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Abstract
In this paper, we investigate the existence of solutions for several higher-order
integral boundary value problems of Hadamard-type fractional differential equations
on an infinite interval by using the monotone iterative technique and Mawhin’s
continuation theorem. The results enrich and extend some known conclusions of
Hadamard-type fractional boundary value problems. Moreover, we give two concrete
examples to illustrate the theoretical results.
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1 Introduction
In recent years, the study of fractional differential equations (FDEs for short) has been an
interesting and popular field of research as it plays an important role in many areas such
as control theory, electrical circuits, biology, physics, diffusion processes, finance, etc. (see
[1–8]). For example, the simplified financial model can be described by FDEs as the forms:

⎧
⎪⎪⎨

⎪⎪⎩

0Dq1
t x(t) = z(t) + (y(t) – a)x(t), 0 < q1 ≤ 1,

0Dq2
t y(t) = 1 – by(t) – x2(t), 0 < q2 ≤ 1,

0Dq3
t z(t) = –x(t) – cz(t), 0 < q3 ≤ 1,

where 0D(·)
t is the Caputo fractional derivative of fractional order, a, b, c are three non-

negative constants denoting the saving amount, cost per investment, and the elasticity of
demand of commercial market, respectively, the state variables x(t), y(t), z(t) represent the
interest rate, investment demand, and the price index, respectively (see [2]).

As is well known, one of the interesting and important features of discussing FDEs is
focused on the research of the existence solutions for nonlinear fractional initial value
problems and fractional boundary value problems (BVPs for short). Some recent work
can be found in [9–33] and the references therein. It is worth mentioning that the study
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of the Hadamard-type fractional BVPs has attracted many scholars’ attention over the
past four years. Hadamard-type fractional calculus was introduced by Hadamard in 1892
(see [34]). The definition of this kind of fractional derivative contains logarithmic func-
tion of arbitrary exponent in the kernel of the integral, which is different from the frac-
tional derivatives of Riemann–Liouville and Caputo types. “Hadamard’s construction is
invariant in relation to dilation and is well suited to the problems containing half axes”
(see [23]). Moreover, some classical methods and theories, such as fixed point theorems,
coincidence degree theory, and monotone iterative technique, have been widely used to
investigate Hadamard-type fractional BVPs (see [16–33]).

In [16], Benchohra, Bouriah, and Nieto investigated the following Hadamard-type FDE
with periodic condition:

⎧
⎨

⎩

HDαy(t) = f (t, y(t), HDαy(t)), 0 < α ≤ 1, t ∈ [1, T],

y(1) = y(T),

where T > 1, HDα is the Hadamard-type fractional derivative of order α. The authors ob-
tained the existence of solutions by means of coincidence degree theory.

In [17], Ahmad and Ntouyas discussed the following coupled Hadamard-type FDEs with
Hadamard-type integral boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dαu(t) = f (t, u(t), v(t)), 1 < α ≤ 2, 1 < t < e,

Dβv(t) = g(t, u(t), v(t)), 1 < β ≤ 2, 1 < t < e,

u(1) = 0, u(e) = 1
�(γ )

∫ σ1
1 (ln σ1

s )γ –1 u(s)
s ds,

v(1) = 0, v(e) = 1
�(γ )

∫ σ2
1 (ln σ2

s )γ –1 v(s)
s ds,

where γ > 0, 1 < σ1 < e, 1 < σ2 < e, D(·) is the Hadamard-type fractional derivative of frac-
tional order. By using Leray–Schauder’s alternative and Banach’s contraction principle, the
authors obtained the existence and uniqueness of solutions, respectively.

In [18], Pei, Wang, and Sun considered the following Hadamard-type fractional integro-
differential equations on infinite domain:

⎧
⎨

⎩

HDαu(t) + f (t, u(t), HIru(t), HDα–1u(t)) = 0, 1 < α < 2, t ∈ (1, +∞),

u(1) = 0, HDα–1u(∞) =
∑m

i=1 λi
H Iβi u(η),

where η ∈ (1,∞), r,βi,λi ≥ 0 (i = 1, 2, . . . , m) are given constants, HDα is the Hadamard-
type fractional derivative of order α, and HI(·) is the Hadamard-type fractional integral.
By employing the monotone iterative technique, the existence result on positive solutions
was obtained.

Motivated especially by the aforementioned work, we are concerned in this paper with
the existence of solutions for two types of Hadamard-type fractional integral BVP on an
infinite interval. First, by applying the monotone iterative method, we investigate the fol-
lowing FDE with conjugate type integral conditions on an infinite interval:

⎧
⎨

⎩

HDα
1+x(t) + a(t)f (t, x(t)) = 0, n – 1 < α ≤ n, t ∈ (1, +∞),

x(m)(1) = 0, HDα–1
1+ x(+∞) =

∫ +∞
1 g(t)x(t) dt

t , m = 0, 1, . . . , n – 2,
(1.1)
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where n ∈ N, n ≥ 3, H Dα
1+ is the Hadamard-type fractional derivative of order α, g(t) ≥ 0

satisfies �(α) –
∫ +∞

1 g(t)(ln t)α–1 dt
t := κ > 0. We assume that the following conditions hold:

(A1) f ∈ C([1, +∞) × [0, +∞), [0, +∞)), f (t, 0) �≡ 0 on any subinterval of [1, +∞) and
f (t, (1 + (ln t)α–1)x) is bounded on [1, +∞) when x is bounded;

(A2) a(t) : [1, +∞) → [0, +∞) is not identically zero on any subinterval of [1, +∞) and

0 <
∫ +∞

1
a(t)

dt
t

< +∞.

Second, we also study the existence of solutions for the following Hadamard-type
FDE with integral boundary condition on an infinite interval at resonance by means of
Mawhin’s continuation theorem:

⎧
⎨

⎩

HDα
1+x(t) + a(t)f (t, x(t), HDα–2

1+ x(t), HDα–1
1+ x(t)) = 0, t ∈ (1, +∞),

x(1) = x′(1) = 0, HDα–1
1+ x(+∞) =

∫ +∞
1 g(t)HDα–1

1+ x(t) dt
t ,

(1.2)

where 2 < α ≤ 3, HDα
1+ is the Hadamard-type fractional derivative of order α, g(t) ≥ 0,

(1/a(t)) > 0 on [1, +∞), f : [1, +∞) × R
3 → R satisfies a-Carathéodory condition, that is,

f satisfies the following three conditions:
• For each (u, v, w) ∈R

3, the mapping t 
→ f (t, u, v, w) is Lebesgue measurable;
• For a.e. t ∈ [1, +∞), the mapping (u, v, w) 
→ f (t, u, v, w) is continuous on R

3;
• For each l > 0, there exists a function ϕl : [1, +∞) → [0, +∞) satisfying

∫ +∞
1 a(t)ϕl(t) dt

t < +∞ such that

∣
∣f (t, u, v, w)

∣
∣ ≤ ϕl(t), a.e. t ∈ [1, +∞), max

{ |u|
1 + (ln t)α–1 ,

|v|
1 + ln t

, |w|
}

≤ l.

And we also assume that the following condition holds:
(H1)

∫ +∞
1 g(t) dt

t = 1,
∫ +∞

1 a(t) dt
t < +∞.

In general, a boundary value problem is called resonance if the corresponding homoge-
neous BVP has a nontrivial solution. According to condition (H1), consider the homoge-
neous BVP of (1.2) as follows:

⎧
⎨

⎩

– 1
a(t)

HDα
1+x(t) = 0, t ∈ (1, +∞),

x(1) = x′(1) = 0, HDα–1
1+ x(+∞) =

∫ +∞
1 g(t)HDα–1

1+ x(t) dt
t .

(1.3)

By using Lemma 2.2 (see the next section), we can check that BVP (1.3) has a nontrivial
solution x(t) = c(ln t)α–1, c ∈R. So, BVP (1.2) is a resonance problem.

In the present work, we are focused on establishing the existence theorems to deal with
two types of Hadamard-type fractional BVPs on an infinite interval. The new features of
this paper can be presented as follows. On the one hand, as far as we know, compared
with the fractional BVPs on a finite interval, the BVPs on an infinite interval of FDEs have
little been considered until now because the infinite interval lacks compactness. Thus,
our paper enriches some existing results. On the other hand, most of the recent papers
on Hadamard-type fractional BVPs discuss the non-resonance problems. In our work, we
not only study the non-resonance problem but also consider the resonance problem. The
main difficulties in this article are as follows. First, we have to construct suitable Banach
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spaces for problem (1.1) and (1.2). Second, we should give a new compactness judgment
theorem. Third, the estimates on a priori bounds are more complicated.

The rest of this paper is organized as follows. In Sect. 2, we recall some preliminary
definitions and lemmas. In Sect. 3, based on the monotone iterative method, we establish
a theorem on the existence of positive solutions for problem (1.1). In Sect. 4, by using
Mawhin’s continuation theorem, we give an existence theorem for problem (1.2). Finally,
the paper is concluded in Sect. 5.

2 Preliminaries
In this section, we recall some definitions and lemmas which are used throughout this
paper. First, we present here the basic knowledge about the Hadamard-type fractional
calculus. For more details, we refer the readers to [1, 28].

