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Abstract
In this paper, we consider a quasilinear viscoelastic wave equation with acoustic
boundary conditions. Under some appropriate assumption on the relaxation function
g, the function �, p >max{ρ + 2,m,q, 2}, and the initial data, we prove a global
nonexistence of solutions for a quasilinear viscoelastic wave equation with positive
initial energy.
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1 Introduction
In this paper, we are concerned with the following a quasi-nonlinear viscoelastic wave
equation with acoustic boundary conditions:

∣
∣ut(t)

∣
∣
ρutt(t) – �u(t) +

∫ t

0
g(t – s)�u(s) ds

+
∣
∣ut(t)

∣
∣
m–2ut(t) =

∣
∣u(t)

∣
∣
p–2u(t) in � × (0,∞), (1)

u(t) = 0 on �0 × (0,∞), (2)

∂u(t)
∂ν

–
∫ t

0
g(t – s)

∂u(s)
∂ν

ds + �
(

ut(t)
)

= h(x)yt(t) on �1 × (0,∞), (3)

ut(t) + f (x)yt(t) + q(x)y(t) = 0 on �1 × (0,∞), (4)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in �, (5)

y(x, 0) = y0(x) on �1, (6)

where � is a regular and bounded domain of Rn (n ≥ 1), and ∂� = �0 ∪�1. Here �0, �1 are
closed and disjoint and ∂

∂ν
denotes the unit outer normal derivative to �. The function g :

R+ →R+ is a positive nonincreasing function, the function � : R →R is a monotone and
continuous, and the functions f , q, h : �1 →R+ are essentially bounded and q(x) ≥ q0 > 0.

System (1)–(6) is a model of a quasilinear viscoelastic wave equation with acoustic
boundary conditions. The acoustic boundary conditions were introduced by Morse and
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Ingard [14] in 1968 and developed by Beale and Rosencrans in [1], where the authors
proved the global existence and regularity of the nonlinear problem. When |ut(t)|ρ is not
a constant, system (1)–(6) can model materials whose density depends on the velocity ut .
The physical application of the above system is the problem of noise suppression in struc-
tural acoustic systems, which is one of great interests in physics and engineering. Also
reducing the level of pressure in a helicopter’s cabin and suppressing the noise in the in-
terior of an acoustic chamber are based on some special type of boundary conditions like
those described in system (1)–(6), (see [4, 5] and another case [9]).

Boukhatem and Benabderrahmane [2, 3] studied the existence, blow-up, and decay of
solutions for viscoelastic wave equations with acoustic boundary conditions. Recently,
many authors have treated wave/beam equations with acoustic boundary conditions, see
[7, 8, 10, 12, 13, 15, 16] and the references therein. Graber and Haid-Houari [5] studied
the blow-up solutions for a nonlinear wave equation with porous acoustic boundary con-
ditions:

utt(t) – �u(t) + α(x)u(t) + φ(ut) = j1
(

u(t)
)

in � × (0,∞),

u(t) = 0 on �0 × (0,∞),

ut(t) + f (x)zt(t) + g(x)z(t) = 0 on �1 × (0,∞),

∂u(t)
∂ν

– h(x)η
(

zt(t)
)

+ ρ
(

ut(t)
)

= j2
(

u(t)
)

on �1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in �,

z(x, 0) = z0(x) on �1,

where α : � → R and f , g, h : �1 → R are given functions. Also the functions j1 and j2 are
of a polynomial structure as follows: j1(s) = |s|p–2s, j2(s) = |s|k–2sk, p ≥ 2, the functions ρ

and φ are monotone, continuous, and there exist four positive constants mq, Mq, cr , and
Cr such that mq|s|q ≤ ρ(s)s ≤ Mq|s|q, cr|s|r ≤ φ(s)s ≤ Cr|s|r . In addition, Di et al. [4] studied
a viscoelastic wave equation with nonlinear boundary source term:

∣
∣ut(t)

∣
∣
ρutt(t) – �u(t) +

∫ t

0
g(t – s)�u(s) ds = 0 in � × (0,∞),

u(x, t) = 0 on �0 × (0,∞),

∂u
∂ν

(t) –
∫ t

0
g(t – s)

∂u
∂ν

(s) ds = f
(

u(t)
)

on �1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in �,

where ρ ≥ 1 and � is a bounded domain of Rn (n ≥ 1) with smooth boundary � := ∂�.
Let {�0,�1} be a partition of its boundary � such that � = �0 ∪ �1, �0 ∩ �1 = ∅, and
meas(�0) > 0. Here, ν is the unit outward normal to �, and g , f are given functions sat-
isfying suitable conditions. They introduced a family of potential wells and proved the
invariance of some sets. Then they established the existence and nonexistence of a global
weak solution with small initial energy under suitable assumptions on g(·), f (·), initial data,
and the parameters in the equation. Also they showed the global existence of a weak so-
lution for the problem with critical initial conditions I(u0) ≥ 0 and e(0) = d. Furthermore,
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Song [17] studied the nonlinear viscoelastic wave equation

∣
∣ut(t)

∣
∣
ρutt(t) – �u(t) +

∫ t

0
g(t – τ )�u(τ ) dτ

+
∣
∣ut(t)

∣
∣
m–2ut(t) =

∣
∣u(t)

∣
∣
p–2u(t) in � × [0, T],

u(x, t) = 0 on ∂� × [0, T],

u(x, 0) = u0(x), ut(x, 0) = u1(x) in �,

where � is a bounded domain ofRn (n ≥ 1) with smooth boundary ∂�, m ≥ 2, g : R+ →R
+

a positive nonincreasing function, and

2 < p,ρ < ∞, if n = 1, 2, 2 < p,ρ ≤ 2(n – 1)
n – 2

if n ≥ 3.

