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Abstract
In this paper, we consider the following p-Kirchhoff equation:

[
M(‖u‖p)]p–1(–�pu + V(x)|u|p–2u) = f (x,u), x ∈ R

N , (P)

where f (x,u) = λg(x)|u|q–2u + h(x)|u|r–2u, 1 < q < p < r < p∗ (p∗ = Np
N–p if N ≥ p,p∗ = ∞ if

N ≤ p). Using variational methods, we prove that, under proper assumptions, there
exist λ0,λ1 > 0 such that problem (P) has a solution for all λ ∈ [0,λ0) and has a
sequence of solutions for all λ ∈ [0,λ1).
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1 Introduction and main results
In this paper, we consider the following p-Kirchhoff equation:

[
M

(‖u‖p)]p–1(–�pu + V (x)|u|p–2u
)

= f (x, u), x ∈R
N , (1.1)

where M, V are continuous functions, f (x, u) = λg(x)|u|q–2u + h(x)|u|r–2u (1 < q < p < r <
p∗) is concave and convex, and

‖u‖p =
∫

RN

(|Du|p + V (x)|u|p)dx (1 < p < N).

Since the pioneering work of Lions [1], much attention has been paid to the existence
of nontrivial solutions, multiplicity of solutions, ground state solutions, sign-changing so-
lutions, and concentration of solutions for problem (1.1). For example, for the following
Kirchhoff equation:

–
(

a + b
∫

RN
|∇u|2 dx

)
�u + V (x)u = f (x, u), x ∈R

N , (1.2)

Li and Ye [2] and Guo [3] showed the existence of a ground state solution for problem (1.2)
with N = 3, where the potential V (x) ∈ C(R3) and it satisfies V (x) ≤ lim inf|y|→+∞ V (y) �
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V∞ < +∞. Sun and Wu [4] investigated the existence and non-existence of nontrivial so-
lutions with the following assumption: V (x) ≥ 0 and there exists c > 0 such that meas{x ∈
R

N : V (x) < c} is nonempty and has finite measure. Wu [5] proved that problem (1.2) has
a nontrivial solution and a sequence of high energy solutions where V (x) is continuous
and satisfies inf V (x) ≥ a1 > 0 and for each M > 0, meas{x ∈ R

N : V (x) ≤ M} < +∞. Nie
and Wu [6] treated (1.2) where the potential is a radial symmetric function. Chen et al. [7]
considered equation (1.2) when f (x, u) = λa(x)|u|q–2u + b(x)|u|r–2u (1 < q < p = 2 < r < 2∗).

Moreover, for p-Kirchhoff-type problem of the following form:

–
[
a + λM

(‖u‖p)][–�pu + b|u|p–2u
]

= f (u) in R
N , (1.3)

Cheng and Dai [8] proved the existence and non-existence of positive solutions, where
M(t) satisfies

(M) There exists σ ∈ (0, 1) such that M̂(t) ≥ σ [M(t)]t, here M̂(t) =
∫ t

0 M(s) ds.
Furthermore, the authors in [9] dealt with problem (1.3) for the special case M(t) = t

and p = 2. Recently, Chen and Zhu [10] considered problem (1.3) for M(t) = tτ and f (u) =
|u|m–2u + μ|u|q–2u. Similar consideration can be found in [11–13].

However, p-Kirchhoff problem in the following form:

–
[
M

(‖u‖p)]p–1
�pu = f (x, u) in �, u = 0 on ∂�, (1.4)

or p-Kirchhoff problem like (1.1) seems to be considered by few researchers as far as we
know. Alves et al. [14] and Corrêa and Figueiredo [15] established the existence of a posi-
tive solution for problem (1.4) by the mountain pass lemma, where M is assumed to satisfy
the following conditions:

(H1) M(t) ≥ m0 for all t ≥ 0.
(H2) M̂(t) ≥ [M(t)]p–1t for all t ≥ 0, where M̂(t) =

∫ t
0 [M(s)]p–1 ds.

In [16], Liu established the existence of infinitely many solutions to a Kirchhoff-type
equation like (1.1). They treated the problem with M satisfying (H1) and

(H3) M(t) ≤ m1 for all t > 0.
Very recently, Figueiredo and Nascimento [17] and Santos Junior [18] considered solutions
of problem (1.1) by minimization argument and minimax method, respectively, where
p = 2 and M satisfies (H1) and

(H4) The function t 
→ M(t) is increasing and the function t 
→ M(t)
t is decreasing.