Definition 2.1 The Hadamard-type fractional integral of order α > 0 of a function f :
[1, +∞) →R:

HIα
1+f (t) =

1
�(α)

∫ t

1

(

ln
t
s

)α–1

f (s)
ds
s

, (t > 1),

provided the integral exists.

Definition 2.2 The Hadamard-type fractional derivative of order α > 0 of a function f :
[1, +∞) →R:

HDα
1+f (t) =

1
�(n – α)

(

t
d
dt

)n ∫ t

1

(

ln
t
s

)n–α–1

f (s)
ds
s

, (t > 1),

where n = [α] + 1, [α] is the integer part of α.

Lemma 2.1 If α,β > 0, then

HIα
1+(ln t)β–1 =

�(β)
�(α + β)

(ln t)α+β–1, H Dα
1+(ln t)β–1 =

�(β)
�(β – α)

(ln t)β–α–1,

in particular, HDα
1+(ln t)α–j = 0, j = 1, 2, . . . , [α] + 1.

Lemma 2.2 Let α > 0. Assume that x ∈ C[1,∞)∩L1[1,∞), then the solution of Hadamard-
type fractional differential equation HDα

1+x(t) = 0 can be denoted as

x(t) =
n∑

i=1

ci(ln t)α–i,

and the following formula holds:

HIα
1+

HDα
1+x(t) = x(t) +

n∑

i=1

ci(ln t)α–i,

where ci ∈R, i = 1, 2, . . . , n, n – 1 < α < n.
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Next, we recall the results of coincidence degree theory due to Mawhin which can be
found in [35, 36].

Let (X,‖ · ‖X) and (Y ,‖ · ‖Y ) be two real Banach spaces. Define L : dom L ⊂ X → Y to be a
Fredholm operator with index zero, then there exist two continuous projectors P : X → X
and Q : Y → Y such that

Im P = Ker L, Im L = Ker Q, X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q,

and L|domL∩KerP : domL → Im L is invertible. We denote its inverse by Kp. Let � be an open
bounded subset of X and dom L ∩ �̄ �= ∅. The map N : X → Y is called L-compact on �̄, if
QN(�̄) is bounded and KP,QN = Kp(I – Q)N : �̄ → X is compact.

Theorem 2.1 Let L : dom L ⊂ X → Y be a Fredholm operator of index zero and N : X → Y
be L-compact on �̄. Assume that the following conditions are satisfied:

(i) Lu �= λNu for any u ∈ (dom L\Ker L) ∩ ∂�, λ ∈ (0, 1);
(ii) Nu /∈ Im L for any u ∈ Ker L ∩ ∂�;

(iii) deg(QN |Ker L,� ∩ Ker L, 0) �= 0.
Then the equation Lx = Nx has at least one solution in dom L ∩ �̄.

3 The main result of (1.1)
Let

E =
{

x ∈ C
(
[1, +∞)

,R) : sup
t∈[1,+∞)

|x(t)|
1 + (ln t)α–1 < +∞

}

,

endowed with the norm

‖x‖E = sup
t∈[1,+∞)

|x(t)|
1 + (ln t)α–1 ,

then (E,‖ · ‖E) is a Banach space.

Lemma 3.1 Suppose that
∫ +∞

1 g(t)(ln t)α–1 dt
t < �(α). Then, for any y ∈ C[1, +∞) with

∫ +∞
1 y(s) ds

s < +∞, the unique solution of the following BVP

⎧
⎨

⎩

HDα
1+x(t) + y(t) = 0, n – 1 < α ≤ n, t ∈ (1, +∞),

x(m)(1) = 0, HDα–1
1+ x(+∞) =

∫ +∞
1 g(t)x(t) dt

t , m = 0, 1, . . . , n – 2,
(3.1)

can be given by

x(t) =
∫ +∞

1
G(t, s)y(s)

ds
s

, t ∈ [1, +∞),

where

G(t, s) = G1(t, s) + G2(t, s), (3.2)
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and

G1(t, s) =
1

�(α)

⎧
⎨

⎩

(ln t)α–1 – (ln t
s )α–1, 1 ≤ s ≤ t < +∞,

(ln t)α–1, 1 ≤ t ≤ s < +∞,

G2(t, s) =
(ln t)α–1

κ

∫ +∞

1
g(t)G1(t, s)

dt
t

.

Proof According to Lemma 2.2, the solution of (3.1) is

x(t) = c1(ln t)α–1 + c2(ln t)α–2 + · · · + cn(ln t)α–n –
1

�(α)

∫ t

1

(

ln
t
s

)α–1

y(s)
ds
s

,

where c1, c2, . . . , cn ∈R. Considering the boundary conditions x(m)(1) = 0, m = 0, 1, . . . , n–2,
we obtain c2 = c3 = · · · = cn = 0, that is,

x(t) = c1(ln t)α–1 –
1

�(α)

∫ t

1

(

ln
t
s

)α–1

y(s)
ds
s

.

By Lemma 2.1, one has

HDα–1
1+ x(t) = c1�(α) –

∫ t

1
y(s)

ds
s

,

which shows

HDα–1
1+ x(+∞) = c1�(α) –

∫ +∞

1
y(s)

ds
s

.

Combining the boundary condition HDα–1
1+ x(+∞) =

∫ +∞
1 g(t)x(t) dt

t , we have

c1 =
1

�(α)

(∫ +∞

1
g(t)x(t)

dt
t

+
∫ +∞

1
y(s)

ds
s

)

.

Therefore,

x(t) =
∫ +∞

1
G1(t, s)y(s)

ds
s

+
1

�(α)
(ln t)α–1

∫ +∞

1
g(t)x(t)

dt
t

, (3.3)

and then

∫ +∞

1
g(t)x(t)

dt
t

=
∫ +∞

1
g(t)

∫ +∞

1
G1(t, s)y(s)

ds
s

dt
t

+
1

�(α)

∫ +∞

1
g(t)(ln t)α–1 dt

t

∫ +∞

1
g(t)x(t)

dt
t

,

which implies

∫ +∞

1
g(t)x(t)

dt
t

=
�(α)

κ

∫ +∞

1
g(t)

∫ +∞

1
G1(t, s)y(s)

ds
s

dt
t

. (3.4)
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Substituting (3.4) into (3.3), we obtain

x(t) =
∫ +∞

1
G1(t, s)y(s)

ds
s

+
∫ +∞

1
G2(t, s)y(s)

ds
s

=
∫ +∞

1
G(t, s)y(s)

ds
s

.

The proof is completed. �

Lemma 3.2 The Green’s function G(t, s) defined by (3.2) satisfies the following properties:
(i) G(t, s) is a continuous function for (t, s) ∈ [1, +∞) × [1, +∞);

(ii) G(t, s) is nonnegative on [1, +∞) × [1, +∞);
(iii) G(t,s)

1+(ln t)α–1 ≤ 1
κ

for all (t, s) ∈ [1, +∞) × [1, +∞).

Proof Easily, we can check that (i) and (ii) hold. To prove (iii), for (t, s) ∈ [1, +∞)× [1, +∞),
it is clear that the following inequalities hold:

G1(t, s)
1 + (ln t)α–1 ≤ 1

�(α)
,

G2(t, s)
1 + (ln t)α–1 ≤

∫ +∞
1 G1(t, s)g(t) dt

t
κ

≤
∫ +∞

1 g(t)(ln t)α–1 dt
t

�(α)κ
.

Thus,

G(t, s)
1 + (ln t)α–1 ≤ 1

�(α)
+

∫ +∞
1 g(t)(ln t)α–1 dt

t
�(α)κ

=
1
κ

.

The proof is completed. �

Lemma 3.3 (see [25]) Let V = {x ∈ E : ‖x‖E ≤ r, r > 0} ⊂ E be relatively compact in E if the
following conditions hold:

(i) For any x(t) ∈ V , x(t)
1+(ln t)α–1 is equicontinuous on any compact interval of [1, +∞);

(ii) For any ε > 0, there exists a constant R = R(ε) > 0 such that, for all x(t) ∈ V , t1, t2 ≥ R,
it holds

∣
∣
∣
∣

x(t1)
1 + (ln t1)α–1 –

x(t2)
1 + (ln t2)α–1

∣
∣
∣
∣ < ε.

Let

P =
{

x ∈ E : x(t) ≥ 0, t ∈ [1, +∞)
}

.

Obviously, P ⊂ E is a cone. Define the operator T : P → E as follows:

Tx(t) =
∫ +∞

1
G(t, s)a(s)f

(
s, x(s)

)ds
s

, t ∈ [1, +∞).

Lemma 3.4 Assume that (A1) and (A2) hold. Then T : P → P is completely continuous.

Proof For any x ∈ P, it is obvious that Tx(t) ≥ 0, i.e., T : P → P. Take {xn}+∞
n=1 ⊂ P, x ∈ P,

such that xn → x as n → +∞, then there exists a constant r0 > 0 such that supn∈N ‖xn‖E <
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r0. Set Br0 = sup{f (t, (1 + (ln t)α–1)x) : (t, x) ∈ [1, +∞) × [0, r0]}. By (A1) and (A2), one has

∫ +∞

1
a(s)f

(
s, x(s)

)ds
s

≤ Br0

∫ +∞

1
a(s)

ds
s

< +∞.