The author proved the global nonexistence of positive initial energy solutions for a vis-
coelastic wave equation. Recently Jeong et al. [6] investigated the quasilinear wave equa-
tion with acoustic boundary conditions

utt(t) – �ut(t) – div
(∣
∣∇u(t)

∣
∣
α–2∇u(t)

)

– div
(∣
∣∇ut(t)

∣
∣
β–2∇ut(t)

)

+ a
∣
∣ut(t)

∣
∣
m–2ut(t)

=
∣
∣u(t)

∣
∣
p–2u(t) in � × (0,∞),

u(t) = 0 on �0 × (0,∞),

∂ut(t)
∂ν

+
∣
∣∇u(t)

∣
∣
α–2 ∂u(t)

∂ν
+

∣
∣∇ut(t)

∣
∣
β–2 ∂ut(t)

∂ν
= h(x)yt(t) on �1 × (0,∞),

ut(t) + f (x)yt(t) + q(x)y(t) = 0 on �1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in �,

y(x, 0) = y0(x) on �1,

where a, b > 0, α,β , m, p > 2, � is a regular and bounded domain of Rn (n ≥ 1) and ∂�(=
�) = �0 ∪ �1. The functions f , q, h : �1 → R+ are essentially bounded. They studied the
global nonexistence of solutions for a quasilinear wave equation with acoustic boundary
conditions. Motivated by the previous works [5, 17], we consider problem (1)–(6). Under
suitable assumptions on the relaxation function g , the nonlinear function �(·), p > max{ρ +
2, m, q, 2}, the initial data, and the parameters in the system, we prove the nonexistence of
a weak solution with small positive initial energy.

2 Blow-up result
In this section, we present some material which will be used throughout this work. First,
we introduce the set

H1
�0 (�) =

{

u ∈ H1(�)|u = 0 on �0
}

,

and endow H1
�0

(�) with the Hilbert structure induced by H1(�). We have that H1
�0

(�) is
a Hilbert space. For simplicity, we denote ‖ · ‖p = ‖ · ‖Lp(�), ‖ · ‖p,� = ‖ · ‖Lp(�), 1 ≤ p ≤ ∞.

We present some assumptions and preliminaries needed in the proof of our main result.
We make the following assumptions:
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(H1) g : R+ →R+ is a differentiable function such that

1 –
∫ ∞

0
g(s) ds = l > 0, g(t) ≥ 0, g ′(t) ≤ 0, ∀t ≥ 0. (7)

(H2) For the nonlinear terms, we have

2 < p ≤ 2(n – 1)
n – 2

if n ≥ 3 and p > 2 if n = 1, 2, (8)

2 < ρ ≤ 2
n – 2

if n ≥ 3 and ρ > 0 if n = 1, 2. (9)

(H3) � : R →R is monotone, continuous, and there exist positive constants mq and Mq

such that

mq|s|q ≤ �(s)s ≤ Mq|s|q, ∀s ∈R. (10)

(H4) The functions f , q, h are essentially bounded such that

f (x) > 0, q(x) > 0 and h(x) > 0, ∀x ∈ �1.

We state, without a proof, a local existence which can be established by combining ar-
guments of [4, 5].

Let assumptions (H1)–(H4) hold, u0 ∈ H1
�0

(�), u1 ∈ L2(�), and y0 ∈ L2(�1). Then prob-
lem (1)–(6) admits a weak local solution (u, y) such that, for some T > 0,

u ∈ L∞(

[0, T); H1
�0 (�)

)

,

ut ∈ L∞(

[0, T); L2(�)
) ∩ Lm(

[0, T);�
) ∩ Lq([0, T);�1

)

,

y ∈ L2([0, T);�1
)

.

To obtain the global nonexistence result, we need the following lemmas.

Lemma 2.1 Assume that (H1)–(H4) hold. Let u(t) be a solution of problem (1)–(6). Then
the energy functional E(t) of problem (1)–(6) is nonincreasing. Moreover, the following en-
ergy inequality holds:

E′(t) =
1
2
(

g ′ � ∇u
)

(t) –
1
2

g(t)
∥
∥∇u(t)

∥
∥

2 –
∥
∥ut(t)

∥
∥

m
m

–
∫

�1

h(x)f (x)y2
t (t) d� –

∫

�1

�
(

ut(t)
)

ut(t) d�

≤ 0, (11)

where

E(t) =
1

ρ + 2
∥
∥ut(t)

∥
∥

ρ+2
ρ+2 +

1
2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 +
1
2

(g � ∇u)(t)

–
1
p
∥
∥u(t)

∥
∥

p
p +

1
2

∫

�1

h(x)q(x)y2(t) d�, (12)
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and

(g � ∇u)(t) =
∫ t

0
g(t – s)

∥
∥∇u(t) – ∇u(s)

∥
∥

2 ds. (13)

Lemma 2.2 Suppose that (H1)–(H4) hold. Let u(t) be the solution of problem (1)–(6). Fur-
thermore, assume that

E(0) < E1 =
(

1
2

–
1
p

)

B
– 2p

p–2
1

and

‖∇u0‖ ≥ B
– p

p–2
1 ,

where B1 = B/l 1
2 and B is the best constant of the Sobolev embedding H1

0 (�) ↪→ Lp(�). Then

there exists a constant β > B
– p

p–2
1 such that

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 ≥ β2, ∀t > 0 (14)

and

∥
∥u(t)

∥
∥

p ≥ B1β , ∀t > 0. (15)

Proof From (6) and the embedding theorem, we have

E(t) =
1

ρ + 2
∥
∥ut(t)

∥
∥

ρ+2
ρ+2 +

1
2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 +
1
2

(g � ∇u)(t)

–
1
p
∥
∥u(t)

∥
∥

p
p +

1
2

∫

�1

h(x)q(x)y2(t) d�

≥ 1
2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 –
1
p
∥
∥u(t)

∥
∥

p
p

≥ 1
2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 –
1
p

Bp
1l

p
2
∥
∥∇u(t)

