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1 Introduction and main results
In this paper, we consider the following second-order Hamiltonian system:

ü(t) – L(t)u + ∇W (t, u) = 0, (1)

where W : R × R
N → R is a C1-map and ∇W (t, x) denotes the gradient with respect to

the x variable. L ∈ C(R,RN2 ) is a matrix-valued function. A solution u(t) of problem (1) is
nontrivial homoclinic (to 0) if u �≡ 0, u(t) → 0 as t → ±∞.

In the last two decades, many mathematicians have successfully used variational meth-
ods to obtain the existence and multiplicity of homoclinic orbits for problem (1) such as
[1, 3–18, 20–37]. Since this problem is considered in the whole space, one of the main dif-
ficulties is the lack of compactness of embedding. In 1990, Rabinowitz [20] considered the
periodic case. In his paper, L(t) and W (t, u) were assumed to be periodic in t and the au-
thor obtained the results by the mountain pass theorem. Without the periodic condition,
Rabinowitz and Tanaka [21] introduced the following coercive condition on L(t).

(L′) L ∈ C(R,RN2 ) is a symmetric and positively definite matrix for all t ∈ R, and there
exists a continuous function l : R→ R

+ satisfying

(
L(t)x, x

) ≥ l(t)|x|2 with l(t) → ∞ as |t| → ∞.

Using (L′), many mathematicians studied problem (1) with superquadratic, subquad-
ratic, or asymptotic quadratic nonlinearities. In this paper, we mainly consider the su-
perquadratic growth case. First, we recall some main results.
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In 1991, Rabinowitz and Tanaka [21] used the so-called Ambrosetti–Rabinowitz ((AR)
for short) condition to obtain the existence of homoclinic solutions for problem (1).

(AR) There exists a constant θ > 2 such that

0 < θW (t, x) ≤ (∇W (t, x), x
)

for every t ∈ R and x ∈R
N \ {0}.

Condition (AR) is useful in guaranteeing the geometrical structure of the corresponding
functional and the boundedness of Palais–Smale ((PS) for short) sequence. After then,
there have been many mathematicians trying to weaken this condition. In 2009, Ding and
Lee [6] introduced the following generalized superquadratic condition.

(H1) There exist ε ∈ (0, 1) and κ1, b0 > 0 such that

W̃ (t, x) ≥ b0
(∇W (t, x), x)

|x|2–ε
for all t ∈R and |x| ≥ κ1,

where

W̃ (t, x) =
(∇W (t, x), x

)
– 2W (t, x).

In a recent paper, (H1) was weakened by Wu et al. [28] with the following condition.
(H2) W̃ (t,x)

W (t,x) |x|2 → +∞ as |x| → ∞ uniformly in t ∈R.
In 2011, Yang and Han [31] also made a contribution to the multiplicity of homoclinic

solutions for problem (1) under the following monotonous condition.
(H3) s–1(∇W (t, sx), x) is an increasing function of s ∈ (0, 1] for all (t, x) ∈R×R

N .
In 2013, Lv and Tang [15] showed that the following condition is weaker than (H3).
(H4) There exists μ ≥ 1 such that

μW̃ (t, x) ≥ W̃ (t, sx)

for all (t, x) ∈R×R
N and s ∈ [0, 1].

Conditions (H1)–(H4) can be seen as the generalizations or supplements of (AR). How-
ever, each result in the above papers implies that

(H5) There exists κ2 > 0 such that supt∈R,|x|=κ2 W (t, x) < +∞.
Obviously, (H5) holds when W (t, x) is periodic in t. If there is no periodic assumption, (H5)
is an important requirement in many papers [1, 4–13, 16–18, 20, 21, 24, 27, 33, 35]. Re-
cently, Yuan and Zhang [35] considered the following variable separation nonlinear term:

W (t, x) = a(t)G(x), (2)

where a : R → R
+ is continuous, G ∈ C1(RN ,R). In [35], the authors considered the fol-

lowing conditions:
(A) a(t) → 0 as |t| → ∞;

(L′′) L ∈ C(R,RN2 ) is a symmetric and positively definite matrix for all t ∈ R, and there
exists a constant M0 > 0 such that

(
L(t)x, x

) ≥ M0|x|2 for all (t, x) ∈R×R
N .
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Obviously, (L′′) is weaker than (L′). In a recent paper, Wu et al. [28] considered a class of
fractional Hamiltonian systems with variable separated type nonlinear terms. They intro-
duced the following condition.

