)
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Much progress was achieved recently on the compressible Navier—Stokes equations with
density-dependent viscosity coefficient. Firstly let us recall some well-known results as re-
gards the one-dimensional compressible isentropic Navier—Stokes equations with the flow
density being connected with the infinite vacuum, [19, 24, 25] for the local well-posedness
and the global existence of weak solutions to an initial boundary value problem with the
viscous gas being connected vacuum states with jump discontinuities, [9, 10] for the global
behavior with the initial density being piecewise smooth; [28—31, 34] for the local exis-
tence, the global existence, the asymptotic behavior and the uniqueness of weak solutions
with a viscous gas being connected vacuum states with continuous density.

In spatial multi-dimension, there is a huge literature as regards the global existence, the
regularity and the asymptotic behavior of a solution to system (1.1)—(1.2) with constant
viscosity, we refer the reader to [2, 3, 11-14, 16, 20-23, 33] and the references therein.
For the 3-D flow of a compressible fluid with cylindrical symmetry, the global existence
and the large-time behavior of generalized solutions have been proved in [1, 4, 5, 7, 15, 23,
26, 27, 32] for the isentropic and the nonisentropic cases. The corresponding study of the
regularity of a solution for any given initial datum has been carried out in [17]. For the 3-
D flow of compressible fluid with spherical symmetry, there are some interesting results,
[18] for the global well-posedness of classical solutions with large oscillations and vacuum;
[33] for the global existence and uniqueness of the weak solution without a solid core; [14]
for the structure of the solution; [21] for the global existence of the exterior problem and
the initial boundary value problem. Besides, we would like to refer to [6, 8] as regards the
existence and regularity of solutions for micropolar fluid with spherical symmetry in the
three-dimensional case.

In the paper, we shall analyze the spherical symmetric model and focus on the initial
boundary problem of an isentropic compressible fluid. We show the regularity in H? and
H* under certain assumptions imposed on the initial data.

The notation in this paper will be as follows:

17,1 <p<+00, W™, meN, H' = W"2, H} = W, denote the usual (Sobolev)
spaces on [0, 1]. To denote various constants, we use C; (i = 1,2,4) to denote the
generic positive constant depending only on the H? norm of initial datum (09, o),
minyeqo,1] Po(*) and variable ¢, respectively. In addition, || - || denotes the norm in the
space L?.

The basic assumption of this paper is the following:

inf py > p, (1.19)
[0,1] -

for some constant P> 0.

Theorem 1.1 Let y > 1. Assume that the initial data (o, ug) € H*(Q2) x H*(Q) and (1.19)
hold, then there exists a unique generalized global solution (p(t), u(t)) € (H*(R))? to the
problem (1.15)—(1.18) verifying that, for any T > 0,
p € L¥([0, T, H*(Q)) N L*([0, T], H*(R)), (1.20)
ue L°([0, T), H*(Q)) N L*([0, T, H*(RQ)), (1.21)

u, € L([0, T1,L*(Q)) N L*([0, T1, H (). (1.22)
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Theorem 1.2 Lety > 1. Assume that the initial data satisfies (1.19) and (po, uo) € H*(Q2) x
H*(Q), then there exists a unique generalized global solution (p(t), u(t)) € (H*(2))? to the
problem (1.15)—(1.18) verifying that, for any T > 0,

p € L®([0, TT,H*(Q)) N L*([0, T1, HX(R)), (1.23)
ue L™([0, T1, H*(R)) N L*([0, T, H*()), (1.24)
u, € L*([0, T1, H*(Q)) N L*([0, T1, H*(R)), (1.25)
uy € L([0, T1,L%(Q)) N L*([0, T1, H(Q)). (1.26)

Corollary 1.1 Under assumptions of Theorem 1.2, (1.23)—(1.24) imply (p(t), u(t)) is the
classical solution verifying that, for any t > 0,

”p(t)Hcsu/z + Hll(t)HCsu/z < Cy. (1.27)

2 Proof of Theorem 1.1
This section is devoted to deriving the estimates of the solutions to prove Theorem 1.1
which will be presented in a sequence of lemmas. We begin with the following lemma.