Subsequently, Li et al. [19] investigated the existence, multiplicity, and asymptotic behav-
ior of solutions for problem (1.4), where M could be zero at zero, i.e., the problem is de-
generate.

Note that M(t) = a + bt does not satisfy (H2) for p = 2 and (H3) for all 1 < p < N . More-
over, M(t) = a+btk fails to satisfy (H2), (H3) for all k > 0, and (H4) for all k > 1. In this paper,
we will assume proper conditions on M, which cover the typical case M(t) = a+btk and the
degenerate case. Furthermore, our assumption on the potential V is totally different from
all the previous works which were concerned with Kirchhoff-type problems to the best of
our knowledge. The assumption on V is related to the functions g, h in the nonlinearity
f . The potential V is not necessarily radial and can be unbounded or decaying to zero as
|x| → +∞ according to different functions g and h. See assumptions (V) and (M1)–(M5)
below.
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Before stating our main results, we introduce some function spaces and then present
two embedding theorems, which is important to investigating our problem. For any s ∈
(1, +∞) and any continuous function K(x) : RN →R, K(x) ≥ 0, �≡ 0, we define the weighted
Lebesgue space Ls(RN , K) equipped with the norm

‖u‖Ls(RN ,K ) =
(∫

RN
K(x)|u|s dx

)1/s

. (1.5)

Throughout the article we assume V (x) satisfies
(V) V (x) ∈ C(RN ), V (x) ≥ 0, and {x ∈R

N : V (x) = 0} ⊂ BR0 for some R0 > 0, where BR0 =
{x||x| ≤ R0, x ∈R

N }.
The natural functional space to study problem (1.1) is X with respect to the norm

‖u‖p =
∫

RN

(|Du|p + V (x)|u|p)dx. (1.6)

The following theorem is due to Lyberopoulos [20]. Denote BR = {x|x ∈ R
N , |x| ≤ R} and

BC
R = R

N\BR.

Theorem 1.1 Let p < r < p∗, V (x) satisfies (V), h(x) ∈ C(RN ), and h(x) ≥ 0, �≡ 0 such that

M := lim
R→+∞ m(R) < +∞, (1.7)

where

m(R) := sup
x∈BC

R

(h(x))p∗–p

(V (x))p∗–r .

Then the embedding X ↪→ Lr(RN , h) is continuous. Furthermore, if M = 0, then the em-
bedding is compact.

Theorem 1.2 Let 1 < q < p, V (x) satisfies (V), g(x) ∈ C(RN ), g(x) ≥ 0, �≡ 0 such that

L := lim
R→+∞ l(R) < +∞, (1.8)

where

l(R) :=
∫

BC
R

g
p

p–q V – q
p–q dx.

Then the embedding X ↪→ Lq(RN , g) is continuous. Furthermore, if L = 0, then the embed-
ding is compact.

Proof This theorem can be seen as a corollary of Theorem 2.3 in [21]. Here we give a
detailed proof for the readers convenience. Let ϕR ∈ C∞

0 (RN ) be a cut-off function such
that 0 ≤ ϕR ≤ 1, ϕR(x) = 0 for |x| < R, ϕR(x) = 1 for |x| > R + 1, and |DϕR(x)| ≤ C. For any
fixed R > R0, we write u = ϕRu + (1 – ϕR)u. Then it follows from Hölder’s inequality that

‖ϕRu‖q
Lq(RN ,g) ≤

∫

BC
R

g|u|q dx ≤
(∫

BC
R

V |u|p dx
) q

p
(∫

BC
R

g
p

p–q V – q
p–q dx

) p–q
p
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≤ (
l(R)

) p–q
p

(∫

BC
R

(|Du|p + V |u|p)dx
) q

p
. (1.9)

Furthermore, by the Sobolev embedding theorem, we have

∥
∥(1 – ϕR)u

∥
∥q

Lq(RN ,g) ≤
∫

BR+1

g|u|q dx ≤ C
∫

BR+1

|u|q dx

≤ C
(∫

BR+1

|Du|p dx
)q/p

≤ C
(∫

BR+1

(|Du|p + V (x)|u|p)dx
)q/p

. (1.10)

Combining (1.9) with (1.10), we obtain the continuity of the embedding X ↪→ Lq(RN , g).
In the following, we prove the embedding X ↪→ Lq(RN , g) is compact. Let L = 0 and

suppose that un ⇀ 0 weakly in X. Then ‖un‖X is bounded. Hence it follows from (1.9) that
for any ε > 0, there exists R > 0 sufficiently large such that

‖ϕRun‖Lq(RN ,g) ≤ ε

2
.