∥
∥

p

≥ 1
2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 –
1
p

Bp
1

((

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2
) p

2

=
1
2
ξ 2 –

Bp
1

p
ξp := G(ξ ), (16)

where ξ = ((1 –
∫ t

0 g(s) ds)‖∇u(t)‖2) 1
2 . It is easy to see that G(ξ ) takes its maximum for

ξ = ξ ∗ = B
– p

p–2
1 , which is strictly increasing for 0 < ξ < ξ ∗, strictly decreasing for ξ > ξ ∗,

G(ξ ) → –∞ as ξ → ∞, and

G
(

ξ ∗) =
(

1
2

–
1
p

)

B
– 2p

p–2
1 = E1.
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Since E(0) < E1, there exists β > ξ ∗ such that G(β) = E(0). Set ξ0 = ‖∇u(0)‖, by (16), we see
that

G(ξ0) ≤ E(0) = G(β),

which implies that

‖∇u0‖ = ξ0 > β .

To prove (14), we suppose on the contrary that

((

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2
) 1

2
< β

for some t = t0 > 0. By the continuity of (1 –
∫ t

0 g(s) ds)‖∇u(t)‖2, we may choose t0 such
that

β >
((

1 –
∫ t0

0
g(s) ds

)
∥
∥∇u(t0)

∥
∥

2
) 1

2
> ξ ∗.

Then it follows from (16) that

E(t0) ≥ G
(((

1 –
∫ t0

0
g(s) ds

)
∥
∥∇u(t0)

∥
∥

2
) 1

2
)

> G(β) = E(0),

which contradicts Lemma 2.1. Hence (14) is proved. Now we will prove (15). From (12),
(13), (14), and Lemma 2.1, we deduce that

1
p
∥
∥u(t)

∥
∥

p
p =

1
ρ + 2

∥
∥ut(t)

∥
∥

ρ+2
ρ+2 +

1
2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 +
1
2

(g � ∇u)(t)

+
1
2

∫

�1

h(x)q(x)y2(t) d� – E(t)

≥ 1
2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 – E(0)

≥ 1
2
β2 – E(0) =

1
2
β2 – G(β)

=
1
2
β2 –

(
1
2
β2 –

Bp
1

p
βp

)

=
Bp

1
p

βp ∀t > 0.

Thus the proof of Lemma 2.2 is complete. �

Theorem 2.1 Let 2 < m < p, 2 ≤ q < p and assume that (H1)–(H4) hold. Suppose that
ρ < p – 2, 0 < ε0 < p

2 – 1, and

∫ ∞

0
g(s) ds <

p
2 – CMq

λq

q – 1 – ε0
p
2 – 1 – CMq

λq
q + 1

2p
(17)
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are satisfied, then there exists no global solution of problem (1)–(6) if

E(0) <
(

1 – CMq
λq

q
2

p – 2
–

1
p(p – 2)

1 – l
l

)(
1
2

–
1
p

)

B
– 2p

p–2
1 , (18)

and

‖∇u0‖ > B
– p

p–2
1 . (19)

Proof Assume that the solution u(t) of (1)–(6) is global. We set

H(t) = E2 – E(t), (20)

where the constant E2 ∈ (E(0), E1) shall be chosen later. By Lemma 2.1, the function H(t)
is increasing. Then, for t ≥ s ≥ 0,

0 < H(0) ≤ H(s) ≤ H(t)

= E2 –
1

ρ + 2
∥
∥ut(t)

∥
∥

ρ+2
ρ+2 –

1
2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 –
1
2

(g � ∇u)(t)

+
1
p
∥
∥u(t)

∥
∥

p
p –

1
2

∫

�1

h(x)q(x)y2(t) d�. (21)

Thus from (14) we get

H(t) ≤ E2 –
1
2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 +
1
p
∥
∥u(t)

∥
∥

p
p

≤ E1 –
1
2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 +
1
p
∥
∥u(t)

∥
∥

p
p

≤ E1 –
1
2

B
– 2p

p–2
1 +

1
p
∥
∥u(t)

∥
∥

p
p

=
(

1
2

–
1
p

)

B
– 2p

p–2
1 –

1
2

B
– 2p

p–2
1 +

1
p
∥
∥u(t)

∥
∥

p
p

≤ 1
p
∥
∥u(t)

∥
∥

p
p. (22)

Now, we define

L(t) = H1–σ (t) +
ε

ρ + 1

∫

�

∣
∣ut(t)

∣
∣
ρut(t)u(t) dx

–
ε

2

∫

�1

h(x)f (x)y2(t) d� – ε

∫

�1

h(x)u(t)y(t) d�, (23)

where the constants 0 < σ < 1, ε > 0 shall be chosen later.
Taking a derivative of (23), using (7)–(10) and Lemma 2.1, we have

L′(t) = (1 – σ )H–σ (t)H ′(t) +
ε

ρ + 1
∥
∥ut(t)

∥
∥

ρ+2
ρ+2 + ε

∫

�

∣
∣ut(t)

∣
∣
ρutt(t)u(t) dx

– ε

∫

�1

h(x)f (x)y(t)yt(t) d� – ε

∫

�1

h(x)ut(t)y(t) d�
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– ε

∫

�1

h(x)u(t)yt(t) d�

= (1 – σ )H–σ (t)H ′(t) +
ε

ρ + 1
∥
∥ut(t)

∥
∥

ρ+2
ρ+2

+ ε

∫

�

u(t)
[

�u(t) –
∫ t

0
g(t – s)�u(s) ds –

∣
∣ut(t)

∣
∣
m–2ut(t) +

∣
∣u(t)

∣
∣
p–2u(t)

]

dx

– ε

∫

�1

h(x)f (x)y(t)yt(t) d� – ε

∫

�1

h(x)ut(t)y(t) d�

– ε

∫

�1

h(x)u(t)yt(t) d�

= (1 – σ )H–σ (t)H ′(t) +
ε

ρ + 1
∥
∥ut(t)