(L′′′) a(t)
l(t) → 0 as |t| → ∞, where l(t) ∈ C(R,R) satisfies

l(t) ≡ inf|x|=1

(
L(t)x, x

)
.

Motivated by the above papers, in this paper, we introduce the following condition.
(L1) There exists a constant r0 > 0 such that

lim|s|→+∞ meas

({
t ∈ Br0 (s) :

l(t)
a(t)

� M
})

= 0, ∀M > 0,

where Br0 (s) = {t ∈ R : s – r0 ≤ t ≤ s + r0}, l(t) ∈ C(R,R) and meas(·) denotes the
Lebesgue measure.

In [35], the nonlinear term G(x) is assumed to satisfy the following classical AR-type
condition:

(AR′) There exists a constant ν > 2 such that

0 < νG(x) ≤ (∇G(x), x
)

for every x ∈R
N \ {0}.

From the (AR′) condition, we can deduce that
(SQ) G̃(x) ≥ 0 for any x ∈R

N , where G̃(x) = (∇G(x), x) – 2G(x).
In [28], the authors considered the following weakened superquadratic growth condi-

tion.
(H6) There exist ν > 2 and b2,κ3 > 0 such that

(∇G(x), x
)

– νG(x) ≥ –b2|x|2 for all |x| ≥ κ3.

(H6) is a generalization of condition (AR′), which is only a local condition. Instead of (H6),
the authors in [28] also considered the following superquadratic condition.

(H7) G̃(x)
G(x) |x|2–r0 → +∞ as |x| → ∞, where r0 is the growth exponent of the subquadratic
term at infinity with respect to x.

In this paper, we consider G(x) satisfying the following monotonous condition.
(W1) There exists a constant θ ≥ 1 such that θG̃(x) ≥ G̃(sx) for all x ∈R

N and s ∈ [0, 1].
Now we state our main results.

Theorem 1.1 Suppose (2), (L′′), (L1), (W1) and the following conditions hold:
(L2) There exists A > 0 such that a(t) ≤ Al(t) for all t ∈R;

(W2) a(t) ∈ C(R,R+);
(W3) G(0) = 0 and ∇G(x) = o(|x|) as |x| → 0;
(W4) G(x)/|x|2 → +∞ as |x| → ∞.
(W5) There are constants ζ > 2 and d1 > 0 such that

∣
∣G(x)

∣
∣ ≤ d1

(|x|2 + |x|ζ ) for all x ∈R
N .
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Then problem (1) possesses at least one nontrivial homoclinic solution.

If G(t) is even in t, we can obtain the following multiplicity result.

Theorem 1.2 Suppose (2), (L′′), (L1), (L2), (W1)–(W5) and G(–x) = G(x) for all x ∈ R
N .

Then problem (1) possesses infinitely many solutions.

By a condition similar to (H2), we obtain the following.

Theorem 1.3 Suppose (2), (L′′), (L1), (L2), (W2)–(W4), (SQ) and the following condition
holds:

(W6) G̃(x)
G(x) |x|2 → +∞ as |x| → ∞.

Then problem (1) possesses at least one nontrivial homoclinic solution.

Theorem 1.4 Suppose (2), (L′′), (L1), (L2), (W2)–(W4), (W6), (SQ) and G(–x) = G(x) for all
x ∈R

N . Then problem (1) possesses infinitely many solutions.