Moreover, by the Rellich–Kondrachov theorem, ‖(1 – ϕR)un‖Lq(RN ,g) → 0, and so there
exists n(ε) ∈N such that, for all n ≥ n(ε),

∥∥(1 – ϕR)un
∥∥

Lq(RN ,g) ≤ ε

2
.

Hence, for any ε > 0, there exist R and n sufficiently large such that

‖u‖Lq(RN ,g) ≤ ‖ϕRun‖Lq(RN ,g) +
∥
∥(1 – ϕR)un

∥
∥

Lq(RN ,g) ≤ ε,

which implies the embedding X ↪→ Lq(RN , g) is compact. �

In the rest of the paper, we assume
(A) The function V satisfies (V) and the functions M, g, h are continuous and nonnegative

such that M = L = 0, where M and L are defined by (1.7) and (1.8), respectively.
By Theorems 1.1 and 1.2, if M = L = 0, then the embedding X ↪→ Lq(RN , g) and X ↪→

Lr(RN , h) is compact for 1 < q < p < r < p∗. Let Sq and Sr be the best embedding constants,
then

∫

RN
g|u|q dx ≤ S–q/p

q ‖u‖q,
∫

RN
h|u|r dx ≤ S–r/p

r ‖u‖r . (1.11)

Since X is a reflexive and separable Banach space, it is well known that there exist ej ∈ X
and e∗

j ∈ X∗ (j = 1, 2, . . .) such that
(1) 〈ei, e∗

j 〉 = δij , where δij = 1 for i = j and δij = 0 for i �= j.
(2) X = span{e1, e2, . . .}, X∗ = span{e∗

1, e∗
2, . . .}.

Set

Xi = span{ei}, Yk =
k⊕

i=1

Xi, Zk =
∞⊕

i=k

Xi. (1.12)
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Motivated by [8, 19], we make the following assumptions on M:
(M1) There exists σ > 0 such that

M̂(t) ≥ σ
[
M(t)

]p–1t

holds for all t ≥ 0, where M̂(t) =
∫ t

0 [M(s)]p–1 ds.
(M2) M(t) ≥ m0 > 0 for all t ≥ 0.
(M3) M(t) is nonnegative and increasing for all t ≥ 0.
(M4) There exists ρ > 0 such that

σ

p
[
M

(
ρp)]p–1 >

1
r

S–r/p
r ρr–p,

where Sr is the best embedding constant of X ↪→ Lr(Rn, h).
(M5) There exists γ1 > 0 such that

σ

p
[
M

(
γ

p
1
)]p–1

γ
p
1 ≥ βr

1γ
r
1

4r
,

where

β1 = sup
u∈Z1,‖u‖=1

(∫

RN
h|u|r dx

)1/r

.

The main results of our paper read as follows.

Theorem 1.3 Assume (A), (M1) and (M2) or (M3), (M4). Suppose also p < σ r and 1 < q <
p < r < p∗. Then there exists λ0 > 0 such that problem (1.1) has a solution for all λ ∈ [0,λ0).

Theorem 1.4 Assume (A), (M1) and (M2) or (M3), (M4). Suppose also p < σ r and 1 < q <
p < r < p∗. Then there exists λ1 > 0 such that problem (1.1) has a sequence {un} of solutions
in X with J(un) → ∞ as n → ∞ for all λ ∈ [0,λ1).

Remark 1.5 Set M(t) = a + btk (a, b, k > 0). Then we can easily deduce that M satisfies (M1)
for all p > 1 and 0 < σ ≤ 1

(p–1)k+1 .

Remark 1.6 Let M(t) = a + b ln(1 + t) (a, b > 0, t ≥ 0). Assume p > 1, b(p – 1) < a, then by
direct calculation, one has

M̂(t) =
∫ t

0

[
M(t)

]p–1 dt ≥ t
[
M(t)

]p–1
(

1 –
b(p – 1)

a

)
.

Consequently, M satisfies (M1) for 0 < σ ≤ 1 – b(p–1)
a .