Lemma 2.1 (Theorem 2.2 in [21]) Under the assumptions in Theorem 1.1, then there exist
positive constants p, > 0 and p* > 0 so that the unique global solution (p(t), u(t)) to problem
(1.15)—(1.18) exists and satisfies, for any T > 0,

0<ps < px,t) < p%, (2.1)
1 ¢ pl
/ (u2+(p—,5)2+u§+uf+p§)(x,t)dx+/ / (02 +ul
0 o Jo
+up + U+ 1) (x,8) dxds < Cy,  te(0,T], (2.2)

where p = ;- f: o(s, t)s* ds.
Lemma 2.2 Under the conditions in Theorem 1.1, for any T > 0,
t
2 2
ol + [ loul ds <o teloT) (2.3
0
) t pl
||uxx(t) || +/ / uixx(x,s) dxds<C,, tel0,T]. (2.4)
o Jo
Proof We infer from (1.16) that
U

3= —vp? Lo+ 2ppx(r2u)x + P2 (P thx + 47Tt + 2771 + 20 pult) —

2
Pxtt. (2.5)
r

Multiplying (2.5) by u,, in L?(R2), we deduce

1 1
u _
/ pzrzuixdx=/ uxx<r—§ +yp" ™ px = 200x(rPu)
0 0

205U
— P (41t + 2riu + 2rreut) + Px ) dx. (2.6)
r
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Using Young’s inequality, Sobolev’s embedding theorem, and Lemma 2.1, we deduce from
(2.6) that

1 1 1
1
/uixdxfCI/ (uf+p§+p§ui)dx+1/ ul dx
0 0 0
1 1 1
§C2+C1”ux”i°°/ p9%+_/ uazcxdx
0 4 Jo
1,
<Cy+= | u,dx
2 Jo
whence

1
/ uix dx < C,. (2.7)
0

Differentiating (1.16) with respect to x, and exploiting (1.15), we have

(%) = (=07 + 0 (u),),. - (2M) : (2.8)

r

which gives

Prex + VO™ Pax = Eo(%, ) (2.9)
with
205Uty 20xlh + 204U 2ury U
Eo(x,t) = p:2 xS , Py -1p7 202+ -

Multiplying (2.9) by p,,, integrating the resultant over [0, 1], we deduce
d 1
2 o= (® I* +/ ! pr, dx
¢ 0

1
20xUFy 205U + 20U _ Uity Uy
=f0( :2x_ = p — —yly =1p"pg + ,gx‘—,zx Pax A

1
u
= Cill el (el + Nl + | o7 + lpstecll + N petarel)) - 2 / — P 5.
0

Using the Young inequality and the interpolation inequality to the above inequality, then
we get

d
E”pxx(t)uz < Co(llueall® + eI + 1l o l® + llaall + N122]1?)

+ Cill oae (1 + 170 (2.10)

Integrating (2.10) with respect to ¢, using initial condition py € H? and Lemma 2.1, we
have

t
low® < Co+Ci [ patoPds, veclo T

Then using the Gronwall inequality to the above inequality, we can get (2.3).
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Differentiating (1.16) with respect to x, we can obtain

1
Ugyy = —W |:(4mp§rx + 2r2p£ux + 200xx (2rrxu + rzux) + 4005 (Zriu

+ Arrelhy + 21yl + rzuxx) + ,02 (6rxrxxu + 6r£ux + 617l + rzuxx)
20xxlh + 205Uy
+ p2(6rxrxxu + 6r§ux + OFFyylhy + OF Uy + 2rrxxxu) +
r
205Uty Uy Ugly

St T yp" s + v (v = l)py‘zpﬁ}. (2.11)