Remark 1 It can be seen that a(t) and l(t) are positive in our theorems and the results in
[28]. Then we can deduce that (L1) is weaker than (L′′′). The reader can see [2] for more
details.

Remark 2 Condition (H5) does not hold in our theorems since a(t) can go to infinity as
|t| → ∞.

Remark 3 Condition (W1) implies (SQ).

2 Preliminaries
Set

E :=
{

u ∈ H1(
R,RN)

:
∫

R

(∣∣u̇(t)
∣
∣2 +

(
L(t)u(t), u(t)

))
dt < ∞

}

with the inner product

(u, v)E =
∫

R

((
u̇(t), v̇(t)

)
+

(
L(t)u(t), u(t)

))
dt.

Let L2
a(R,RN ) be the weighted space of measurable functions u : R →R

N under the norm

‖u‖L2
a

=
(∫

R

a(t)
∣∣u(t)

∣∣2 dt
)1/2

.

Throughout this paper, C > 0 denotes a universal positive constant. Note that under con-
dition (L1)

E ⊂ H1(
R,RN) ⊂ Lp(

R,RN)

for any p ∈ [2, +∞] with the embedding being continuous, which implies that there is a
positive constant C∞ > 0 such that the following inequality holds:

max
{‖u‖2,‖u‖∞

} ≤ C∞‖u‖. (3)
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First, we show a compact embedding theorem.

Lemma 2.1 Under conditions (L1)–(L2) and (L′′), the embedding E ↪→ L2
a(R,RN ) is con-

tinuous and compact.

Proof Suppose that {un} is a bounded sequence in E. Then there exists M0 > 0 such that
‖un‖ ≤ M0. Hence there exists a weak convergent subsequence, still denoted by {un}, such
that un ⇀ u0 in E. Assuming vn = un – u0, we obtain that {vn} is a bounded sequence in
E and vn ⇀ 0 in E. Next, we show that vn → 0 in L2

a(R,RN ). It follows from the Sobolev
compact embedding theorem that vn → 0 in L1(BR(0),RN ) for any R > 0. Choose {si} ⊂ R

such that R ⊂ ⋃∞
i=1 Br0 (si) and each t ∈ R is contained by two such intervals at most. Set

A(M, R) =
{

t ∈ Bc
R(0) :

l(t)
a(t)

� M
}

and

B(M, R) =
{

t ∈ Bc
R(0) :

l(t)
a(t)

≥ M
}

.

On the one hand, we have

∫

B(M,R)
a(t)

∣
∣vn(t)

∣
∣2 dt ≤ 1

M

∫

B(M,R)
l(t)

∣
∣vn(t)

∣
∣2 dt ≤ ‖vn‖2

M
≤ 2M0

M
. (4)

On the other hand, let εR = supsi (meas(A(M, R)
⋂

Br0 (si))), we obtain

∫

A(M,R)
a(t)

∣∣vn(t)
∣∣2 dt ≤

∞∑

i=1

∫

A(M,R)
⋂

Br0 (si)
a(t)

∣∣vn(t)
∣∣2 dt

≤ ε
1
2
R

∞∑

i=1

(∫

A(M,R)
⋂

Br0 (si)
a2(t)

∣∣vn(t)
∣∣4 dt

) 1
2

≤ Aε
1
2
R

∞∑

i=1

(∫

A(M,R)
⋂

Br0 (si)
l2(t)

∣∣vn(t)
∣∣4 dt

) 1
2

≤ ACε
1
2
R

∞∑

i=1

∫

Br0 (si)

(∣∣u̇(t)
∣∣2 +

(
L(t)u(t), u(t)

))
dt

≤ 2ACε
1
2
R ‖u‖2 (5)

for some C > 0. It follows from (L2) that
∫

A(M,R) a(t)|vn(t)|2 dt → 0 as R → ∞, which implies
that

∫

Bc
R(0)

a(t)
∣
∣vn(t)