It follows from Lebesgue’s dominated convergence and the continuity of f (t, x(t)) that

∫ +∞

1
a(s)f

(
s, xn(s)

)ds
s

→
∫ +∞

1
a(s)f

(
s, x(s)

)ds
s

, as n → +∞.

Thus,

‖Txn – Tx‖E = sup
t∈[1,+∞)

|Txn – Tx|
1 + (ln t)α–1

≤ 1
κ

∣
∣
∣
∣

∫ +∞

1
a(s)f

(
s, xn(s)

)ds
s

–
∫ +∞

1
a(s)f

(
s, x(s)

)ds
s

∣
∣
∣
∣

→ 0, as n → +∞,

which shows T : P → P is continuous. In the following, we let � be any bounded subset of
P and separate the proof into three steps to prove T is a compact operator. For simplicity
of presentation, we let

σ (τ , t, s) =
(ln(t/s))α–1

1 + (ln τ )α–1 , 1 ≤ s ≤ t < +∞, 1 ≤ τ < +∞, ω =:
∫ +∞

1
a(t)

dt
t

,

δ(τ , t) =
(ln t)α–1

1 + (ln τ )α–1 , 1 ≤ τ , t < +∞, � =:
∫ +∞

1 g(t)(ln t)α–1 dt
t

�(α)(�(α) –
∫ +∞

1 g(t)(ln t)α–1 dt
t )

,

ρi(τ , t, s) =

⎧
⎨

⎩

G(t,s)
1+(ln τ )α–1 , 1 ≤ τ , t, s < +∞, i = 0,

Gi(t,s)
1+(ln τ )α–1 , 1 ≤ τ , t, s < +∞, i = 1, 2.

Step 1. T is uniformly bounded on �̄. In fact, there exists a constant r > 0 such that
‖x‖E ≤ r for any x ∈ �̄. Set Br = sup{f (t, (1 + (ln t)α–1)x) : (t, x) ∈ [1, +∞) × [0, r]}. Then we
have

‖Tx‖E = sup
t∈[1,+∞)

1
1 + (ln t)α–1

∣
∣
∣
∣

∫ +∞

1
G(t, s)a(s)f

(
s, x(s)

)ds
s

∣
∣
∣
∣

≤ Brω

κ
< +∞.

Step 2. For any x ∈ �̄, Tx is equicontinuous on any compact intervals of [1, +∞). In fact,
for any x ∈ �̄, L > 1, and t1, t2 ∈ [1, L] with t1 < t2, one has

∣
∣
∣
∣

Tx(t2)
1 + (ln t2)α–1 –

Tx(t1)
1 + (ln t1)α–1

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ +∞

1
ρ0(t2, t2, s)a(s)f

(
s, x(s)

)ds
s

–
∫ +∞

1
ρ0(t1, t1, s)a(s)f

(
s, x(s)

)ds
s

∣
∣
∣
∣

≤
∫ +∞

1

∣
∣ρ1(t2, t2, s) – ρ1(t1, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s



Zhang and Liu Boundary Value Problems  (2018) 2018:134 Page 9 of 27

+
∫ +∞

1

∣
∣ρ2(t2, t2, s) – ρ2(t1, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s

≤
∫ +∞

1

∣
∣ρ1(t2, t2, s) – ρ1(t2, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s

+
∫ +∞

1

∣
∣ρ1(t1, t1, s) – ρ1(t2, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s

+ �
∣
∣δ(t2, t2) – δ(t1, t1)

∣
∣
∫ +∞

1
a(s)f

(
s, x(s)

)ds
s

.

Since the functions δ(τ , t), σ (τ , t, s) are uniformly continuous on [t1, t2] × [t1, t2] and
[t1, t2] × [t1, t2] × [1, t1], respectively, we have

∫ +∞

1

∣
∣ρ1(t2, t2, s) – ρ1(t2, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s

≤
∫ t1

1

∣
∣ρ1(t2, t2, s) – ρ1(t2, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s

+
∫ t2

t1

∣
∣ρ1(t2, t2, s) – ρ1(t2, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s

+
∫ +∞

t2

∣
∣ρ1(t2, t2, s) – ρ1(t2, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s

≤ Br

�(α)

∫ t1

1

[
σ (t2, t2, s) + δ(t2, t2) – σ (t2, t1, s) – δ(t2, t1)

]
a(s)

ds
s

+
Br

�(α)

∫ t2

t1

[
σ (t2, t2, s) + δ(t2, t2) – δ(t2, t1)

]
a(s)

ds
s

+
Br

�(α)

∫ +∞

t2

[
δ(t2, t2) – δ(t2, t1)

]
a(s)

ds
s

→ 0, as t1 → t2, (3.5)

and

�
∣
∣δ(t2, t2) – δ(t1, t1)

∣
∣
∫ +∞

1
a(s)f

(
s, x(s)

)ds
s

→ 0, as t1 → t2. (3.6)

Similarly, we can obtain

∫ +∞

1

∣
∣ρ1(t1, t1, s) – ρ1(t2, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s

→ 0, as t1 → t2. (3.7)

Thus, from (3.5)–(3.7), we have

∣
∣
∣
∣

Tx(t2)
1 + (ln t2)α–1 –

Tx(t1)
1 + (ln t1)α–1

∣
∣
∣
∣ → 0, as t1 → t2.

Step 3. For any x ∈ �̄, Tx is equiconvergent at infinity. In fact, for any ε > 0, by (A2), there
exists a constant � > 1 such that

0 <
∫ +∞

�

a(s)
ds
s

< ε. (3.8)
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Because limt→+∞ σ (t, t,�) = 1, limt→+∞ δ(t, t) = 1, then for above ε > 0, there exist con-
stants �1 > 1, �2 > � > 1 such that for any t1, t2 > �1 one has

∣
∣δ(t2, t2) – δ(t1, t1)

∣
∣ ≤ ∣

∣1 – δ(t2, t2)
∣
∣ +

∣
∣1 – δ(t1, t1)

∣
∣ < ε, (3.9)

and for any t1, t2 > �2, 1 ≤ s ≤ � one gets

∣
∣σ (t2, t2, s) – σ (t1, t1, s)

∣
∣ ≤ ∣

∣1 – σ (t2, t2, s)
∣
∣ +

∣
∣1 – σ (t1, t1, s)

∣
∣

≤ ∣
∣1 – σ (t2, t2,�)

∣
∣ +

∣
∣1 – σ (t1, t1,�)

∣
∣ < ε. (3.10)

We choose �̃ > max{�1,�2}, Then, for any x ∈ �̄, t2, t1 > �̃ (without loss of generality we
assume that t2 > t1), we have

∣
∣
∣
∣

Tx(t2)
1 + (ln t2)α–1 –

Tx(t1)
1 + (ln t1)α–1

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ +∞

1
ρ0(t2, t2, s)a(s)f

(
s, x(s)

)ds
s

–
∫ +∞

1
ρ0(t1, t1, s)a(s)f

(
s, x(s)

)ds
s

∣
∣
∣
∣

≤
∫ +∞

1

∣
∣ρ1(t2, t2, s) – ρ1(t1, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s

+ �
∣
∣δ(t2, t2) – δ(t1, t1)

∣
∣
∫ +∞

1
a(s)f

(
s, x(s)

)ds
s

.

It follows from (3.8)–(3.10) that

∫ t1

1

∣
∣σ (t2, t2, s) – σ (t1, t1, s)

∣
∣a(s)

ds
s

=
∫ �

1

∣
∣σ (t2, t2, s) – σ (t1, t1, s)

∣
∣a(s)

ds
s

+
∫ t1

�

∣
∣σ (t2, t2, s) – σ (t1, t1, s)

∣
∣a(s)

ds
s

≤ ωε + 2
∫ +∞

�

a(s)
ds
s

= (ω + 2)ε,

∫ +∞

1

∣
∣ρ1(t2, t2, s) – ρ1(t1, t1, s)

∣
∣a(s)f

(
s, x(s)

)ds
s

≤ Br

�(α)

∫ t1

1

∣
∣δ(t2, t2) – σ (t2, t2, s) – δ(t1, t1) + σ (t1, t1, s)

∣
∣a(s)

ds
s

+
Br

�(α)

∫ t2

t1

∣
∣δ(t2, t2) – σ (t2, t2, s) – δ(t1, t1)

∣
∣a(s)

ds
s

+
Br

�(α)

∫ +∞

t2

∣
∣δ(t2, t2) – δ(t1, t1)

∣
∣a(s)

ds
s

≤ Brε

�(α)
(2ω + 2ε + 3), (3.11)

and

�
∣
∣δ(t2, t2) – δ(t1, t1)

∣
∣
∫ +∞

1
a(s)f

(
s, x(s)

)ds
s

≤ Brω�ε. (3.12)
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By (3.11) and (3.12), for any ε > 0, there exists a sufficiently large number R = R(ε) > 0 such
that, for any x ∈ �̄, t1, t2 > R,

∣
∣
∣
∣

Tx(t2)
1 + (ln t2)α–1 –

Tx(t1)
1 + (ln t1)α–1

∣
∣
∣
∣ < ε.