Integrating (2.11) over x and ¢, applying the embedding theorem, Lemma 2.1, (2.7) and
(2.3), we conclude, for any ¢ € [0, T,

t pl t pl
2 2, 4, 2, 42 22 22 02
//uxxxdxdstlf / (up, + Py + P + Pyths + prUs + Pty + 1y ) (x,8) dx ds
o Jo o Jo

t 1 t
<G [l [ (o2s of)duds o Co [ ol il ds
0 0 0
S CZ;
which, along with (2.7), gives (2.4). The proof is complete. |

Proof of Theorem 1.1 Clearly, (1.20)—(1.22) follow from Lemmas 2.1-2.2. This completes
the proof of Theorem 1.1. d

3 Proof of Theorem 1.2
In this section, we shall complete the proof of Theorem 1.2. To this end, we assume that in

this section that all assumptions in Theorem 1.2 hold. We begin with the following lemma.
Lemma 3.1 The following estimate holds for any T > O:
t t
Jucto + [ s ds = Co+ Co [ Juen)|ds, e<10,71 G.1)
0 0
Proof We easily infer from (1.16) and (2.1)—(2.4) that

[uc@] = Ci([ox@] + @] + [usn(D])- (32)

Differentiating (1.16) with respect to x and using Lemmas 2.1-2.2, we have

Jue®] < Co([| @ + [ ax® ] + [Jux @ + | (@)] + [ 1222 (0)

), (33)

or

|uxss @] < Co[| 2@ + [ @) | + [0 &) | + [1a @) | + [a@)])- (3.4)
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Differentiating (1.16) with respect to x twice and using the Cauchy—Schwarz inequality,

we have
|eex @) ]| < Ca([| @) | o + || 115)5 (3.5)
|t @) || < Co(| @) | 2 + [ @) | o + [ 112x()])- (3.6)

After differentiating (1.16) with respect to ¢, using (3.2)—(3.3) and (3.5), we can get

lua@®)| < Co(|uex®)] + |wear@® || + |e@) || + | 22O || + [ (®)]| + |22 |) (3.7)
= o[l ox® ]2 + |ue®)]0)- (3.8)

Now differentiating (1.16) with respect to ¢ twice, multiplying the resulting equation by
(r%)“ in L2(2), and using integration by parts and (1.18), we conclude

1d [ u)? ! u
-z z - _ —o? + o2(r> z
Zdt,/o (F2>tcdx /0 ( prre (V u)x)t[(ﬂ)ttxdx
Yropau  u? u
_ / “Z) (2 dx=ar A (3.9)
0 r " Ju\""/Ju

We use (2.1)—(2.4), (3.2)—(3.8), (1.16) and the interpolation inequality to deduce that, for
any small ¢ € (0,1),

1
== [ o) (%) o
0 r ttx

1
2,2 2
=< —/ p?upyy dx+ Co(|l puttall + || 07 | + 1l psttell + | pestall + lpsthae | + Nl + s
0

o Netstne |+ ot + et l]) (o0l + Neteel] + Notsel] + Notell + Nate ) + oall + [[26°])
1
< [ uddsrelusto + ol pet0) s + 0]

+ @) + [ + |31 + [ 26O )

< -G ux @] + Co(| )| 30 + [ 05O |1 + ||| 32), (3.10)

1 2
20U U u
Ay =— - — —) 4
2 /0 < r r3>tt(r2)tt ¥

= CZ(”pttx” + | oette |l + [l pxthee|| + ”PtxMZ ” + ”utz ” + [l | + Netell + |l oxeel]

+ N pataell + || oxts® || + Nerell + o0 || ) (et | + el + Naerel| + Nuare | + [ )

< G(|lw®)|” + |ua@®)|* + [ ®| + |uex®| + | 0@ + |=®)]).  (3.11)

Integrating (3.9) with respect to ¢, and using (2.1)—(2.4), initial condition (1.16) and (3.10)—
(3.11), then we obtain (3.1). O

Lemma 3.2 Forany T >0 and ¢ € (0, 1), the following estimate holds:

[+ / @) < Ca + G516 / ) [Pds, £ (0,71, (3.12)
0 0
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Proof Differentiating (1.16) with respect to ¢ and x, then multiplying the resultant by (r%)tx
in %[0, 1], and integrating by parts, we know that

1d (Yfu)\*
—— (Z) dx
2dt 0 r tx

=(-p"+ pz(rzu)x)tx(%)m

1

1
- / (—ﬂ“pz(fzu)x)tx(%) dx
0 0 txx

= Bo(x, £) + B1(2) + By (1), (3.13)

Liwr 2o u
mo- [[(5-7), (),
0 tx tx

Now using Young’s inequality several times, and employing (2.1)—(2.4) and the interpo-
lation inequality, after some calculation, we have, for any ¢ € (0,1),
Bo(x, 1) < Co(ll peellzoe + | oeoslloe + | pxprttelloe + | prathllzoe + | prtha | 1o
Nt o0+ Nthgsll o0 ) |t oo
1 1 1 1 1 1
=< C2(||th||H2 + ”px”Hl + ”MtxH 2 ”utxx” 2+ ”utxx” 2 ”utxxx” 2)”utx” 2 ”utxx” 2

< Gl & (ltbean)® + Nheans)?) + Cog™® (lttell® + Nttll 2 + l oxll 1) (3.14)
1 1
Bi(t) < - f Pl drve / P18, dx + Co| 02 + |20
0 0

+ @30 + |0 + Jues@]), (3.15)
By(8) < Colltxtsel + Nloteall + Nawll + llage ] + 2% + 1 pesell + | prttell + | prxtae |
+ | oathexll + 11 ol + Il oxttcll + 102l + 1l oxtae |l + 1l 0x1l) (12| + 2]l
< Collualizp + el Z + Noxll2 + 1ol + 1l ot l1?)
< Collotell o + Nutelz + sl 71)- (3.16)

Differentiating (1.16) with respect to x and ¢, and using Lemmas 2.1-2.2 and (3.7)—(3.8),
we conclude

|usax O < Co[| @[ 1o + | 05O 1 + 2@ ]| 10 + [ 22 @)])- (317)

We integrate (3.13) with respect to t, use (3.3), (3.14)—(3.16) and Lemmas 2.1-2.2 to
obtain (3.12). The proof is complete. O
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Lemma 3.3 The following estimates hold for any T > 0:

|ua(®)| + |ua®) | + /0 (It | + 42| ?)(8) < Ca, € [0, T,

t
”Pxxx(t)nz + ”Mxxx(’f)”2 + / (||pxxx||2 + ||uxxxx||2)(s) ds<C, tel0,T]
0

Proof We insert (3.1) into (3.12) and pick ¢ small enough to get (3.18).

Differentiating (2.9) with respect to x, we have
Prexz + VP P = E1(%,8),
where
Er(x,8) = Eox(%,8) =y (¥ = 1)p" ™ puPs-

Taking into account estimate (3.18), from (2.1)—(2.4) we can get

”El(t)” = CZ(“EOx” + ”pxpxx”)
= C2(||pxux” + ll oxxll + | Pxxttcll + | x| + | Oxth || + 1 O fox |
+ el + N2t pxll + Ntz

< G([[ox®)] o + )] 2 + [e8)] 12),
which, along with Lemmas 2.1-2.2 and (3.18), implies
¢ 2 ¢ 2
[IEG as=zcive: [ lowol ds
0 0
After multiplying (3.20) by p,., in L2[0, 1], we deduce
2

1d v
Egnpxxxllz"'y/(; on lp,%xxdeQ”El(t)

which implies

d
Zosal® < G| Er(0) I?