∣
∣2 dt =

∫

A(M,R)
a(t)

∣
∣vn(t)

∣
∣2 dt +

∫

B(M,R)
a(t)

∣
∣vn(t)

∣
∣2 dt

≤ 2M0

M
+ 2d0Cε

1
2
R ‖u‖2

→ 0 as min{M, R} → ∞.
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Then we can deduce that vn → 0 in L2
a(R,RN ). Hence the embedding E ↪→ L2

a(R,RN ) is
continuous and compact. �

From Lemma 2.1, we can easily deduce that there is a positive constant K > 0 such that
the following inequality holds:

‖u‖L2
a
≤ K‖u‖. (6)

Lemma 2.2 Suppose that conditions (L′′), (2), (L1), and (W4) hold, then we have ∇G(uk) →
∇G(u) in L2

a(R,RN ) if uk ⇀ u in E.

Proof The proof of this lemma is similar to that of Lemma 2.3 in [28]. �

The corresponding functional of (1) is defined by

I(u) =
1
2
‖u‖2 –

∫

R

W
(
t, u(t)

)
dt. (7)

Lemma 2.3 Suppose (L′′), (2), (L1), and (W4) hold, then I ∈ C1(E,R) is w.l.s.c. and

〈
I ′(u), v

〉
=

∫

R

((
u̇(t), v̇(t)

)
+

(
L(t)u(t), v(t)

))
dt –

∫

R

(∇W
(
t, u(t)

)
, v(t)

)
) dt ∀u, v ∈ E.

Proof The proof is similar to Lemma 2.4 in [28]. �

From Lemma 2.3, we obtain

〈
I ′(u), u

〉
= ‖u‖2 –

∫

R

(∇W
(
t, u(t)

)
, u(t)

)
dt. (8)

The following theorem is useful in proving the multiplicity of homoclinic solutions for
problem (1).

Lemma 2.4 (see [19], Theorem 9.12) Let B be an infinite dimensional real Banach space,
and let I ∈ C1(B,R) be even, satisfy the (PS) condition and I(0) = 0. If B = V ⊕ X, where V
is finite dimensional and I satisfies the following:

(A1) There are constants 
, α > 0 such that I|∂B

⋂

X ≥ α; and
(A2) For each finite dimensional subspace Ẽ ⊂ B, there is r = r(̃E) such that I ≤ 0 on Ẽ \

Br(̃E).
Then I has an unbounded sequence of critical values.

3 Proof of Theorem 1.1
The proof of Theorem 1.1 is divided into several lemmas.

Lemma 3.1 Suppose that (SQ) and (W3) hold, then G(x) ≥ 0 for all x ∈R.

Proof The proof of this lemma is similar to that of Lemma 7 in [15]. �
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Definition 3.1 A sequence {un} ⊂ X, where X is a real Banach space, is called a Cerami
((C) for short) sequence of functional I if {I(un)} is bounded and ‖I ′(un)‖(1 + ‖un‖) → 0
as n → ∞.

Definition 3.2 A functional I is said to satisfy the (C) condition if any (C) sequence of I
possesses a convergent subsequence.

Lemma 3.2 Suppose that the conditions of Theorem 1.1 hold, then I satisfies the (C) con-
dition.