Remark 1.7 Clearly, assumptions (M1), (M3), (M4) or (M1), (M3), (M5) cover the degen-
erate case.
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2 Proofs of the main results
The associated energy functional to equation (1.1) is

J(u) =
1
p

M̂
(‖u‖p) –

λ

q

∫

RN
g|u|q dx –

1
r

∫

RN
h|u|r dx. (2.1)

For any v ∈ C∞
0 (RN ), we have

〈
J ′(u), v

〉
=

[
M

(‖u‖p)]p–1
∫

RN

(|∇u|p–2∇u · ∇v + V |u|p–2uv
)

dx

– λ

∫

RN
g|u|q–2uv dx –

∫

RN
h|u|r–2uv dx. (2.2)

We say that {un} is a (PS)c sequence for the functional J if

J(un) → c and J ′(un) → 0 in X∗, (2.3)

where X∗ denotes the dual space of X. If every (PS)c sequence of J has a strong convergent
subsequence, then we say that J satisfies the (PS) condition.

The proof of Theorem 1.3 mainly relies on the following mountain pass lemma in [22]
(see also [23]).

Lemma 2.1 Let E be a real Banach space and J ∈ C1(E,R) with J(0) = 0. Suppose
(H1) there are ρ,α > 0 such that J(u) ≥ α for ‖u‖E = ρ ;
(H2) there is e ∈ E, ‖e‖E > ρ such that J(e) < 0. Define

� =
{
γ ∈ C1([0, 1], E

)|γ (0) = 0,γ (1) = e
}

.

Then

c = inf
γ∈�

max
0≤t≤1

J
(
γ (t)

) ≥ α

is finite and J(·) possesses a (PS)c sequence at level c. Furthermore, if J satisfies the (PS)
condition, then c is a critical value of J.

In the following, we shall verify J satisfies all conditions of the mountain pass lemma.

Lemma 2.2 Assume (A), (M1) and (M2) or (M3). Suppose also p < σ r. Then any (PS)c

sequence of J is bounded.

Proof Let {un} be any (PS)c sequence of J and satisfy (2.3).
By (M1) and (A), we have

c + 1 + ‖un‖ ≥ J(un) –
1
r
〈
J ′(un), un

〉

=
1
p

M̂
(‖un‖p) –

1
r
[
M

(‖un‖p)]p–1‖un‖p – λ

(
1
q

–
1
r

)∫

RN
g|un|q dx

≥
(

σ

p
–

1
r

)[
M

(‖un‖p)]p–1‖un‖p – λ

(
1
q

–
1
r

)
S–q/p

q ‖un‖q. (2.4)
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Case 1. If (M2) holds. Then we deduce from (2.4) that

c + 1 + ‖un‖ ≥
(

σ

p
–

1
r

)
mp–1

0 ‖un‖p – λ

(
1
q

–
1
r

)
S–q/p

q ‖un‖q. (2.5)

Hence {un} is bounded.
Case 2. If (M3) holds. Let τ0 > 0 be fixed. If ‖un‖p ≥ τ0, then

c + 1 + ‖un‖ ≥
(

σ

p
–

1
r

)[
M(τ0)

]p–1‖un‖p – λ

(
1
q

–
1
r

)
S–q/p

q ‖un‖q, (2.6)

which implies {un} is bounded. �

Lemma 2.3 Assume (A), (M1) and (M2) or (M4). Then there are ρ,α > 0 such that J(u) ≥ α

for ‖u‖ = ρ .

Proof Case 1. (M2) is satisfied. It follows from (1.11), (2.1), and (M1)–(M2) that

J(u) ≥ σ

p
mp–1

0 ‖u‖p –
λ

q
S–q/p

q ‖u‖q –
1
r

S–r/p
r ‖u‖r

= ‖u‖q
(

σ

p
mp–1

0 ‖u‖p–q –
λ

q
S–q/p

q –
1
r

S–r/p
r ‖u‖r–q

)
. (2.7)

Denote φ(t) = Atp–q – Bλ – Ctr–q with

A = σmp–1
0 /p, B = S–q/p

q /q, C = S–r/p
r /r. (2.8)

Obviously, φ(t) attains its maximum

φ(t0) =
r – p
r – q

Atp–q
0 – Bλ

at

t = t0 =
(

A(p – q)
C(r – q)

)1/(r–p)

.

Let λ0 = A(r–p)
B(r–q) tp–q

0 , ρ = t0, and α = tq
0φ(t0). Then J(u) ≥ α > 0 for ‖u‖ = ρ and λ ∈ [0,λ0).

