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Abstract
In this paper, we consider the fixed point for a class of nonlinear sum-type operators
‘A + B + C’ on an ordered Banach space, where A, B are two mixed monotone
operators, C is an increasing operator. Without assuming the existence of upper-lower
solutions or compactness or continuity conditions, we prove the unique existence of
a positive fixed point and also construct two iterative schemes to approximate it. As
applications, we research a nonlinear fractional differential equation with multi-point
fractional boundary conditions. By using the obtained fixed point theorems of
sum-type operator, we get the sufficient conditions which guarantee the existence
and uniqueness of positive solutions. At last, a specific example is provided to
illustrate our result.
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1 Introduction
With a significant development and extensive applications in various differential and inte-
gral equations, nonlinear operators theory has been an active area of research in nonlinear
functional analysis. Over the past several decades, much attention has been paid to vari-
ous fixed point theorems for the single nonlinear operator, and a lot of important results
have been obtained, see for example [1–10]. Thereinto, without requiring the operators to
be continuous or compact or having the upper-lower solutions, the authors present some
important and interesting fixed point theorems (see [1, 4–10]).

On the other hand, in recent years, the sum-type nonlinear operators have been of great
interest, there is a great deal of work focused on studying the existence and uniqueness of
solutions for sum-type operator equations in a real Banach space, see [11–18]. Consider
the following operator equation:

A(x, x) + Bx = x.
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In [11], the operator A stands for a mixed monotone operator, B represents a sub-linear
operator. By using the partial ordering theory and monotone iterative technique, Sang
gets the existence and uniqueness of solutions. Note that, in this study, the author does
not require the operators to have upper-lower solutions.

In [12], A : P × P → P is a mixed monotone operator verifying a more general concave
property, B : E × E → E is a sublinear operator. Amor proves that the operator equation
has exactly one fixed point in [u0, v0].

In [13], A : P × P → P is a mixed monotone operator, B : P → P is an increasing sub-
homogeneous operator or α-concave operator. By applying a fixed point theorem for
mixed monotone operators, Zhai and Hao get some existence and uniqueness results of
positive solutions.

In [14], Zhai and Anderson consider the following operator equation:

Ax + Bx + Cx = x,

where A is an increasing α-concave operator, B is an increasing sub-homogeneous oper-
ator, and C is a homogeneous operator. The authors obtain some new theorems on the
existence and uniqueness of positive solutions by using the properties of cones and a fixed
point theorem for increasing general β-concave operator.

In [15], the authors study the fixed point for the sum of two mixed monotone operators.

A(x, x) + B(x, x) = x,

where A, B : P × P → P satisfy

A
(
tx, t–1y

) ≥ ψ(t)A(x, y), B
(
tx, t–1y

) ≥ tB(x, y), ψ(t) ∈ (t, 1],∀t ∈ (0, 1), x, y ∈ P.

Various theorems have been established to guarantee the existence of a unique positive
solution. In addition, associated iterative schemes have been established for finding the
approximate solution converging to the obtained fixed point.

In [16], the authors research the existence and uniqueness of positive solution to the
following sum-type mixed monotone operator equation:

A(x, x) + B(x, x) + C(x, x) = x,

where A, B, C : P × P → P are three general mixed monotone operators, A, B satisfy the
same condition in [15], and C(·, y) : P → P is concave for fixed y; C(x, ·) : P → P is con-
vex for any fixed x. The authors establish various theorems to guarantee the existence
of unique positive solution and they also construct iterative schemes to approximate the
unique solution.

In [17], we have already studied the following sum-type operator equation:

Ax + Bx + C(x, x) = x,

where A : P → P is an increasing α-concave (or sub-homogeneous) operator, B : P → P is a
decreasing operator, C : P × P → P is a mixed monotone operator. By using the properties
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of cones and a fixed point theorem for mixed monotone operator, we obtain the existence
and uniqueness of positive solutions.

As applications, the above results on the sum-type nonlinear operators have been widely
applied to study nonlinear differential and integral equations, see [11–23] and the refer-
ences therein. In [12], the new fixed point theorems are used to prove positive solutions
to a second order Neumann boundary value problem, a Sturm–Liouville boundary value
problem, and a nonlinear elliptic boundary value problem for the Lane–Emden–Fowler
equation. In [13, 19, 20], authors investigate the existence and uniqueness results for some
kinds of fractional differential equations and nonlinear elastic beam equations via the fixed
point theorems in [13]. Also, based on a method originally due to Zhai and Anderson [14],
Feng et al. present the existence and uniqueness of positive solutions for nonlinear elas-
tic beam equations, Lane–Emden–Fowler equations, and a class of fractional differential
equation with integral boundary conditions in [14, 21]. Besides, these fixed point theorems
can also be used to deal with some singular problems. In [22, 23], the unique existence of
positive solutions for singular fractional differential systems with coupled integral bound-
ary conditions and with integral boundary conditions is studied by fixed point theorem
in [15].

Motivated by the above work on fixed point theorems of sum-type operator and their
wide applications, in this paper, we continue to talk bout another sum-type operator equa-
tion on an ordered Banach space.