Integrating (3.23) with respect to ¢, using (3.21), we conclude

t
||pxxx||2 = C4 + CZf ”pxxx(s) ”2 dS,
0

which, after applying the Gronwall inequality and (3.22), yields

t
”pxxx(t)”z + f ”pxxx(s) ||2 ds <C4, Vtel0,T].
0

Page 9 of 13

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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By (3.4), (3.6), (3.18) and Lemmas 2.1-2.2, we conclude

i+ [ Nt P ds < Cor VE€10,T]
which, along with (3.24), gives (3.19). The proof is complete. O
Lemma 3.4 The following estimates hold for any T > 0:
Joms + [ PP ds < Co e[0T (325)
s + s+ [ i@ < G 2€ 10,71 (326)

Proof Differentiating (1.16) with respect to £, and using Lemmas 2.1-2.2 and Lemma 3.3,
we can get

[ @] = CLll:@)] 1 + [ 0@ + [ + e ®)])

<C, Vtelo,T]. (3.27)

Differentiating (3.20) with respect to x, we have

Prazax + VP' ™ Parar = En (%, ), (3.28)
where

Ex(x,8) = E1x(%,8) = (¥ = 1) pxxxx (3.29)
and

E1x(%,8) = Eou(,8) = y (¥ = 1) (p” 7 prrs) -

An easy calculation with the interpolation inequality, (3.2)—(3.8) and Lemmas 2.1-2.2 and
Lemma 3.3 gives

|Eox(®) ]| < Collatall + | prxaticll + | prxttell + [ 03] + Notgarell + Noaerell + + 1282}
< Co(lpellzp + kel gz + Nltzell + llseas ), (3.30)
| Eoxs ()| < Co(ll prneell + | oxethcll + 1| pxthe | + | prncthcl] + | et |
o thel| + atgcthel] + |26l
< Collpallp + kel prz + liteellpr2), (3.31)
|Ev®)] < Co(|| Eoxe@ ]| + | 020 ]| + | 02| + 1 02sssll)

< Collpslls + el gz + lNatexll 2 11)- (3.32)

Taking into account estimate (3.30)—(3.32), from (3.29), we obtain

1E2(®) || < Ca([Jus(®)] 5 + [ 26O || 13 + | 4ex(®) | 2)- (3.33)
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Inserting (3.17) into (3.33), and integrating (3.33) with respect to ¢, using Lemmas 2.1—
2.2 and Lemma 3.3, we have

/ t||E2(s) I ds < Cy+ G / t||pmx(s) |*ds, vtelo,T]. (3.34)
0 0

Multiplying (3.28) by 0y in L2[0, 1], we can get

1d !

yalpet® sy [ dr < ColEO (335)
which implies

d 2

t
Integrating (3.36) with respect to ¢, using (3.34), we conclude
! 2
”pxxxx”2 <Ci+ CZ/ ”pxxxx(s) “ ds, tel0,T] (3.37)
0

which, after using Gronwall’s inequality, yields

| peee @] < Cay £ 1[0, T1. (3.38)
Thus, we can obtain (3.25) by virtue of (3.37)—(3.38).

By (3.6), (3.17), (3.25), Lemmas 2.1-2.2 and Lemma 3.3, we have
t
Jiess®1 + [ o) ds < Cov 2 (0,71, (339)
0

On the other hand, we differentiate (1.16) with respect to x three times, use Lemmas 2.1—
2.2 and (3.25), (3.27) to conclude, for any ¢ € [0, T,

|ttexran®) | < Ca(|seann ]| + |20 | 5 + | 02O | 15)- (3.40)

Thus we deduce from (3.38)—(3.40) that

t
f ||Mxxxxx(s) ||2d5 < C4; Vt e [0, T]
0

which, along with (3.39), gives (3.26). This completes the proof of the lemma. O

Proof of Theorem 1.2 Applying Lemmas 2.1-2.2 and Lemmas 3.1-3.4, we readily get es-
timates (1.23)—(1.26). This completes the proof of Theorem 1.2. O

4 Conclusions

In this paper, we have established the regularity of global solutions for the spherically sym-
metric compressible fluid with density-dependent viscosity in H, and Hy. The biggest dif-
ference from other papers is that our domain has spherical symmetry and the viscosity
coefficients are density dependent.
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