Proof Assume that {un} ⊂ E is a sequence such that {I(un)} is bounded and ‖I ′(un)‖(1 +
‖un‖) → 0 as n → ∞. Then, for some M1 > 0, it follows

∣∣I(un)
∣∣ ≤ M1,

∥∥I ′(un)
∥∥(

1 + ‖un‖
) ≤ M1. (9)

Next we show that {un} is bounded in E. Assuming ‖un‖ → +∞ as n → ∞, set wn = un
‖un‖ ,

then ‖wn‖ = 1, which implies that there exists a subsequence of {wn}, still denoted by {wn},
such that wn ⇀ w0 in E. By (7) and (9), we get

∣
∣∣
∣

∫

R

W (t, un(t))
‖un‖2 dt –

1
2

∣
∣∣
∣ =

∣
∣∣
∣–

I(un)
‖un‖2

∣
∣∣
∣ ≤ M1

‖un‖2 , (10)

which implies that

∣∣
∣∣

∫

R

W (t, un(t))
‖un‖2 dt

∣∣
∣∣ ≤ 1 (11)

for n large enough. The following discussion is divided into two cases.
Case 1: w0 �≡ 0. Let  = {t ∈ R | |w0(t)| > 0}. We can see that meas() > 0. Then

there exists χ > 0 such that meas(�) > 0, where � = 
⋂

Bχ (0). Since ‖un‖ → +∞ as
n → ∞ and |un(t)| = |wn(t)| · ‖un‖, we have |un(t)| → +∞ as n → ∞ for a.e. t ∈ �. Let
a1 = inft∈Bχ (0) a(t) > 0. By (2), (W2), (W4), Lemma 3.1, and Fatou’s lemma, we can obtain

lim
n→∞

∫

R

a(t)G(un(t))
‖un‖2 dt ≥ a1 lim

n→∞

∫

�

G(un(t))
|un(t)|2

∣∣wn(t)
∣∣2 dt

≥ a1 lim
n→∞

∫

�

G(un(t))
|un(t)|2

∣∣wn(t)
∣∣2 dt

≥ a1 lim
n→∞

∫

�

G(un(t))
|un(t)|2

∣
∣wn(t)

∣
∣2 dt

= +∞,

which contradicts (11).
Case 2: w0 ≡ 0. Set a sequence {Tn} ⊂ [0, 1] such that I(Tnun) = maxT∈[0,1] I(Tun). By

Lemma 3.1, (W2), (W5), and Lemma 2.1, we obtain

0 ≤
∫

R

a(t)G
(
4
√

θM1wn(t)
)

dt

≤ d1

(
16θM1

∫

R

a(t)
∣
∣wn(t)

∣
∣2 dt + (4

√
θM1)ζ

∫

R

a(t)
∣
∣wn(t)

∣
∣ζ dt

)
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= d1
(
16θM1 + (4

√
θM1)ζ‖wn‖ζ–2

∞
)∫

R

a(t)
∣∣wn(t)

∣∣2 dt

= d1
(
16θM1 + (4

√
θM1)ζ Cζ–2

∞
)∫

R

a(t)
∣
∣wn(t)

∣
∣2 dt → 0 as n → ∞,

which implies that

∫

R

a(t)G
(
4
√

θM1wn(t)
)

dt → 0 as n → ∞. (12)

By the definition of Tn and (12), for n large enough, we have

I(Tnun) ≥ I
(

4
√

θM1

‖un‖ un

)

= I(4
√

θM1wn)

=
1
2
‖4

√
θM1wn‖2 –

∫

R

a(t)G
(
4
√

θM1wn(t)
)

dt

= 8θM1 –
∫

R

a(t)G
(
4
√

θM1wn(t)
)

dt

≥ 4θM1.

Then we obtain

‖Tnun‖2 –
∫

R

a(t)
(∇G

(
Tnun(t)

)
, Tnun(t)

)
dt

=
〈
I ′(Tnun(t)

)
, Tnun(t)

〉
= Tn

dI(Tun(t))
dT

∣
∣∣
∣
T=Tn

= 0. (13)

Hence, it follows from (13) and (W1) that

∫

R

a(t)
(

1
2
(∇G

(
un(t)

)
, un(t)

)
– G

(
un(t)

))
dt

=
1
2

∫

R

a(t)G̃
(
un(t)

)
dt

≥ 1
2θ

∫

R

a(t)G̃
(
Tnun(t)