∥
∥

ρ+2
ρ+2

– ε

∫

�

∣
∣∇u(t)

∣
∣
2 dx + ε

∫

�

∇u(t)
∫ t

0
g(t – s)∇u(s) ds dx

– ε

∫

�

∣
∣ut(t)

∣
∣
m–2ut(t)u(t) dx + ε

∥
∥u(t)

∥
∥

p
p

+ ε

∫

�1

u(t)
(

∂u(t)
∂ν

–
∫ t

0
g(t – s)

∂u(s)
∂ν

ds
)

d�

– ε

∫

�1

h(x)y(t)
(

f (x)yt(t) + ut(t)
)

d�

– ε

∫

�1

h(x)u(t)yt(t) d�

= (1 – σ )H–σ (t)H ′(t) +
ε

ρ + 1
∥
∥ut(t)

∥
∥

ρ+2
ρ+2 – ε

∥
∥∇u(t)

∥
∥

2

+ ε

∫

�

∇u(t)
∫ t

0
g(t – s)∇u(s) ds dx – ε

∫

�

∣
∣ut(t)

∣
∣
m–2ut(t)u(t) dx

+ ε
∥
∥u(t)

∥
∥

p
p – ε

∫

�1

�
(

ut(t)
)

u(t) d� + ε

∫

�1

h(x)q(x)y2(t) d�. (24)

Exploiting Hölder’s and Young’s inequalities, for any ε1 (0 < ε1 < 1), we obtain

∫

�

∇u(t)
∫ t

0
g(t – s)∇u(s) ds dx

=
∫ t

0
g(t – s)

∫

�

∇u(t)
(∇u(s) – ∇u(t)

)

dx ds +
(∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2

≥ –
p(1 – ε1)

2
(g � ∇u)(t) +

(

1 –
1

2p(1 – ε1)

)(∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2. (25)

Thus from (24) and (25), we arrive at

L′(t) ≥ (1 – σ )H–σ (t)H ′(t) +
ε

ρ + 1
∥
∥ut(t)

∥
∥

ρ+2
ρ+2 –

εp(1 – ε1)
2

(g � ∇u)(t)

– ε

[

1 –
(

1 –
1

2p(1 – ε1)

)∫ t

0
g(s) ds

]
∥
∥∇u(t)

∥
∥

2



Kang et al. Boundary Value Problems  (2018) 2018:139 Page 9 of 19

– ε

∫

�

∣
∣ut(t)

∣
∣
m–2ut(t)u(t) dx – ε

∫

�1

�
(

ut(t)
)

u(t) d�

+ ε
∥
∥u(t)

∥
∥

p
p + ε

∫

�1

h(x)q(x)y2(t) d�. (26)

Consequently, from (11), (12), (20), and (26), we deduce that

L′(t) ≥ (1 – σ )H–σ (t)
[

1
2

g(t)
∥
∥∇u(t)

∥
∥

2 –
1
2
(

g ′ � ∇u
)

(t) +
∥
∥ut(t)

∥
∥

m
m

+
∫

�1

h(x)f (x)y2
t (t) d� +

∫

�1

�
(

ut(t)
)

ut(t) d�

]

+
ε

ρ + 1
∥
∥ut(t)

∥
∥

ρ+2
ρ+2 – ε

[

1 –
(

1 –
1

2p(1 – ε1)

)∫ t

0
g(s) ds

]
∥
∥∇u(t)

∥
∥

2

–
εp(1 – ε1)

2
(g � ∇u)(t) – ε

∫

�

∣
∣ut(t)

∣
∣
m–2ut(t)u(t) dx

+ ε
∥
∥u(t)

∥
∥

p
p – ε

∫

�1

�
(

ut(t)
)

u(t) d� + ε

∫

�1

h(x)q(x)y2(t) d�. (27)

From this relation and using

ε(1 – ε1)pH(t) = ε(1 – ε1)pE2 –
εp(1 – ε1)

ρ + 2
∥
∥ut(t)

∥
∥

ρ+2
ρ+2

–
εp(1 – ε1)

2

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2

–
εp(1 – ε1)

2
(g � ∇u)(t) + ε(1 – ε1)

∥
∥u(t)

∥
∥

p
p

–
εp(1 – ε1)

2

∫

�1

h(x)q(x)y2(t) d�,

it follows that

L′(t) ≥ (1 – σ )H–σ (t)
∥
∥ut(t)

∥
∥

m
m + (1 – σ )H–σ (t)

∫

�1

�
(

ut(t)
)

ut(t) d�

+ ε(1 – ε1)pH(t) – ε(1 – ε1)pE2

+ ε

(
1

ρ + 1
+

p(1 – ε1)
ρ + 2

)
∥
∥ut(t)

∥
∥

ρ+2
ρ+2

+ εε1
∥
∥u(t)

∥
∥

p
p – ε

∫

�

∣
∣ut(t)

∣
∣
m–2ut(t)u(t) dx

– ε

∫

�1

�
(

ut(t)
)

u(t) d� + ε

(
(1 – ε1)p

2
+ 1

)∫

�1

h(x)q(x)y2(t) d�

+ ε

(
(1 – ε1)p

2
– 1

)(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2

–
ε

2p(1 – ε1)

∫ t

0
g(s) ds

∥
∥∇u(t)

∥
∥

2

≥ (1 – σ )H–σ (t)
∥
∥ut(t)

∥
∥

m
m + pH(t)ε(1 – ε1)
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+ ε

(
1

ρ + 1
+

p(1 – ε1)
ρ + 2

)
∥
∥ut(t)

∥
∥

ρ+2
ρ+2

+ ε

(
(1 – ε1)p

2
– 1

)(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2

–
ε

2p(1 – ε1)

∫ t

0
g(s) ds

∥
∥∇u(t)