Applying Lemma 3.3, T : P → P is completely continuous. �

Theorem 3.1 Assume that (A1)–(A2) and the following conditions hold:
(A3) f (t, x) is continuous and nondecreasing on x, x ∈ P;
(A4) f (t, (1 + (ln t)α–1)x) ≤ κa

ω
for all (t, x) ∈ [1, +∞) × [0, a],

where a is a positive constant. Then BVP (1.1) has the maximal positive solutions x∗ and
minimal positive solutions y∗ in (0, a(ln t)α–1], which can be obtained by the following two
iterative sequences:

xn+1(t) =
∫ +∞

1
G(t, s)a(s)f

(
s, xn(s)

)ds
s

, t ∈ [1, +∞), n = 0, 1, 2, . . . ,

yn+1(t) =
∫ +∞

1
G(t, s)a(s)f

(
s, yn(s)

)ds
s

, t ∈ [1, +∞), n = 0, 1, 2, . . . ,

respectively, with the initial values x0(t) = a(ln t)α–1, y0(t) = 0, t ∈ [1, +∞), and they satisfy

y0 ≤ y1 ≤ · · · ≤ yn ≤ · · · ≤ y∗ ≤ · · · ≤ x∗ ≤ · · · ≤ xn ≤ · · · ≤ x1 ≤ x0.

Proof By Lemma 3.4, T : P → P is completely continuous. For any x1, x2 ∈ P with x1 ≤ x2,
by condition (A3) and the definition of T , we can see that Tx1 ≤ Tx2. Set

P̄a =
{

x ∈ P : ‖x‖E ≤ a
}

.

Then T : P̄a → P̄a. In fact, for any x ∈ P̄a, then ‖x‖E ≤ a, by (A4), we have

f (t, x) = f
(

t,
(
1 + (ln t)α–1) x(t)

1 + (ln t)α–1

)

≤ κa
ω

.

Thus,

‖Tx‖E = sup
t∈[1,+∞)

1
1 + (ln t)α–1

∣
∣
∣
∣

∫ +∞

1
G(t, s)a(s)f

(
s, x(s)

)ds
s

∣
∣
∣
∣

≤ sup
t∈[1,+∞)

(ln t)α–1

�(α)(1 + (ln t)α–1)

∫ +∞

1
a(s)f

(
s, x(s)

)ds
s

+ sup
t∈[1,+∞)

(ln t)α–1�

1 + (ln t)α–1

∫ +∞

1
a(s)f

(
s, x(s)

)ds
s

≤ 1
κ

∫ +∞

1
a(s)

ds
s

· κa
ω

= a,

which implies T : P̄a → P̄a. Let x0(t) = a(ln t)α–1, t ∈ [1, +∞), then x0(t) ∈ P̄a. Define the
iterative sequence as follows:

xn+1(t) = Txn(t), t ∈ [1, +∞), n = 0, 1, 2, . . . .
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Since T : P̄a → P̄a and T is completely continuous, we can derive

xn+1(t) = Txn(t) ∈ P̄a, t ∈ [1, +∞), n = 0, 1, 2, . . . ,

and {xn}∞n=1 is a sequentially compact set. Then, by (A4), we have

x1(t) =
∫ +∞

1
G(t, s)a(s)f

(
s, x0(s)

)ds
s

≤ (ln t)α–1

�(α)

∫ +∞

1
a(s)f

(
s, x0(s)

)ds
s

+ � (ln t)α–1
∫ +∞

1
a(s)f

(
s, x0(s)

)ds
s

≤ 1
κ

∫ +∞

1
a(s)

ds
s

(ln t)α–1 κa
ω

= x0(t).

Therefore,

x1(t) = Tx0(t) ≤ x0(t), t ∈ [1, +∞).

On account of T is a nondecreasing operator, we can derive a fact

xn+1(t) ≤ xn(t), t ∈ [1, +∞), n = 0, 1, 2, . . . .

Thus, there exists x∗ ∈ P̄a such that xn → x∗ as n → ∞ and Tx∗ = x∗. Let y0(t) = 0, t ∈
[1, +∞). Define the iterative sequence as follows:

yn+1(t) = Tyn(t), t ∈ [1, +∞), n = 0, 1, 2, . . . .

Similarly, we have {yn}∞n=1 ⊂ P̄a is a sequentially compact set, and

yn+1(t) ≥ yn(t) ≥ · · · ≥ y0(t) = 0, t ∈ [1, +∞), n = 0, 1, 2, . . . .

Furthermore, there exists y∗ ∈ P̄a such that yn → y∗ as n → ∞ and Ty∗ = y∗. Since
f (t, 0) �≡ 0 on any subinterval of [1, +∞), it implies y∗ is a positive solution of BVP (1.1).
We now prove that x∗(t) and y∗(t) are the maximal and minimal solutions of BVP (1.1) in
(0, a(ln t)α–1], respectively. Let w(t) be any solution of BVP (1.1) with 0 ≤ w(t) ≤ a(ln t)α–1,
that is,

y0(t) = 0 ≤ w(t) ≤ a(ln t)α–1 = x0(t), t ∈ [1, +∞).

Noting that T is nondecreasing, we have

y1(t) = Ty0(t) ≤ w(t) ≤ Tx0(t) = x1(t), t ∈ [1, +∞),

and

yn(t) ≤ w(t) ≤ xn(t), t ∈ [1, +∞), n = 1, 2, . . . .
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From limn→∞ yn = y∗, limn→∞ xn = x∗, and the monotonicity of {xn(t)}, {yn(t)}, we obtain

y0 ≤ y1 ≤ · · · ≤ yn ≤ · · · ≤ y∗ ≤ · · · ≤ x∗ ≤ · · · ≤ xn ≤ · · · ≤ x1 ≤ x0.

Therefore, y∗ and x∗ are respectively the minimal and maximal positive solutions of BVP
(1.1) in (0, a(ln t)α–1]. �

Example 3.1 Consider the boundary value problem

⎧
⎨

⎩

HD7/2
1+ x(t) + 1

eln t [1 + sin( π
2 · x(t)

1+(ln t)5/2+x(t)
)] = 0, t ∈ (1, +∞),

x(1) = x′(1) = x′′(1) = 0, HD5/2
1+ x(+∞) =

∫ +∞
1

1
2eln t x(t) dt

t .
(3.13)

Corresponding to problem (1.1), where

n = 4, α =
7
2

, a(t) =
1

eln t , g(t) =
1

2eln t ,

f
(
t, x(t)

)
= 1 + sin

(
π

2
· x(t)

1 + (ln t)5/2 + x(t)

)

.
(3.14)

By calculating, we have

κ = �(7/2) –
∫ +∞

1

1
2eln t (ln t)α–1 dt

t
=

1
2
�(7/2) =

15
16

√
π > 0,

ω =
∫ +∞

1
a(t)

dt
t

=
∫ +∞

1

1
eln t

dt
t

= 1.
(3.15)

Let a = 2, then

f
(
t,

(
1 + (ln t)5/2)x

)
= 1 + sin

(
π

2
· x(t)

1 + x(t)

)

≤ 2 ≤ 15
8

√
π =

κa
ω

. (3.16)

From (3.14)–(3.16), we can see that (A1)–(A4) hold. By Theorem 3.1, BVP (3.13) has the
positive maximal solution x∗ and the minimal solution y∗ in (0, 2(ln t)5/2], which can be
approximated by the following iterative sequences:

xn+1(t)

=
16

15
√

π
(ln t)5/2

∫ +∞

1

[

1 + sin

(
π

2
· xn(s)

1 + (ln s)5/2 + xn(s)

)]
ds
s2

–
64

225π
(ln t)5/2

∫ +∞

1

∫ +∞

s

(
ln(t/s)

)5/2 dt
t2

[

1 + sin

(
π

2
· xn(s)

1 + (ln s)5/2 + xn(s)

)]
ds
s2

–
8

15
√

π

∫ t

1

(
ln(t/s)

)5/2
[

1 + sin

(
π

2
· xn(s)

1 + (ln s)5/2 + xn(s)

)]
ds
s2 , t ∈ [1, +∞),
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yn+1(t)

=
16

15
√

π
(ln t)5/2

∫ +∞

1

[

1 + sin

(
π

2
· yn(s)

1 + (ln s)5/2 + yn(s)

)]
ds
s2

–
64

225π
(ln t)5/2

∫ +∞

1

∫ +∞

s

(
ln(t/s)

)5/2 dt
t2

[

1 + sin

(
π

2
· yn(s)

1 + (ln s)5/2 + xn(s)

)]
ds
s2

–
8

15
√

π

∫ t

1

(
ln(t/s)

)5/2
[

1 + sin

(
π

2
· yn(s)

1 + (ln s)5/2 + yn(s)

)]
ds
s2 , t ∈ [1, +∞),

with the initial values x0(t) = 2(ln t)5/2, y0(t) = 0, t ∈ [1, +∞), respectively. It is easy to check
that

x1(t) ≤ 16
15

√
π

(ln t)2.5
∫ +∞

1

[
1 + �(s)