)
dt

=
1
θ

∫

R

(
1
2

a(t)
(∇G

(
Tnun(t)

)
, Tnun(t)

)
– a(t)G

(
Tnun(t)

)
)

dt

=
1
θ

(
1
2
‖Tnun‖2 –

∫

R

a(t)G
(
Tnun(t)

)
dt

)

=
1
θ

I(Tnun),

which implies that

∫

R

a(t)
(

1
2
(∇G

(
un(t)

)
, un(t)

)
– G

(
un(t)

))
dt ≥ 4M1 for n large enough. (14)
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However, we can deduce from (9) that

∣
∣∣
∣

∫

R

a(t)
(

1
2
(∇G

(
un(t)

)
, un(t)

)
– G

(
un(t)

)
)

dt
∣
∣∣
∣ =

∣∣2I(un) –
〈
I ′(un), un

〉∣∣ ≤ 3M1

for all n ∈ N, which contradicts (14). Hence {un} is bounded in E. Going if necessary to a
subsequence, we can assume that un ⇀ u in E, which yields

〈
I ′(un) – I ′(u), un – u

〉 → 0 as n → ∞

and it follows from Lemma 2.1, Hölder’s inequality, (6), and Lemma 2.2 that

∣
∣∣
∣

∫

R

a(t)
(∇G

(
un(t)

)
– ∇G

(
u(t)

)
, un(t) – u(t)

)
dt

∣
∣∣
∣ ≤ ∥∥∇G(un) – ∇G(u)

∥∥
L2

a
‖un – u‖L2

a

→ 0 as n → ∞.

Hence, we conclude that

‖un – u‖2

=
〈
I ′(un) – I ′(u), un – u

〉
+

∫

R

a(t)
(∇G

(
un(t)

)
– ∇G

(
u(t)

)
, un(t) – u(t)

)
dt

→ 0 as n → ∞.

We finish the proof. �

Subsequently, we need the following lemmas to prove Theorem 1.1.

Lemma 3.3 Suppose that (2), (L′′), (L1), (L2), (W1), and (W3) hold, then there exist con-
stants 
, α > 0 such that I|∂B
(0) ≥ α.

Proof By (W3), for any ε > 0, there is σ > 0 such that

∣∣G(x)
∣∣ ≤ ε|x|2 (15)

for all |x| ≤ σ . For ε1 = 1
4A , there exists δ1 > 0 such that (15) holds. Set


 = C–1
∞ δ1, α =

1
4

2.

By (7), (15), (2), (L2), and (W1), for any ‖u‖ = 
, we obtain

I(u) =
1
2
‖u‖2 –

∫

R

W
(
t, u(t)

)
dt

=
1
2
‖u‖2 –

∫

R

a(t)G
(
u(t)

)
dt

≥ 1
2
‖u‖2 –

1
4A

∫

R

a(t)
∣
∣u(t)

∣
∣2 dt
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≥ 1
2
‖u‖2 –

1
4

∫

R

l(t)
∣∣u(t)

∣∣2 dt

≥ 1
4
‖u‖2. (16)

By the definition of 
 and α, (16) implies I|∂B
(0) ≥ α. �

Lemma 3.4 Suppose that (2), (L′′), (W2), and (W4) hold, then there exists ē ∈ E such that
‖ē‖ > 
 and I(ē) ≤ 0, where 
 is defined in Lemma 3.3.