∥
∥

2 – ε(1 – ε1)pE2 + εε1
∥
∥u(t)

∥
∥

p
p

– ε

∫

�

∣
∣ut(t)

∣
∣
m–2ut(t)u(t) d� – ε

∫

�1

�
(

ut(t)
)

u(t) d�

+ (1 – σ )H–σ (t)
∫

�1

�
(

ut(t)
)

ut(t) d�

+ ε

(
(1 – ε1)p

2
+ 1

)∫

�1

h(x)q(x)y2(t) d�. (28)

From Hölder’s and Young’s inequalities, the condition m < p, (22), and the embedding
theorem (Lp(�) ↪→ Lm(�)), we obtain

∫

�

∣
∣ut(t)

∣
∣
m–2ut(t)u(t) d� ≤

(∫

�

∣
∣ut(t)

∣
∣
m dx

) m–1
m

(∫

�

∣
∣u(t)

∣
∣
m dx

) 1
m

≤ ∥
∥ut(t)

∥
∥

m–1
m

∥
∥u(t)

∥
∥

m

≤ C
∥
∥ut(t)

∥
∥

m–1
m

∥
∥u(t)

∥
∥

p

≤ C
∥
∥ut(t)

∥
∥

m–1
m

∥
∥u(t)

∥
∥

1– p
m

p

∥
∥u(t)

∥
∥

p
m
p

≤ C
∥
∥u(t)

∥
∥

1– p
m

p

(

ε1
∥
∥u(t)

∥
∥

p
p + C(ε1)

∥
∥ut(t)

∥
∥

m
m

)

≤ CH(t)
1
p – 1

m
(

ε2
∥
∥u(t)

∥
∥

p
p + C(ε2)

∥
∥ut(t)

∥
∥

m
m

)

, (29)

where C is a generic positive constant which might change from line to line and ε2 >
ε1p1/p–1/m.

Here we choose

0 < σ < min

(
1

ρ + 2
–

1
p

,
1
m

–
1
p

,
1
2

–
1
p

)

(30)

and take α = m–p
pm + σ = –( 1

m – 1
p ) + σ < 0. Then the properties (21) of the function H(t)

show that

H(t)
1
p – 1

m = H(t)–σ H(t)α ≤ H(t)–σ H(0)α .

Thus from inequality (30) it follows

∫

�

∣
∣ut(t)

∣
∣
m–2ut(t)u(t) d� ≤ CH(t)–σ H(0)α

(

ε2
∥
∥u(t)

∥
∥

p
p + C(ε2)

∥
∥ut(t)

∥
∥

m
m

)

. (31)

Moreover, from (10), it is clear that

∫

�1

�
(

ut(t)
)

ut(t) d� ≥ mq
∥
∥ut(t)

∥
∥

q
q,�1

(32)
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and the following Young’s inequality

XY ≤ λγ Xγ

γ
+

λ–βY β

β
,

X, Y ≥ 0, λ > 0, γ ,β ∈R+ such that 1
γ

+ 1
β

= 1, then from (10), we get

∫

�1

�
(

ut(t)
)

u(t) d� ≤ Mq

∫

�1

∣
∣ut(t)

∣
∣
q–1∣

∣u(t)
∣
∣d�

≤ Mq
λq

q
∥
∥u(t)

∥
∥

q
q,�1

+ Mq
q – 1

q
λ

– q
q–1

∥
∥ut(t)

∥
∥

q
q,�1

. (33)

Thus from (28) and (31)–(33), we deduce

L′(t) ≥ (1 – σ )H–σ (t)
∥
∥ut(t)

∥
∥

m
m + ε

[
1

ρ + 1
+

p(1 – ε1)
ρ + 1

]
∥
∥ut(t)

∥
∥

ρ+2
ρ+2 + ε(1 – ε1)pH(t)

+ ε

[(
(1 – ε1)p

2
– 1

)(

1 –
∫ t

0
g(s) ds

)

–
1

2p(1 – ε1)

∫ t

0
g(s) ds

]
∥
∥∇u(t)

∥
∥

2

– ε(1 – ε1)pE2 + εε1
∥
∥u(t)

∥
∥

p
p

– εCH(t)–σ H(0)α
(

ε2
∥
∥u(t)

∥
∥

p
p + C(ε2)

∥
∥ut(t)

∥
∥

m
m

)

+ (1 – σ )H–σ (t)mq
∥
∥ut(t)

∥
∥

q
q,�1

– εMq
λq

q
∥
∥u(t)

∥
∥

q
q,�1

– εMq
q – 1

q
λ

– q
q–1

∥
∥ut(t)

∥
∥

q
q,�1

+ ε

(
(1 – ε1)p

2
+ 1

)∫

�1

h(x)q(x)y2(t) d�

= H–σ (t)
[

1 – σ – εCHα(0)C(ε2)
]∥
∥ut(t)

∥
∥

m
m + ε

[
1

ρ + 1
+

p(1 – ε1)
ρ + 2

]
∥
∥ut(t)

∥
∥

ρ+2
ρ+2

+ ε(1 – ε1)pH(t) – ε(1 – ε1)pE2

+ ε

[(
(1 – ε1)p

2
– 1

)(

1 –
∫ t

0
g(s) ds

)

–
1

2p(1 – ε1)

∫ t

0
g(s) ds

]
∥
∥∇u(t)

∥
∥

2

+ ε
[

ε1 – ε2CH–σ (t)Hα(0)
]∥
∥u(t)

∥
∥

p
p – εMq

λq

q
∥
∥u(t)

∥
∥

q
q,�1

+
[

(1 – σ )H–σ (t)mq – εMq
q – 1

q
λ

– q
q–1

]
∥
∥ut(t)

∥
∥

q
q,�1

+ ε

(
(1 – ε1)p

2
+ 1

)∫

�1

h(x)q(x)y2(t) d�, ∀t ≥ T0. (34)

We also use the embedding theorem. Let us recall the inequality (C denotes a generic
positive constant)

∥
∥u(t)

∥
∥

q,�1
≤ C

∥
∥u(t)

∥
∥

Hs(�),
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where q ≥ 1 and 0 ≤ s < 1, s ≥ N
2 – N–1

q > 0 and the interpolation and Poincaré’s inequality
(see [11])

∥
∥u(t)

∥
∥

Hs(�) ≤ C
∥
∥u(t)

∥
∥

1–s∥
∥∇u(t)

∥
∥

s ≤ C
∥
∥u(t)

∥
∥

1–s
p

∥
∥∇u(t)

∥
∥

s.