]ds
s2 ≤ 16(2 +

√
3)

30
√

π
(ln t)2.5 < 2(ln t)2.5,

y1(t) =
16

15
√

π
(ln t)2.5 –

64
225π

(ln t)2.5
∫ +∞

1

∫ +∞

s

(

ln
t
s

)2.5 dt
t2

ds
s2

–
8

15
√

π

∫ t

1

(

ln
t
s

)2.5 ds
s2

>
16

15
√

π
(ln t)2.5 –

64
225π

(ln t)2.5
∫ +∞

1

∫ +∞

1
(ln t)2.5 dt

t2
ds
s2 –

8
15

√
π

(ln t)2.5 = 0,

and

x1(t) – y1(t)

=
16

15
√

π
(ln t)2.5

∫ +∞

1
�(s)

ds
s2 –

64
225π

(ln t)2.5
∫ +∞

1

∫ +∞

s

(

ln
t
s

)2.5 dt
t2 �(s)

ds
s2

–
8

15
√

π

∫ t

1

(

ln
t
s

)2.5

�(s)
ds
s2

>
16

15
√

π
(ln t)2.5

∫ +∞

1
�(s)

ds
s2 –

64
225π

(ln t)2.5
∫ +∞

1

∫ +∞

1
(ln t)2.5 dt

t2 �(s)
ds
s2

–
8

15
√

π

∫ +∞

1
(ln t)2.5�(s)

ds
s2

= 0,

where �(s) = sin( π
2 · 2(ln s)2.5

1+3(ln s)2.5 ). A tedious calculation can give two monotone sequences
{xn} and {yn}, n = 1, 2, . . . .

4 The main result of (1.2)
Let

X =
{

x : [1, +∞) →R

∣
∣
∣x, HDα–2

1+ x, HDα–1
1+ x ∈ C[1, +∞), sup

t∈[1,+∞)

|x(t)|
1 + (ln t)α–1 < +∞,

sup
t∈[1,+∞)

|HDα–2
1+ x(t)|

1 + ln t
< +∞, sup

t∈[1,+∞)

∣
∣HDα–1

1+ x(t)
∣
∣ < +∞

}

,

Y =
{

y : [1, +∞) →R

∣
∣
∣

∫ +∞

1
a(t)

∣
∣y(t)

∣
∣dt

t
< +∞

}

.



Zhang and Liu Boundary Value Problems  (2018) 2018:134 Page 15 of 27

It is easy to check that X and Y are two Banach spaces, respectively, with the norms

‖x‖X = max

{∥
∥
∥
∥

x
1 + (ln t)α–1

∥
∥
∥
∥

∞
,
∥
∥
∥
∥

HDα–2
1+ x

1 + ln t

∥
∥
∥
∥∞

,
∥
∥HDα–1

1+ x
∥
∥∞

}

,

‖y‖Y =
∫ +∞

1
a(t)

∣
∣y(t)

∣
∣dt

t
,

where ‖x‖∞ = supt∈[1,+∞) |x(t)|.
Define the linear operator L : dom L ⊂ X → Y and the nonlinear operator N : X → Y as

follows:

Lx(t) = –
1

a(t)
HDα

1+x(t), x(t) ∈ dom L,

Nx(t) = f
(
t, x(t), HDα–2

1+ x(t), HDα–1
1+ x(t)

)
, x(t) ∈ X,

where

dom L =
{

x(t) ∈ X|HDα
1+x(t) ∈ Y , x(t) satisfies boundary conditions of (1.2)

}
.

Then problem (1.2) is equivalent to the operator equation Lx = Nx, x ∈ dom L.

Lemma 4.1 Assume that (H1) holds. Then the operator L : dom L ⊂ X → Y satisfies

Ker L =
{

x(t) ∈ dom L|x(t) = c(ln t)α–1, c ∈ R
}

, (4.1)

Im L =
{

y(t) ∈ Y
∣
∣
∣

∫ +∞

1
g(t)

∫ +∞

t
a(s)y(s)

ds
s

dt
t

= 0
}

. (4.2)

Proof For Lx = – 1
a(t)

HDα
1+x = 0, by Lemma 2.2, we have

x(t) = c1(ln t)α–1 + c2(ln t)α–2 + c3(ln t)α–3, c1, c2, c3 ∈ R.

Noting that x(1) = x′(1) = 0, we have

x(t) = c1(ln t)α–1.

So,

Ker L ⊂ {
x ∈ dom L|x(t) = c(ln t)α–1, c ∈R

}
.

Conversely, take x(t) = c(ln t)α–1, c ∈ R. We can easily check that – 1
a(t)

HDα
1+x = 0 and x(t)

satisfies the boundary conditions of (1.2). Hence,

{
x ∈ dom L|x(t) = c(ln t)α–1, c ∈R

} ⊂ Ker L.

That means (4.1) holds. For any y ∈ Im L, there exists a function x ∈ dom L such that Lx(t) =
y(t). By Lemma 2.2 and the boundary conditions x(1) = x′(1) = 0, one has

x(t) = –H Iα
1+a(t)y(t) + c1(ln t)α–1.



Zhang and Liu Boundary Value Problems  (2018) 2018:134 Page 16 of 27

Using the fact that HDα–1
1+ x(+∞) =

∫ +∞
1 g(t)HDα–1

1+ x(t) dt
t , we have

HDα–1
1+ x(+∞) = c1�(α) –

∫ +∞

1
a(s)y(s)

ds
s

=
∫ +∞

1
g(t)

[

c1�(α) –
∫ t

1
a(s)y(s)

ds
s

]
dt
t

= c1�(α) –
∫ +∞

1
g(t)

∫ t

1
a(s)y(s)

ds
s

dt
t

,

that is,

∫ +∞

1
g(t)

∫ +∞

t
a(s)y(s)

ds
s

dt
t

= 0. (4.3)

Thus,

Im L ⊂
{

y ∈ Y
∣
∣
∣

∫ +∞

1
g(t)

∫ +∞

t
a(s)y(s)

ds
s

dt
t

=0
}

.

Conversely, let y ∈ Y satisfy (4.3), take x(t) = –HIα
1+a(t)y(t), we can check that x ∈ dom L

and Lx(t) = y(t). Then we obtain

{

y ∈ Y
∣
∣
∣

∫ +∞

1
g(t)

∫ +∞

t
a(s)y(s)

ds
s

dt
t

= 0
}

⊂ Im L.

The proof is completed. �

Let

� :=
∫ +∞

1
g(t)

∫ +∞

t
a(s)

ds
s

dt
t

.

Based on (H1) and the nonnegativity of g(t), a(t), we get

0 < � =
∫ +∞

1
g(t)

∫ +∞

t
a(s)

ds
s

dt
t

≤
∫ +∞

1
g(t)

∫ +∞

1
a(s)

ds
s

dt
t

=
∫ +∞

1
a(t)

dt
t

< +∞.

Lemma 4.2 Assume that (H1) holds, then L : dom L ⊂ X → Y is a Fredholm operator of
index zero. Set the linear operators P : X → X and Q : Y → Y defined as follows:

(Px)(t) =
1

�(α)
H Dα–1

1+ x(1)(ln t)α–1, (Qy)(t) =
1
�

∫ +∞

1
g(t)

∫ +∞

t
a(s)y(s)

ds
s

dt
t

.

Proof According to the definition of P, we can check that P is a continuous linear projector
operator and satisfies Im P = Ker L, X = Ker P ⊕ Ker L. By the definition of Q, we can see
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that Q is a continuous linear operator with dim Im Q = 1 and the following equations hold:

(
Q2y

)
(t) = Q

(
Qy(t)

)
=

1
�

∫ +∞

1
g(t)

∫ +∞

t
a(s)Qy(s)

ds
s

dt
t

=
Qy(t)

�

∫ +∞

1
g(t)

∫ +∞

t
a(s)

ds
s

dt
t

= Qy(t).

That is, Q is a projector operator. Obviously, we have Im L = Ker Q. For any y ∈ Y ,
then y can be expressed as y = (y – Qy) + Qy, i.e., Y = Im L + Im Q. In addition, for any
y ∈ Im L ∩ Im Q, since Im L = Ker Q, we get y = Qy = 0, i.e., Im Q ∩ Im L = {0}. Thus,
Y = Im Q ⊕ Im L. Moreover, dim Ker L = dim Im Q = co dim Im L = 1. Therefore, L is a Fred-
holm operator with zero index. �

Lemma 4.3 Suppose that (H1) holds. Define a linear operator Kp : Im L → dom L ∩ Ker P
by

(Kpy)(t) = –
1

�(α)

∫ t

1

(

ln
t
s

)α–1

a(s)y(s)
ds
s

, y ∈ Im L.

Then Kp is the inverse of L|dom L∩Ker P and ‖Kpy‖X ≤ ‖y‖Y for any y ∈ Im L.

Proof For y ∈ Im L, by the definition of Kp, we can check that Kpy ∈ dom L ∩ Ker P. Thus,
Kp is well defined on Im L. Now we show that Kp = (L|dom L∩Ker P)–1. In fact, it is easy to get
(LKp)y(t) = y(t) for any y ∈ Im L. For all x(t) ∈ dom L ∩ Ker P, by Lemma 2.2, we have

(KpL)x(t) = HIα
1+

HDα
1+x(t) = x(t) + c(ln t)α–1, c ∈R.