Case 2. (M4) is fulfilled. Let ‖u‖ = ρ . Then, by (1.11), (2.1), and (M1), there hold

J(u) ≥ σ

p
[
M

(‖u‖p)]p–1‖u‖p –
λ

q
S–q/p

q ‖u‖q –
1
r

S–r/p
r ‖u‖r

= ρq(A(ρ)ρp–q – Bλ – Cρr–q), (2.9)

where A(ρ) = σ
p [M(ρp)]p–1 and B, C is defined by (2.8). In view of (M4), J(u) ≥ α > 0 for all

0 < λ < λ0 = 1
B [A(ρ)ρp–q – Cρr–q]. �

Lemma 2.4 Assume (A), (M1) and p < σ r. Then there is e ∈ X with ‖e‖ > ρ such that
J(e) < 0.
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Proof By integrating (M1), we obtain

M̂(t) ≤ M̂(t1)
(

t
t1

)1/σ

for all t ≥ t1 > 0. (2.10)

Hence, for ‖tu‖p ≥ t1,

J(tu) ≤ 1
p

M̂(t1)
(‖u‖p

t1

)1/σ

t
p
σ – tq λ

q

∫

RN
g|u|q dx – tr 1

r

∫

RN
h|u|r dx. (2.11)

Consequently, J(tu) < 0 if t ≥ R for some R > 0 sufficiently large. �

Lemma 2.5 Assume (A), (M1) and (M2) or (M3). Then any (PS)c sequence of J has a strong
convergent subsequence.

Proof Let {un} be any (PS)c sequence of J and satisfy (2.3). By Lemma 2.2, {un} is bounded.
Passing to a subsequence if necessary, we have

un ⇀ u in X,

un → u in Lq(
R

N , g
)

and in Lr(
R

N , h
)
,

un → u almost everywhere in R
N .

Denote Pn = 〈J ′(un), un – u〉 and

Qn =
[
M

(‖un‖p)]p–1
∫

RN

(|∇u|p–2∇u∇(un – u) + V |u|p–2u(un – u)
)

dx.

We can easily obtain that

lim
n→∞ Pn = 0, lim

n→∞ Qn = 0,

lim
n→∞

∫

RN
g(x)|un|q–2un(un – u) dx = 0,

lim
n→∞

∫

RN
h(x)|un|r–2un(un – u) dx = 0.

Since

Pn – Qn =
[
M

(‖un‖p)]p–1
∫

RN

(|∇un|p–2∇un – |∇u|p–2∇u
)∇(un – u) dx

+
[
M

(‖un‖p)]p–1
∫

RN
V

(|un|p–2un – |u|p–2u
)
(un – u) dx

– λ

∫

RN
g(x)|un|q–2un(un – u) dx –

∫

RN
h(x)|un|r–2un(un – u) dx,

we can deduce that

lim
n→∞

{[
M

(‖un‖p)]p–1
∫

RN

(|∇un|p–2∇un – |∇u|p–2∇u
)∇(un – u) dx
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+
[
M

(‖un‖p)]p–1
∫

RN
V

(|un|p–2un – |u|p–2u
)
(un – u) dx

}
= 0. (2.12)

Case 1. (M2) holds. Using the standard inequality in R
N given by

〈|x|p–2x – |y|p–2y, x – y
〉 ≥ Cp|x – y|p if p ≥ 2 (2.13)

or

〈|x|p–2x – |y|p–2y, x – y
〉 ≥ Cp|x – y|2

(|x| + |y|)2–p if 2 > p > 1, (2.14)

we obtain from (2.12) that ‖un – u‖ → 0 as n → ∞.
Case 2. If (M3) holds, then due to the degenerate nature of (1.1), two situations must be

considered: either infn ‖un‖ > 0 or infn ‖un‖ = 0.
Case 2-1: infn ‖un‖ > 0. Then we can deduce from (2.12)–(2.14) that ‖un – u‖ → 0 as

Case 1.
Case 2-2: infn ‖un‖ = 0. If 0 is an accumulation point for the sequence {‖un‖}, then there

is a subsequence of {un} (not relabelled) such that un → 0. Hence 0 = J(0) = limn→∞ J(un) =
c. By Lemma 2.3, c > 0. This is impossible. Consequently, 0 is an isolated point of {‖un‖}.
Therefore, there is a subsequence of {un} (not relabelled) such that infn ‖un‖ > 0, and we
can proceed as before.