If s < 2
q , using again Young’s inequality, we obtain

∥
∥u(t)

∥
∥

q
q,�1

≤ C
[(∥

∥u(t)
∥
∥

p
p

) q(1–s)μ
p +

(∥
∥∇u(t)

∥
∥

2) qsθ
2

]

for 1
μ

+ 1
θ

= 1. Here we choose θ = 2
qs to get μ = 2

2–qs . Therefore the previous inequality

∥
∥u(t)

∥
∥

q
q,�1

≤ C
[
(∥
∥u(t)

∥
∥

p
p

) 2q(1–s)
(2–qs)p +

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2
]

. (35)

Now, choosing s such that

0 < s ≤ 2(p – q)
q(p – 2)

,

we get

2q(1 – s)
(2 – qs)p

≤ 1. (36)

Once inequality (36) is satisfied, we use the classical algebraic inequality

χν ≤ (χ + 1) ≤
(

1 +
1
w

)

(χ + w), ∀χ ≥ 0, 0 < ν ≤ 1, w ≥ 0, (37)

with χ = ‖u(t)‖p
p, d = 1 + 1

H(0) , w = H(0), and ν = 2q(1–s)
(2–qs)p to get the following estimate:

(∥
∥u(t)

∥
∥

p
p

) 2q(1–s)
(2–qs)p ≤ d

(∥
∥u(t)

∥
∥

p
p + H(0)

) ≤ d
(∥
∥u(t)

∥
∥

p
p + H(t)

)

, ∀t ≥ 0. (38)

From (35) and (38), we have

∥
∥u(t)

∥
∥

q
q,�1

≤ C
(

∥
∥u(t)

∥
∥

p
p +

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 + 2H(t)
)

. (39)

Inserting estimate (39) into (34) and using (14), we arrive at

L′(t) ≥ H–σ (t)
[

1 – σ – εCHα(0)C(ε2)
]∥
∥ut(t)

∥
∥

m
m

+ ε

[
1

ρ + 1
+

(1 – ε1)p
ρ + 2

]
∥
∥ut(t)

∥
∥

ρ+2
ρ+2 + ε(1 – ε1)pH(t)

+ ε

[(
p(1 – ε1)

2
– 1

)(

1 –
∫ t

0
g(s) ds

)

–
1

2p(1 – ε1)

∫ t

0
g(s) ds

]

× ∥
∥∇u(t)

∥
∥

2 – ε(1 – ε1)pE2 + ε
[

ε1 – ε2CH–σ (t)Hα(0)
]∥
∥u(t)

∥
∥

p
p
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– εCMq
λq

q

[
∥
∥u(t)

∥
∥

p
p +

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 + 2H(t)
]

+
[

(1 – σ )H–σ (t)mq – εMq
q – 1

1
λ

q
q–1

]
∥
∥ut(t)

∥
∥

q
q,�1

+ ε

[
(1 – ε1)p

2
+ 1

]∫

�1

h(x)q(x)y2(t) d�

= H–σ (t)
[

1 – σ – εCHα(0)C(ε2)
]∥
∥ut(t)

∥
∥

m
m + ε

[
1

ρ + 1
+

(1 – ε1)p
ρ + 2

]
∥
∥ut(t)

∥
∥

ρ+2
ρ+2

+ ε

[

(1 – ε1)p – 2CMq
λq

q

]

H(t) – ε(1 – ε1)pE2

+ ε

[(
(1 – ε1)p

2
– CMq

λq

q
– 1

)(

1 –
∫ t

0
g(s) ds

)

–
1

2(1 – ε1)p

∫ t

0
g(s) ds

]
∥
∥∇u(t)

∥
∥

2

+ ε

[

ε1 – ε2CH–σ (t)Hα(0) – CMq
λq

q

]
∥
∥u(t)

∥
∥

p
p

+
[

(1 – σ )H–σ (t)mq – εMq
q – 1

q
λ

– q
q–1

]
∥
∥u(t)

∥
∥

q
q,�1

+ ε

[
(1 – ε1)p

2
+ 1

]∫

�1

h(x)q(x)y2(t) d�

≥ H–σ (t)
[

1 – σ – εCHα(0)C(ε2)
]∥
∥ut(t)

∥
∥

m
m + ε

[
1

ρ + 1
+

(1 – ε1)p
ρ + 2

]
∥
∥ut(t)

∥
∥

ρ+2
ρ+2

+ ε

[

(1 – ε1)p – 2CMq
λq

q

]

H(t) – ε(1 – ε1)pE2

+
ε

1 –
∫ t

0 g(s) ds

[(
(1 – ε1)p

2
– CMq

λq

q
– 1

)

l –
1

2(1 – ε1)p
(1 – l)

]

β2

+ ε

[

ε1 – ε2CH–σ (t)Hα(0) – CMq
λq

q

]
∥
∥u(t)

∥
∥

p
p

+
[

(1 – σ )H–σ (t)mq – εMq
q – 1

q
λ

– q
q–1

]
∥
∥u(t)

∥
∥

q
q,�1

+ ε

[
(1 – ε1)p

2
+ 1

]∫

�1

h(x)q(x)y2(t) d�. (40)