Because (KpL)x(t) ∈ Ker P and c(ln t)α–1 ∈ Ker L = Im P, we have c(ln t)α–1 = –Px(t) = 0.
Then, (KpL)x(t) = x(t). Therefore, Kp = (L|dom L∩Ker P)–1. Also, we have the following in-
equalities:

∥
∥
∥
∥

Kpy
1 + (ln t)α–1

∥
∥
∥
∥∞

= sup
t∈[1,+∞)

|Kpy|
1 + (ln t)α–1

= sup
t∈[1,+∞)

1
�(α)

∣
∣
∣
∣

∫ t

1

(ln (t/s))α–1

1 + (ln t)α–1 a(s)y(s)
ds
s

∣
∣
∣
∣ ≤ 1

�(α)
‖y‖Y ≤ ‖y‖Y ,

∥
∥
∥
∥

HDα–2
1+ Kpy

1 + ln t

∥
∥
∥
∥∞

= sup
t∈[1,+∞)

|HDα–2
1+ Kpy|

1 + ln t
= sup

t∈[1,+∞)

∣
∣
∣
∣

∫ t

1

ln(t/s)
1 + ln t

a(s)y(s)
ds
s

∣
∣
∣
∣ ≤ ‖y‖Y ,

∥
∥HDα–1

1+ Kpy
∥
∥∞ = sup

t∈[1,+∞)

∣
∣
∣
∣

∫ t

1
a(s)y(s)

ds
s

∣
∣
∣
∣ ≤ ‖y‖Y .

So, ‖Kpy‖X ≤ ‖y‖Y for all y ∈ Im L. �

Lemma 4.4 Let V = {x ∈ X : ‖x‖X ≤ r, r > 0} ⊂ X. Then V is relatively compact in X if it
satisfies the following conditions:

(i) For any x(t) ∈ V , x(t)
1+(ln t)α–1 ,

H Dα–2
1+ x(t)

1+ln t , and H Dα–1
1+ x(t) are equicontinuous on any

compact interval of [1, +∞);
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(ii) For any ε > 0, there exists a constant S = S(ε) > 0 such that, for all x(t) ∈ V ,
t1, t2 ≥ S, it holds

∣
∣
∣
∣

x(t1)
1 + (ln t1)α–1 –

x(t2)
1 + (ln t2)α–1

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

HDα–2
1+ x(t1)

1 + ln t1
–

HDα–2
1+ x(t2)

1 + ln t2

∣
∣
∣
∣ < ε,

∣
∣HDα–1

1+ x(t1) – H Dα–1
1+ x(t2)

∣
∣ < ε.

Proof Since X is a Banach space and V ⊂ X, it is sufficient to show that V is totally
bounded. In fact, for any S ∈ (1, +∞), take

V[1,S] =
{

x(t) : x(t) ∈ V , t ∈ [1, S]
}

, V α–2
[1,S] =

{H Dα–2
1+ x(t) : x(t) ∈ V[1,S]

}
,

V α–1
[1,S] =

{HDα–1
1+ x(t) : x(t) ∈ V[1,S]

}
,

with the norms

‖x‖∞ = sup
t∈[1,S]

|x(t)|
1 + (ln t)α–1 ,

∥
∥HDα–2

1+ x
∥
∥∞ = sup

t∈[1,S]

|H Dα–2
1+ x(t)|

1 + ln t
,

∥
∥H Dα–1

1+ x
∥
∥∞ = sup

t∈[1,S]

∣
∣HDα–1

1+ x(t)
∣
∣,

respectively. It is clear that (V[1,S],‖x‖∞), (V α–2
[1,S],‖HDα–2

1+ x‖∞), and (V α–1
[1,S],‖HDα–1

1+ x‖∞) are
Banach spaces. By using the Arzelà–Ascoli theorem, we can obtain that V[1,S], V α–2

[1,S], and
V α–1

[1,S] are relatively compact under condition (i). Thus, V[1,S], V α–2
[1,S], and V α–1

[1,S] are totally
bounded, i.e., for any ε > 0, there exist {xi}n

i=1 ⊂ V[1,S], {yj}m
j=1 ⊂ V α–2

[1,S], and {zk}l
k=1 ⊂ V α–1

[1,S]
such that

V[1,S] ⊂
n⋃

i=1

Bε(xi), V α–2
[1,S] ⊂

m⋃

j=1

Bε

(HDα–2
1+ yj

)
, V α–1

[1,S] ⊂
l⋃

k=1

Bε

(HDα–1
1+ zk

)
, (4.4)

where

Bε(xi) =
{

x ∈ V[1,S] : ‖x – xi‖∞ < ε
}

,

Bε

(HDα–2
1+ yj

)
=

{HDα–2
1+ x(t) ∈ V α–2

[1,S] :
∥
∥HDα–2

1+ x – HDα–2
1+ yj

∥
∥∞ < ε

}
,

Bε

(HDα–1
1+ zk

)
=

{HDα–1
1+ x(t) ∈ V α–1

[1,S] :
∥
∥HDα–1

1+ x – HDα–1
1+ zk

∥
∥∞ < ε

}
.

Set

Vijk =
{

x(t) ∈ V : x[1,S] ∈ Bε(xi), HDα–2
1+ x[1,S] ∈ Bε

(HDα–2
1+ yj

)
,HDα–1

1+ x[1,S] ∈ Bε

(HDα–1
1+ zk

)}
.

Obviously, V[1,S] ⊂ ⋃
1≤i≤n,1≤j≤m,1≤k≤lVijk[1,S]. Take xijk ∈ Vijk , then we claim that V can be

covered by the balls B4ε(xijk), i = 1, 2, . . . , n, j = 1, 2, . . . , m, k = 1, 2, . . . , l, where

B4ε(xijk) =
{

x(t) ∈ V : ‖x – xijk‖X < 4ε
}

.

Indeed, for x(t) ∈ V , by (4.4), there exist i, j, k such that

x[1,S] ∈ Bε(xi), HDα–2
1+ x[1,S] ∈ Bε

(HDα–2
1+ yj

)
, HDα–1

1+ x[1,S] ∈ Bε

(HDα–1
1+ zk

)
.
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Then, for t ∈ [1, S], we have

∣
∣
∣
∣

x(t)
1 + (ln t)α–1 –

xijk(t)
1 + (ln t)α–1

∣
∣
∣
∣ ≤

∣
∣
∣
∣

x(t)
1 + (ln t)α–1 –

xi(t)
1 + (ln t)α–1

∣
∣
∣
∣

+
∣
∣
∣
∣

xi(t)
1 + (ln t)α–1 –

xijk(t)
1 + (ln t)α–1

∣
∣
∣
∣

< 2ε,
∣
∣
∣
∣

HDα–2
1+ x(t)

1 + ln t
–

HDα–2
1+ xijk(t)

1 + ln t

∣
∣
∣
∣ ≤

∣
∣
∣
∣

HDα–2
1+ x(t)

1 + ln t
–

HDα–2
1+ yj(t)

1 + ln t

∣
∣
∣
∣

+
∣
∣
∣
∣

HDα–2
1+ yj(t)

1 + ln t
–

HDα–2
1+ xijk(t)

1 + ln t

∣
∣
∣
∣

< 2ε,
∣
∣HDα–1

1+ x(t) – HDα–1
1+ xijk(t)

∣
∣ ≤ ∣

∣H Dα–1
1+ x(t) – HDα–1

1+ zk(t)
∣
∣

+
∣
∣HDα–1

1+ zk(t) – HDα–1
1+ xijk(t)

∣
∣

< 2ε.

Combining this with condition (ii), we have

∣
∣
∣
∣

x(t)
1 + (ln t)α–1 –

xijk(t)
1 + (ln t)α–1

∣
∣
∣
∣

≤
∣
∣
∣
∣

x(t)
1 + (ln t)α–1 –

x(S)
1 + (ln S)α–1

∣
∣
∣
∣ +

∣
∣
∣
∣

x(S)
1 + (ln S)α–1 –

xijk(S)
1 + (ln S)α–1

∣
∣
∣
∣

+
∣
∣
∣
∣

xijk(S)
1 + (ln S)α–1 –

xijk(t)
1 + (ln t)α–1

∣
∣
∣
∣

< 4ε, t > S.

Using similar arguments as above, we can also get

∣
∣
∣
∣

HDα–2
1+ x(t)

1 + ln t
–

HDα–2
1+ xijk(t)

1 + ln t

∣
∣
∣
∣ < 4ε,

∣
∣H Dα–1

1+ x(t) – HDα–1
1+ xijk(t)

∣
∣ < 4ε, t > S.

Thus, ‖x – xijk‖X < 4ε. Therefore, V is totally bounded. �

Lemma 4.5 Suppose that (H1) holds, � ⊂ X is an open bounded subset with dom L∩�̄ �= ∅.
Then N is L-compact on �̄.