Proof Set e0 ∈ C∞
0 (–1, 1) with ‖e0‖ = 1. Let a2 = mint∈B1(0) a(t) and a3 = maxt∈B1(0) a(t). For

β > 1
2a2

∫ 1
–1 |e0(t)|2 dt

, it follows from (W4) that there exists ξ > 0 such that

G(x) ≥ β|x|2

for all |x| > ξ . By Lemma 3.1, we have

G(x) ≥ β
(|x|2 – ξ 2) (17)

for all x ∈R
N . By (2), (7), and (17), for every η ∈R \ {0}, we have

I(ηe0) =
η2

2
‖e0‖2 –

∫ 1

–1
W

(
t,ηe0(t)

)
dt

=
η2

2
‖e0‖2 –

∫ 1

–1
a(t)G

(
ηe0(t)

)
dt

≤ η2

2
– a2βη2

∫ 1

–1

∣∣e0(t)
∣∣2 dt + 2a3βξ 2

=
(

1
2

– a2β

∫ 1

–1

∣
∣e0(t)

∣
∣2 dt

)
η2 + 2a3βξ 2,

which implies that

I(ηe0) → –∞ as η → +∞.

Then there exists η0 ∈ R \ {0} such that ‖η0e0‖ > 
 and I(η0e0) < 0. Letting ē(t) = η0e0(t),
we finish the proof. �

Proof of Theorem 1.1 It is known that a deformation lemma can be proved when the usual
(PS) condition is replaced with condition (C). From the above proofs and the mountain
pass theorem (see [19], Theorem 2.2), I possesses a critical value c ≥ α and a critical point
u0 such that I(u0) = c, which means problem (1) has at least one nontrivial homoclinic
solution. �

4 Proof of Theorem 1.3
Lemma 4.1 Suppose that the conditions of Theorem 1.2 hold, then I satisfies the (C) con-
dition.
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Proof Assuming that {un} ⊂ E is a (C) sequence of I , there exists a constant M2 > 0 such
that

∣∣I(un)
∣∣ ≤ M2,

∥∥I ′(un)
∥∥(

1 + ‖un‖
) ≤ M2. (18)

Now we show the boundedness of {un}. Arguing in an indirect way, we assume that
‖un‖ → +∞ as n → ∞. Set wn = un

‖un‖ , then ‖wn‖ = 1, which implies that there exists a
subsequence of {wn}, still denoted by {wn}, such that wn ⇀ w0 in E. Similar to the proof of
Lemma 3.2, we have

∫

R

W (t, un)
‖un‖2 dt → 1

2
as n → ∞. (19)

Case 1: w0 �≡ 0. The proof is similar to the proof of Case 1 in Lemma 3.2.
Case 2: w0 ≡ 0. Let ε = 1, then there exists σ0 > 0 such that (15) holds for all |x| ≤ σ0. By

(W6), we obtain that for any B > 0, there exists r∞ > 0 such that, for all |x| ≥ r∞, we have

G̃(x)
G(x)

|x|2 ≥ B. (20)

It follows from (7), (8), (20), (W1), and (SQ) that

0 ≤
∫

R

W (t, un)
‖un‖2 dt

≤
∫

{t∈R||un|>r∞}
W (t, un)
|un(t)|2

∣∣wn(t)
∣∣2 dt +

∫

{t∈R||un|≤σ0}
W (t, un)
‖un‖2 dt

+
∫

{t∈R|σ0≤|un|≤r∞}
W (t, un)
‖un‖2 dt

≤ ‖wn‖2
L∞

∫

{t∈R||un|>r∞}
a(t)G(un)
|un(t)|2 dt +

∫

{t∈R||un|≤σ0}
a(t)

∣
∣wn(t)

∣
∣2 dt

+
∫

{t∈R|σ0≤|un|≤r∞}
a(t)G(un)|un(t)|2

σ 2
0 ‖un‖2 dt

≤ ‖wn‖2
L∞

B

∫

{t∈R||un|>r∞}
a(t)

((∇G(un), un
)

– 2G(un)
)

dt + ‖wn‖2
L2

a

+
maxσ0≤|x|≤ρ∞ |G(x)|

σ 2
0

∫

{t∈R|σ0≤|un|≤r∞}
a(t)

∣∣wn(t)
∣∣2 dt

≤ ‖wn‖2
L∞

B

∫

{t∈R||un|>r∞}
a(t)

((∇G(un), un
)