This completes the proof. �

Proof of Theorem 1.3 The conclusion follows by Lemmas 2.2–2.5 immediately. �

To get multiplicity result of problem (1.1), we need the following fountain theorem.

Lemma 2.6 (Fountain theorem [24]) Let X be a Banach space with the norm ‖ · ‖, and let
Xi be a sequence of subspace of X with dim Xi < ∞ for each i ∈N. Further, set

X =
∞⊕

i=1

Xi, Yk =
k⊕

i=1

Xi, Zk =
∞⊕

i=k

Xi.

Consider an even functional � ∈ C1(X,R). Assume, for each k ∈ N, there exist ρk > γk > 0
such that

(�1) ak := maxu∈Yk ,‖u‖=ρk �(u) ≤ 0;
(�2) bk := infu∈Zk ,‖u‖=γk �(u) → +∞, k → +∞;
(�3) � satisfies the (PS)c condition for every c > 0.

Then � has an unbounded sequence of critical values.

Proof of Theorem 1.4 Obviously the functional J is even. It remains to verify that J satisfies
(�1)–(�3) in Lemma 2.6.

It follows from (2.10) that

M̂(t) ≤ C1t1/σ + C2
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for positive constants C1, C2 and for all t ≥ 0. Hence

J(u) ≤ 1
p
(
C1‖u‖ p

σ + C2
)

–
λ

q

∫

RN
g|u|q dx –

1
r

∫

RN
h|u|r dx. (2.15)

Since all norms are equivalent on the finite dimensional space Yk , we have, for all u ∈ Yk ,

J(u) ≤ 1
p
(
C1‖u‖ p

σ + C2
)

– λC3‖u‖q – C4‖u‖r , (2.16)

where C3, C4 are positive constants. Therefore ak := maxu∈Yk ,‖u‖=ρk J(u) < 0 for ‖u‖ = ρk

sufficiently large. This gives (�1).
Denote βk = supu∈Zk ,‖u‖=1(

∫
RN h|u|r dx)1/r . Since Zk+1 ⊂ Zk , we deduce that 0 ≤ βk+1 ≤

βk . Hence βk → β0 ≥ 0 as k → +∞. By the definition of βk , there exists uk ∈ Zk with
‖uk‖ = 1 such that

–
1
k

≤ βk –
(∫

RN
h|uk|r dx

)1/r

≤ 0

for all k ≥ 1. Therefore there exists a subsequence of {uk} (not relabelled) such that uk ⇀ u
in X and 〈u, e∗

j 〉 = limk→∞〈uk , e∗
j 〉 = 0 for all j ≥ 1. Consequently, u = 0. This implies uk ⇀ 0

in X and so uk → 0 in Lr(RN , h). Thus β0 = 0. The proof of (�2) is divided into the following
two cases.

Case 1: (M2) holds. For any u ∈ Zk , there holds

J(u) ≥ σ

p
mp–1

0 ‖u‖p –
λ

q
S–q/p

q ‖u‖q –
1
r
βr

k‖u‖r . (2.17)

Set

γk =
(

σmp–1
0 r

4pβr
k

) 1
r–p

, λ1 =
σqmp–1

0
2p

γ
p–q
1 Sq/p

q .

Then

J(u) ≥ σ

4p
mp–1

0 γ
p
k (2.18)

for all λ ∈ (0,λ1) and ‖u‖ = γk . Hence (�2) is fulfilled.
Case 2: (M3), (M5) hold. For ‖u‖ = ρ , we have

J(u) ≥ σ

p
[
M

(
ρp)]p–1

ρp –
λ

q
S–q/p

q ρq –
1
r

S–r/p
r ρr . (2.19)

Set

γ̃k =
(

σ [M(γ p
1 )]p–1r

4pβr
k

) 1
r–p

, λ̃1 =
σq[M(γ p

1 )]p–1

2p
γ

p–q
1 Sq/p

q .

Then by (M5)

J(u) ≥ σ

4p
[
M

(
γ̃

p
1
)]p–1

γ
p
k (2.20)

for all λ ∈ (0, λ̃1) and ‖u‖ = γ̃k . Hence (�2) is fulfilled.
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By Lemma 2.5, we obtain (�3). Consequently, the conclusion follows by the fountain
theorem. �
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