Proof Since � ⊂ X is bounded, there exists a constant l > 0 such that ‖x‖X ≤ l, ∀x ∈ �̄.
Then, by f : [1, +∞) ×R

3 →R satisfies an a-Carathéodory condition, one has

|QNx| ≤ 1
�

∫ +∞

1
g(t)

∫ +∞

t
a(s)

∣
∣Nx(s)

∣
∣ds

s
dt
t

≤ 1
�

∫ +∞

1
g(t)

∫ +∞

t
a(s)ϕl(s)

ds
s

dt
t

≤ 1
�

‖ϕl‖Y .
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Thus,

‖QNx‖Y =
∫ +∞

1
a(t)|QNx|dt

t
≤ ‖ϕl‖Y

�

∫ +∞

1
a(t)

dt
t

< +∞,

∥
∥Kp(I – Q)Nx

∥
∥

X ≤ ∥
∥(I – Q)Nx

∥
∥

Y =
∫ +∞

1
a(t)

∣
∣(I – Q)Nx

∣
∣dt

t

≤
∫ +∞

1
a(t)|Nx|dt

t
+

∫ +∞

1
a(t)|QNx|dt

t

≤ ‖ϕl‖Y +
‖ϕl‖Y

�

∫ +∞

1
a(t)

dt
t

:= l̃ < +∞. (4.5)

Therefore, QN(�̄) and Kp(I – Q)N(�̄) are uniformly bounded. Now, we separate the proof
into two steps. For simplicity of presentation, we let

h(t) = (I – Q)Nx(t), t ∈ [1, +∞), x(t) ∈ �̄,

hμ(t, s) =

⎧
⎨

⎩

1, μ = 1, 1 ≤ s ≤ t < +∞,
(ln(t/s))μ–1

1+(ln t)μ–1 , μ > 1, 1 ≤ s ≤ t < +∞.

Hμ(t) =
∫ t

1
hμ(t, s)a(s)h(s)

ds
s

, t ∈ [1, +∞),μ ≥ 1.

Then we have

‖h‖Y =
∥
∥(I – Q)Nx

∥
∥

Y ≤ l̃ < +∞, 0 ≤ hμ(t, s) ≤ 1,

and

∣
∣Hμ(t)

∣
∣ ≤

∫ t

1
hμ(t, s)a(s)

∣
∣h(s)

∣
∣ds

s
≤

∫ +∞

1
a(s)

∣
∣h(s)

∣
∣ds

s
= ‖h‖Y .

Step 1. For any x ∈ �̄, Kp(I – Q)Nx is equicontinuous on any compact interval of [1, +∞).
In fact, for any T ∈ (1, +∞) and 1 ≤ t1 < t2 ≤ T . It follows from the uniform continuity of
hμ(t, s) on [1, T] × [1, T] and the absolute continuity of integral that

∣
∣Hμ(t2) – Hμ(t1)

∣
∣ =

∣
∣
∣
∣

∫ t2

1
hμ(t2, s)a(s)h(s)

ds
s

–
∫ t1

1
hμ(t1, s)a(s)h(s)

ds
s

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t2

t1

hμ(t2, s)a(s)h(s)
ds
s

+
∫ t1

1

[
hμ(t2, s) – hμ(t1, s)

]
a(s)h(s)

ds
s

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t2

t1

a(s)
∣
∣h(s)

∣
∣ds

s
+

∫ t1

1

∣
∣hμ(t2, s) – hμ(t1, s)

∣
∣a(s)

∣
∣h(s)

∣
∣ds

s

∣
∣
∣
∣

→ 0, as t1 → t2.

Then, as t1 → t2, we get

∣
∣
∣
∣
Kp(I – Q)Nx(t2)

1 + (ln t2)α–1 –
Kp(I – Q)Nx(t1)

1 + (ln t1)α–1

∣
∣
∣
∣ =

1
�(α)

∣
∣Hα(t2) – Hα(t1)

∣
∣ → 0,
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∣
∣
∣
∣

HDα–2
1+ Kp(I – Q)Nx(t2)

1 + ln t2
–

HDα–2
1+ Kp(I – Q)Nx(t1)

1 + ln t1

∣
∣
∣
∣ =

∣
∣H2(t2) – H2(t1)

∣
∣ → 0,

∣
∣HDα–1

1+ Kp(I – Q)Nx(t2) – HDα–1
1+ Kp(I – Q)Nx(t1)

∣
∣ =

∣
∣H1(t2) – H1(t1)

∣
∣ → 0.

Step 2. For any x ∈ �̄, Kp(I – Q)Nx is equiconvergent at infinity. In fact, for any x ∈ �̄

and ε > 0, by (4.5), there exists a positive constant L > 1 such that

∫ +∞

L
a(s)

∣
∣h(s)

∣
∣ds

s
< ε.

Since

lim
t→∞ hμ(t, L) = lim

t→∞
(ln(t/L))μ–1

1 + (ln t)μ–1 = 1, (μ > 1).

For above ε > 0, there exists a constant L̃(ε) > L such that 1 – hμ(t, L) < ε, t > L̃(ε). Then,
for any t2, t1 > L̃(ε) (without loss of generality we assume that t2 > t1), we obtain

∣
∣Hμ(t2) – Hμ(t1)

∣
∣ =

∣
∣
∣
∣

∫ t2

1
hμ(t2, s)a(s)h(s)

ds
s

–
∫ t1

1
hμ(t1, s)a(s)h(s)

ds
s

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t2

L
hμ(t2, s)a(s)h(s)

ds
s

–
∫ t1

L
hμ(t2, s)a(s)h(s)

ds
s

+
∫ L

1

[
hμ(t2, s) – hμ(t1, s)

]
a(s)h(s)

ds
s

∣
∣
∣
∣

≤
∫ L

1

∣
∣hμ(t2, s) – hμ(t1, s)

∣
∣a(s)

∣
∣h(s)

∣
∣ds

s
+ 2

∫ +∞

L
a(s)

∣
∣h(s)

∣
∣ds

s

≤
∫ L

1

[(
1 – hμ(t2, s)

)
+

(
1 – hμ(t1, s)

)]
a(s)

∣
∣h(s)

∣
∣ds

s
+ 2ε

≤ 2ε
(
1 + ‖h‖Y

)
.

Thus, for any t2 > t1 > L̃(ε), we have

∣
∣
∣
∣
Kp(I – Q)Nx(t2)

1 + (ln t2)α–1 –
Kp(I – Q)Nx(t1)

1 + (ln t1)α–1

∣
∣
∣
∣ =

1
�(α)

∣
∣Hα(t2) – Hα(t1)

∣
∣ ≤ 2ε

�(α)
(
1 + ‖h‖Y

)
,

∣
∣
∣
∣

HDα–2
1+ Kp(I – Q)Nx(t2)

1 + ln t2
–

HDα–2
1+ Kp(I – Q)Nx(t1)

1 + ln t1

∣
∣
∣
∣ =

∣
∣H2(t2) – H2(t1)

∣
∣ ≤ 2ε

(
1 + ‖h‖Y

)
,

∣
∣HDα–1

1+ Kp(I – Q)Nx(t2) – HDα–1
1+ Kp(I – Q)Nx(t1)

∣
∣ =

∣
∣H1(t2) – H1(t1)

∣
∣ ≤ 2ε.

By Lemma 4.4, Kp(I – Q)N : �̄ → X is compact. �

Theorem 4.1 Suppose that (H1) and the following conditions hold.
(H2) There exist nonnegative functions b(t), c(t), d(t), e(t) ∈ Y such that, for all t ∈ [1, +∞)

and (u, v, w) ∈ R
3,

f (t, u, v, w) ≤ b(t)
|u|

1 + (ln t)α–1 + c(t)
|v|

1 + ln t
+ d(t)|w| + e(t).
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(H3) There exists a constant G > 0 such that, for all t ∈ [1, +∞) and x ∈ dom L, if
|HDα–1

1+ x(t)| > G, then

∫ +∞

1
g(t)

∫ +∞

t
a(s)f

(
s, x(s), HDα–2

1+ x(s), HDα–1
1+ x(s)

)ds
s

dt
t

�= 0.

(H4) For any c ∈R, there exists a constant M > 0 such that, for |c| > M,

c
∫ +∞

1
g(t)

∫ +∞

t
a(s)f

(
s, c(ln s)α–1, c�(α) ln s, c�(α)

)ds
s

dt
t

> 0, (4.6)

or

c
∫ +∞

1
g(t)

∫ +∞

t
a(s)f

(
s, c(ln s)α–1, c�(α) ln s, c�(α)

)ds
s

dt
t

< 0. (4.7)

Then BVP (1.2) has at least one solution in X provided that

(
3 +

(
1/�(α)

))(‖b‖Y + ‖c‖Y + ‖d‖Y
)

< 1.

To prove Theorem 4.1, we establish the following lemmas.

Lemma 4.6 Assume that (H1)–(H3) hold, set

�1 =
{

x ∈ dom L\Ker L : Lx = λNx,λ ∈ (0, 1)
}

.

Then �1 is bounded in X.