Since

∫ ∞

0
g(s) ds <

p
2 – 1 – CMq

λq

q – ε0
p
2 – 1 – CMq

λq
q + 1

2p
, p > 2,

we have

(
p
2

– 1 – CMq
λq

q

)(

1 –
∫ ∞

0
g(s) ds

)

–
1

2p

∫ ∞

0
g(s) ds > ε0 > 0.
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It is easy to see that there exist ε∗
1 > 0 and T0 > 0 such that, for 0 < ε1 < ε∗

1 := 1 – 2(1+ε0)
p ,

0 < ε0 < p
2 – 1, and t > T0,

[( (1–ε1)p
2 – CMq

λq

q – 1)l – 1
2(1–ε1)p (1 – l)]β2

1 –
∫ t

0 g(s) ds

>
( (1–ε1)p

2 – CMq
λq

q – 1)l – 1
2(1–ε1)p (1 – l)

1 –
∫ ∞

0 g(s) ds
B

– 2p
p–2

1 .

Now, we may choose ε1 > 0 sufficiently small and E2 ∈ (E(0), E1) sufficiently near E(0) such
that

( (1–ε1)p
2 – CMq

λq

q – 1)l – 1
2(1–ε1)p (1 – l)

1 –
∫ ∞

0 g(s) ds
B

– 2p
p–2

1 – p(1 – ε1)E2 > 0, (41)

since

E(0) < E2 <
(

1
2

– CMq
λq

q
1
p

–
1
p

–
1

2p2
1 – l

l

)

B
– 2p

p–2
1

=
(

1 – CMq
λq

q
2

p – 2
–

1
p(p – 2)

1 – l
l

)(
1
2

–
1
p

)

B
– 2p

p–2
1 <

(
1
2

–
1
p

)

B
– 2p

p–2
1 .

From (40) and (41), we arrive at

L′(t) ≥ H–σ (t)
[

1 – σ – εCHα(0)C(ε2)
]∥
∥ut(t)

∥
∥

m
m + ε

[
1

ρ + 1
+

(1 – ε1)p
ρ + 2

]
∥
∥ut(t)

∥
∥

ρ+2
ρ+2

+ ε

[

(1 – ε1)p – 2CMq
λq

q

]

H(t)

+ ε

[

ε1 – ε2CH–σ (t)Hα(0) – CMq
λq

q

]
∥
∥u(t)

∥
∥

p
p

+
[

(1 – σ )H–σ (t)mq – εMq
q – 1

q
λ

– q
q–1

]
∥
∥u(t)

∥
∥

q
q,�1

+ ε

[
(1 – ε1)p

2
+ 1

]∫

�1

h(x)q(x)y2(t) d�. (42)

At this point, for ε2CH–σ (t)Hα(0) < ε1 < min{1, ε2p1/m–1/p}, we may take λ sufficiently small
such that

(1 – ε1)p – 2CMq
λq

q
> 0,

ε1 – ε2CH–σ (t)Hα(0) – CMq
λq

q
> 0.

Once again, we choose ε small enough such that

1 – σ – εCHα(0)C(ε2) > 0,

(1 – σ )H–σ (t)mq – εMq
q – 1

q
λ

– q
q–1 > 0.
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Then from (42) there exists a positive constant K1 > 0 such that following inequality holds:

L′(t) ≥ εK1

(

H(t) +
∥
∥u(t)

∥
∥

ρ+2
ρ+2 +

∥
∥u(t)

∥
∥

p
p +

∥
∥∇u(t)

∥
∥

2 +
∫

�1

h(x)q(x)y2(t) d�

)

. (43)

On the other hand, from definition (23) and since f , h > 0, we have

L(t) ≤ H1–σ (t) +
ε

ρ + 1

∫

�

∣
∣ut(t)

∣
∣
ρut(t)u(t) dxK1 – ε

∫

�1

h(x)q(x)y(t) d�.

Consequently, the above estimate leads to

L
1

1–σ (t) ≤ C(ε,σ ,ρ)
[

H(t) +
(∫

�

∣
∣ut(t)

∣
∣
ρut(t)u(t) dx

) 1
1–σ

+
(∫

�1

h(x)q(x)y(t) d�

) 1
1–σ

]

. (44)

We now estimate (see [17])

(∫

�

∣
∣ut(t)

∣
∣
ρut(t)u(t) dx

) 1
1–σ ≤ C

∥
∥ut(t)

∥
∥

ρ+1
1–σ

ρ+2

∥
∥u(t)

∥
∥

1
1–σ

p

≤ C
∥
∥ut(t)

∥
∥

ρ+1
1–σ μ

ρ+2

∥
∥u(t)

∥
∥

1
1–σ θ

p ,

where 1
μ

+ 1
θ

= 1. Choose μ = (1–σ )(ρ+2)
ρ+1 > 1, then

θ

1 – σ
=

ρ + 2
(1 – σ )(ρ + 2) – (ρ + 1)

.

From (30), we know

θ

1 – σ
< p. (45)

Then from (22) we deduce

∥
∥u(t)

∥
∥

θ
1–σ

p =
∥
∥u(t)

∥
∥

p–(p– θ
1–σ )

p =
∥
∥u(t)

∥
∥

p
p

∥
∥u(t)

∥
∥

–k
p

≤ C
∥
∥u(t)

∥
∥

p
pH(0)– k

p , (46)

where k = p – θ
1–σ

is a positive constant. Thus from (46) we obtain

(∫

�

∣
∣ut(t)

∣
∣
ρut(t)u(t) dx

) 1
1–σ ≤ C

∥
∥ut(t)

∥
∥

ρ+2
ρ+2 +

∥
∥u(t)

∥
∥

p
pH(0)– k

p . (47)

On the other hand, by the same method as in [13], we obtain
∣
∣
∣
∣

∫

�1

h(x)u(t)y(t) d�

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�1

h(x)q(x)
q(x)

u(t)y(t) d�

∣
∣
∣
∣

≤ ‖h‖ 1
2
L∞‖q‖ 1

2
L∞

q0

(∫

�1

h(x)q(x)y2(t) d�

) 1
2
(∫

�1

u2(t) d�

) 1
2

.
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Using the embedding Lp(�1) ↪→ L2(�1) and Young’s inequality, we get

∣
∣
∣
∣

∫

�1

h(x)u(t)y(t) d�

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�1

h(x)q(x)
q(x)

u(t)y(t) d�

∣
∣
∣
∣

≤ C̃
‖h‖ 1

2
L∞‖q‖ 1

2
L∞

q0

(∫

�1

h(x)q(x)y2(t) d�

) 1
2
(∫

�1

uq(t) d�

) 1
q

.