– 2G(un)
)

dt

+
(

1 +
maxσ0≤|x|≤ρ∞ |G(x)|

σ 2
0

)
‖wn‖2

L2
a

≤ ‖wn‖2
L∞

B
(
2I(un) –

〈
I ′(un), un

〉)
+

(
1 +

maxσ0≤|x|≤ρ∞ |G(x)|
σ 2

0

)
‖wn‖2

L2
a

≤ 3M2C2∞
B

+
(

1 +
maxσ0≤|x|≤ρ∞ |G(x)|

σ 2
0

)
‖wn‖2

L2
a
.
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By the arbitrariness of B and Lemma 3.1, we have

∫

R

W (t, un)
‖un‖2 dt <

1
4

(21)

for n large enough, which contradicts (19). Hence ‖un‖ is bounded in E. Similar to the
proof of Lemma 3.2, we see that I satisfies the (C) condition. �

The following proof is similar to that of Theorem 1.1.

5 Proof of Theorems 1.2 and 1.4
As we know, Lemma 2.4 still holds when we replace the (PS) condition with the (C) con-
dition. From Lemmas 3.2 and 4.1, we can see that I satisfies the (C) condition under the
conditions of Theorems 1.2 and 1.4, respectively. Next, we only show that I satisfies the
geometric conditions of Lemma 2.4. Obviously, Lemma 3.3 holds under the conditions
of Theorems 1.2 and 1.4, respectively. If we take V = {0} and X = E, we can see there are
constants 
1, α1 > 0 such that I|∂B
1

⋂
X ≥ α1 by Lemma 3.2, which means (A1) is fulfilled.

Subsequently, we show that I satisfies (A2).

Lemma 5.1 Suppose that (2), (L′′), (L1), (L2), (W3), and (W4) hold, then I satisfies (A2).

Proof Let Ẽ ⊂ E be a finite dimensional subspace. For any u ∈ Ẽ \ {0} and ϑ > 0, set

�ϑ (u) =
{

t ∈R :
∣∣u(t)

∣∣ ≥ ϑ‖u‖}.

Similar to Lemma 6.2 in [29], there exists ϑ0 > 0 such that

meas
(
�ϑ0 (u)

) ≥ ϑ0 (22)

for all u ∈ Ẽ \{0}. It is easy to see that there exists ρ > 0 such that measϒϑ0 (u) > 1
2ϑ0 for any

u ∈ Ẽ \ {0}, where ϒϑ0 (u) = �ϑ0 (u)
⋂

Bρ(0). Set a4 = inf|t|≤ρ a(t) > 0. By (W4), there exists
γ > 0 such that

G
(
u(t)

) ≥ 1
a4ϑ

3
0

∣∣u(t)
∣∣2 ≥ 1

a4ϑ0
‖u‖2 (23)

for all u ∈ Ẽ and t ∈ ϒϑ0 (u) with ‖u‖ ≥ γ . Then, for any u ∈ Ẽ \ Bγ , it follows from (7),
(W1), (W3), and (23) that

I(u) =
1
2
‖u‖2 –

∫

R

a(t)G
(
u(t)

)
dt

=
1
2
‖u‖2 –

∫

ϒϑ0 (u)
a(t)G

(
u(t)

)
dt –

∫

R\ϒϑ0 (u)
a(t)G

(
u(t)

)
dt

≤ 1
2
‖u‖2 – a4

∫

ϒϑ0 (u)
G

(
u(t)

)
dt

≤ 1
2
‖u‖2 –

1
ϑ0

meas
(
ϒϑ0 (u)

)‖u‖2
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≤ 1
2
‖u‖2 – ‖u‖2

= –
1
2
‖u‖2.

Then there exists r > γ such that I |̃E\Br ≤ 0. �

Since I is even in u, I possesses an unbounded sequence of critical values by Lemma 2.4,
which proves Theorems 1.2 and 1.4.
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