Proof For x ∈ �1, then Nx ∈ Im L = Ker Q. That is, QNx = 0. By (H3), there exists a constant
t0 ∈ [1, +∞) such that |HDα–1

1+ x(t0)| ≤ G. Since Lx = λNx, we obtain

x(t) = –
λ

�(α)

∫ t

1

(

ln
t
s

)α–1

a(s)f
(
s, x(s), HDα–2

1+ x(s), HDα–1
1+ x(s)

)ds
s

+ c(ln t)α–1,

and so

HDα–1
1+ x(t) = –λ

∫ t

1
a(s)f

(
s, x(s), HDα–2

1+ x(s), HDα–1
1+ x(s)

)ds
s

+ c�(α).

Then

HDα–1
1+ x(t) = –λ

∫ t

t0

a(s)f
(
s, x(s), HDα–2

1+ x(s), HDα–1
1+ x(s)

)ds
s

+ HDα–1
1+ x(t0).

Therefore,

∣
∣HDα–1

1+ x
∣
∣ ≤

∫ +∞

1
a(s)

∣
∣f

(
s, x(s), HDα–2

1+ x(s), HDα–1
1+ x(s)

)∣
∣ds

s
+

∣
∣HDα–1

1+ x(t0)
∣
∣

≤ ‖Nx‖Y + G.
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On the other hand, by (H2), we have

‖Nx‖Y =
∫ +∞

1
a(s)

∣
∣f

(
s, x(s), HDα–2

1+ x(s), HDα–1
1+ x(s)

)∣
∣ds

s

≤ (‖b‖Y + ‖c‖Y + ‖d‖Y
)‖x‖X + ‖e‖Y , (4.8)

and from the definition of P, we get

∥
∥
∥
∥

Px
1 + (ln t)α–1

∥
∥
∥
∥∞

≤ |HDα–1
1+ x(1)|
�(α)

≤ ‖Nx‖Y + G
�(α)

,

∥
∥
∥
∥

HDα–2
1+ Px

1 + ln t

∥
∥
∥
∥∞

≤ ∣
∣HDα–1

1+ x(1)
∣
∣ ≤ ‖Nx‖Y + G,

∥
∥H Dα–1

1+ Px
∥
∥∞ =

∣
∣HDα–1

1+ x(1)
∣
∣ ≤ ‖Nx‖Y + G.

So,

‖Px‖X = max

{∥
∥
∥
∥

Px
1 + (ln t)α–1

∥
∥
∥
∥

∞
,
∥
∥
∥
∥

HDα–2
1+ Px

1 + ln t

∥
∥
∥
∥∞

,
∥
∥HDα–1

1+ Px
∥
∥∞

}

≤
∥
∥
∥
∥

Px
1 + (ln t)α–1

∥
∥
∥
∥∞

+
∥
∥
∥
∥

HDα–2
1+ Px

1 + ln t

∥
∥
∥
∥∞

+
∥
∥HDα–1

1+ Px
∥
∥∞

≤ (
2 +

(
1/�(α)

))(‖Nx‖Y + G
)
. (4.9)

By Lemma 4.3, one has

∥
∥(I – P)x

∥
∥

X =
∥
∥KpL(I – P)x

∥
∥

X ≤ ∥
∥L(I – P)x

∥
∥

Y = ‖Lx‖Y ≤ ‖Nx‖Y . (4.10)

Then we obtain from (4.8)–(4.10)

‖x‖X =
∥
∥Px + (I – P)x

∥
∥

X ≤ ‖Px‖X +
∥
∥(I – P)x

∥
∥

X

=
(
2 +

(
1/�(α)

))(‖Nx‖Y + G
)

+ ‖Nx‖Y

≤ (
3 +

(
1/�(α)

))(‖b‖Y + ‖c‖Y + ‖d‖Y
)‖x‖X

+
(
3 +

(
1/�(α)

))‖e‖Y +
(
2 +

(
1/�(α)

))
G.

It follows that

‖x‖X ≤ (3 + (1/�(α)))‖e‖Y + (2 + (1/�(α)))G
1 – (3 + (1/�(α)))(‖b‖Y + ‖c‖Y + ‖d‖Y )

.

Consequently, �1 is bounded in X. �

Lemma 4.7 Assume that (H1) and (H4) hold, set

�2 = {x ∈ Ker L : Nx ∈ Im L}.

Then �2 is bounded in X.
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Proof For x ∈ �2, then x can be rewritten as x = c(ln t)α–1, c ∈ R. Because Nx ∈ Im L =
Ker Q, then QNx = 0, that is,

∫ +∞

1
g(t)

∫ +∞

t
a(s)f

(
s, c(ln s)α–1, c�(α) ln s, c�(α)

)ds
s

dt
t

= 0.

By (H4), we get |c| ≤ M. Thus, ‖x‖X ≤ �(α)M, that is, �2 is bounded in X. �

Lemma 4.8 Assume that (H1) and (H4) hold, set

�3 =
{

x ∈ Ker L : ϑλJx + (1 – λ)QNx = 0,λ ∈ [0, 1]
}

.

Then �3 is bounded in X, where ϑ = ±1 is such that ϑ = 1 for (4.6) holds and ϑ = –1 for
(4.7) holds, J : Ker L → Im Q is the linear isomorphism defined by

J
(
c(ln t)α–1) = c, ∀c ∈ R.

Proof Without loss of generality, we suppose that (4.7) holds, then for any x ∈ �3, there ex-
ist constants c ∈R, λ ∈ [0, 1] such that x(t) = c(ln t)α–1 and –λJx + (1 – λ)QNx = 0. Namely,

λc =
(1 – λ)

�

∫ +∞

1
g(t)

∫ +∞

t
a(s)f

(
s, c(ln s)α–1, c�(α) ln s, c�(α)

)ds
s

dt
t

.

For λ = 1, then c = 0. Otherwise, if |c| > M, by (H4) one gets

0 ≤ λc2 =
(1 – λ)c

�

∫ +∞

1
g(t)

∫ +∞

t
a(s)f

(
s, c(ln s)α–1, c�(α) ln s, c�(α)

)ds
s

dt
t

< 0.

It is a contradiction. So, �3 is bounded in X. If (4.6) holds, by a similar method, we can
see that �3 is bounded. �

Proof of Theorem 4.1 Set � to be a bounded open subset of X such that
⋃3

i=1 �̄i ⊂ �. By
Lemma 4.5, N is L-compact on �̄. According to Lemmas 4.6 and 4.7, we have

(i) Lx �= λNx for any (x,λ) ∈ [(dom L\Ker L) ∩ ∂�] × (0, 1);
(ii) Nx ∈ Im L for any x ∈ Ker L ∩ ∂�.

Next, we show that (iii) of Theorem 2.1 is satisfied. Therefore, we define

H(x,λ) = ϑλJx + (1 – λ)QNx,

where ϑ is defined as before. By the preceding lemma, we derive H(x,λ) �= 0, x ∈ Ker L ∩
∂�. According to the homotopy property of degree, it follows that

deg{QN |Ker L,� ∩ Ker L, 0} = deg
{

H(·, 0),� ∩ Ker L, 0
}

= deg
{

H(·, 1),� ∩ Ker L, 0
}

= deg{ϑJ ,� ∩ Ker L, 0} �= 0.

Then we conclude from Theorem 2.1 that the operator function Lx = Nx has at least one
solution in dom L ∩ �̄, thus, problem (1.2) has at least one solution in X. �
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Example 4.1 Consider the following fractional boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

HD2.5
1+ x(t) + 1

eln t [ 1
5eln t

sin x(t)
1+(ln t)1.5 + 1

10eln t
sin H D0.5

1+ x(t)
1+ln t

+ 4|H D1.5
1+ x(t)|

25eln t + 1
5eln t ] = 0, t ∈ (1, +∞),

x(1) = x′(1) = 0, HD1.5
1+ x(+∞) =

∫ +∞
1

1
eln t

HD1.5
1+ x(t) dt

t .

(4.11)

Corresponding to BVP (1.2), where

α =
5
2

, a(t) = g(t) =
1

eln t ,

f
(
t, x(t), HD0.5

1+ x(t), HD1.5
1+ x(t)

)
=

1
5eln t

sin x(t)
1 + (ln t)1.5 +

1
10eln t

sin HD0.5
1+ x(t)

1 + ln t

+
4|HD1.5

1+ x(t)|
25eln t +

1
5eln t , t ∈ (1, +∞).

Let

b(t) =
1

5eln t , c(t) =
1

10eln t , d(t) =
4

25eln t , e(t) =
1

5eln t ,

and choose G = M = 7, we can check that (H1)–(H4) hold. Then, by Theorem 4.1, BVP
(4.11) has at least one solution.

5 Conclusion
In this paper, by means of the monotone iterative technique and Mawhin’s continua-
tion theorem, we have proved the existence of solutions for two types of higher-order
Hadamard-type FDEs with integral boundary conditions on an infinite interval. There are
relatively few articles which study the existence of solutions for Hadamard-type fractional
BVPs on an infinite interval. It is a very interesting topic and there is some work to be
done in the future such as: investigating the existence and uniqueness of solutions for
Hadamard-type fractional BVPs with p-Laplacian operator on an infinite interval; study-
ing the Hyers–Ulam stability for Hadamard-type fractional non-resonance BVPs with p-
Laplacian operator, and so on.
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