Consequently, there exists a positive constant C̃1 = C̃1(‖h‖L∞ ,‖q‖L∞ , q0,σ ) such that

(∫

�1

h(x)u(t)y(t) d�

) 1
1–σ

≤ C̃1

(∫

�1

h(x)q(x)y2(t) d�

) 1
2(1–σ )

(∫

�1

uq(t) d�

) 1
q(1–σ )

.

Applying Young’s inequality to the right-hand side of the preceding inequality, there exists
a positive constant, also denoted by C̃2, such that

(∫

�1

h(x)u(t)y(t) d�

) 1
1–σ

≤ C̃2

(∫

�1

h(x)q(x)y2(t) d�

) θ
2(1–σ )

(∫

�1

∣
∣u(t)

∣
∣
q d�

) τ
q(1–σ )

(48)

for 1
τ

+ 1
θ

= 1. We take θ = 2(1 – σ ), hence τ = 2(1–σ )
1–2σ

to get

(∫

�1

h(x)u(t)y(t) d�

) 1
1–σ

≤ C
[(∫

�1

∣
∣u(t)

∣
∣
q d�

) 2
q(1–σ )

+
∫

�1

h(x)q(x)y2(t) d�

]

. (49)

By using (30) and the algebraic inequality (37) with χ =
∫

�1
|u(t)|p d�, d = 1 + 1

H(0) , w =
H(0), and ν = 2

p(1–2σ ) , condition (30) on σ ensures that 0 < ν < 1, and we get

χν ≤ d
(

χ + H(0)
) ≤ d

(

χ + H(t)
)

.

Therefore from (49) there exists a positive constant C̃ such that, for all t ≥ 0,

(∫

�1

h(x)u(t)y(t) d�

) 1
1–σ

≤ C̃
(

H(t) +
∥
∥u(t)

∥
∥

q
q,�1

+
∫

�1

h(x)q(x)y2(t) d�

)

. (50)
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Thus from (39) and (50) we get

(∫

�1

h(x)u(t)y(t) d�

) 1
1–σ

≤ C
(

H(t) +
∥
∥u(t)

∥
∥

p
p +

(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥

2 +
∫

�1

h(x)q(x)y2(t) d�

)

≤ C
(

H(t) +
∥
∥u(t)

∥
∥

p
p +

∥
∥∇u(t)

∥
∥

2 +
∫

�1

h(x)q(x)y2(t) d�

)

, (51)

where C is a positive constant. Therefore, from (44), (47), and (51), we arrive at

L
1

1–σ (t) ≤ C
[

H(t) +
(∫

�

∣
∣ut(t)

∣
∣
ρut(t)u(t) dx

) 1
1–σ

+
(∫

�1

h(x)q(x)y(t) d�

) 1
1–σ

]

≤ C
[

H(t) +
∥
∥ut(t)

∥
∥

ρ+2
ρ+2 +

∥
∥u(t)

∥
∥

p
p +

∥
∥∇u(t)

∥
∥

2 +
∫

�1

h(x)q(x)y2(t) d�

]

, (52)

where C is a constant depending on ε, σ , ρ , C̃, C. Consequently, combining (43) and (52),
for some ξ > 0, we get

L′(t) ≥ ξL
1

1–σ (t), ∀t ≥ 0.

For ε sufficiently small, there exists some constant T1 such that

L(T1) = H1–σ (T1) +
ε

ρ + 1

∫

�

∣
∣ut(T1)

∣
∣
ρut(T1)u(T1) dx

–
ε

2

∫

�1

h(x)f (x)y2(T1) d� – ε

∫

�1

h(x)u(t)y(T1) d�

> 0.

Hence we get

L′(t) ≥ ξL
1

1–σ (t) > 0, ∀t ≥ T1. (53)

A simple integration of (53) over (T1, t) yields

L
σ

1–σ (t) ≥ 1
L –σ

1–σ (T1) – ξσ

1–σ
t

, ∀t ≥ T1.

Hence L(t) blows up in finite time

T∗ ≤ 1 – σ

ξσL σ
1–σ (T1)

.

Thus the proof of Theorem 2.1 is complete. �
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3 Conclusion
In this paper, we consider a quasilinear viscoelastic wave equation with acoustic bound-
ary condition. Under some appropriate assumption on the relaxation function g , the
function�, p > max{ρ + 2, m, q, 2}, and the initial data, we prove a global nonexistence
of solutions for a quasilinear viscoelastic wave equation with positive initial energy. Ac-
tually, the principle result of the paper, Theorem 2.1, is a global nonexistence result in
the case where the interior source term |u|p–2u dominates both the interior and boundary
damping terms, |ut|m–2ut and �(ut) ∼ |ut|q–2ut , in an appropriate sense under the added
assumption that the initial total energy is sufficiently small.

4 Abbreviations
A quasilinear viscoelastic wave equation with acoustic boundary condition is considered;
Some assumptions and needed lemmas are presented; The nonexistence of the weak solu-
tion with small positive initial energy is proved by suitable assumptions on the relaxation
function g , the nonlinear function �(·), p > max{ρ + 2, m, q, 2}, the initial data, and the
parameters in the system.
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