A(x, x) + B(x, x) + Cx = x, (1.1)

where A, B : P × P → P are two mixed monotone operators, C : P → P is an increasing
operator. We are concerned with the existence and uniqueness of positive solutions for
this kind of operator equation, in which the operators are not required to be continuous,
compact but satisfy the following properties.

Case one:
(1) A(tx, t–1y) ≥ tαA(x, y), α ∈ (0, 1), ∀x, y ∈ P, t ∈ (0, 1).
(2) B(·, y) : P → P is concave for fixed y; B(x, ·) : P → P is convex for any fixed x.
(3) C is a sub-homogeneous operator.
Case two:
(1) A(tx, t–1y) ≥ tA(x, y), ∀x, y ∈ P, t ∈ (0, 1).
(2) B(·, y) : P → P is concave for fixed y; B(x, ·) : P → P is convex for any fixed x.
(3) C is a α-concave operator.
After obtaining the unique existence results for operator Eq. (1.1), we also construct two

iterative sequences for uniformly approximating the positive solution. Then, we utilize the
obtained fixed point theorems to study the existence and uniqueness of positive solutions
for a nonlinear fractional differential equation with multi-point fractional boundary con-
ditions. Also, we give a specific example to demonstrate our abstract result. The character-
istic features presented in this paper are as follows. Firstly, to our knowledge, in the existing
literature, there is almost no research on the fixed point for sum-type operator ′A + B + C′

with operators satisfying the conditions showed in case one and case two. Hence, our re-
search presents new methods to study nonlinear equation problems. Secondly, the work
presented in this paper is the generalization and improvement of sum-type operator equa-
tion studied in [13], where B is a null operator. Other particular cases of our research were
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investigated in [15], where C is a null operator. Finally, we also discuss the solution of
the nonlinear eigenvalue equation A(x, x) + B(x, x) + Cx = λx and give dependency to the
parameter. Hence, it is worthwhile to investigate the operator Eq. (1.1).

The content of this paper is organized as follows. In Sect. 2, we present some definitions,
lemmas that will be used in the proofs of our theorems. In Sect. 3, we consider the unique
existence of positive solutions for the operator Eq. (1.1) without assuming operators to be
continuous and compact. In Sect. 4, we utilize the results obtained in Sect. 3 to study the
existence and uniqueness of positive solutions for nonlinear fractional differential equa-
tion with multi-point fractional boundary conditions, and we also give a concrete example
to illustrate our result.

2 Preliminaries
For convenience of the reader, we present some definitions, lemmas, and basic results that
will be used in the proofs of our theorems. For more details, we refer the reader to [1–3,
24, 25].

Definition 2.1 ([24]) Let E be a real Banach space. A nonempty closed convex set P ⊂ E
is called a cone if it satisfies the following conditions:

(i) If x ∈ P, λ ≥ 0, then λx ∈ P;
(ii) If x ∈ P and –x ∈ P, then x = θ ,

where θ denotes the zero element of E. The cone P includes a partial order in E given by

x, y ∈ E, x ≤ y ⇔ y – x ∈ P,

in which we denote x < y or y > x if x 
= y.

About the cone P, we also have the following definitions.
A cone P is said to be solid if P̊ is nonempty, where P̊ = {x ∈ P | x is an interior point of P}.
A cone P is called normal if there exists a constant N > 0 such that, for all x, y ∈ E,

θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where N is called the normality constant of P.
Given h > θ (i.e., h ≥ θ and h 
= θ ), we denote by Ph the set Ph = {x ∈ E | x ∼ h}, in which

∼ is an equivalence relation, i.e., x ∼ y means that there exist λ > 0 and μ > 0 such that
λx ≤ y ≤ μx for all x, y ∈ E. It is easy to see that Ph ⊂ P is convex and λPh = Ph for all λ > 0.
If P̊ 
= θ and h ∈ P̊, it is clear that Ph = P̊.

Definition 2.2 ([2]) An operator A : P ×P → P is said to be a mixed monotone operator if
A(x, y) is increasing in x and decreasing in y, i.e., ∀ui, vi(i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2 imply
A(u1, v1) ≤ A(u2, v2). An element x ∈ P is called a fixed point of A if A(x, x) = x.

Definition 2.3 ([25]) An operator A : E → E is said to be increasing if for any x, y ∈ E,
x ≤ y implies Ax ≤ Ay.

Definition 2.4 ([25]) An operator A : P → P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tAx, ∀t ∈ (0, 1), x ∈ P. (2.1)
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Definition 2.5 ([25]) Let D = P or D = P̊ and α be a real number with 0 ≤ α < 1. An
operator A : D → D is said to be α-concave if it satisfies

A(tx) ≥ tαAx, ∀t ∈ (0, 1), x ∈ D. (2.2)

Definition 2.6 ([3]) Let D be a convex subset in E. An operator A : D → E is called a
convex operator (or concave operator) if

A
(
tx + (1 – t)y

) ≤ tAx + (1 – t)Ay
(
or A

(
tx + (1 – t)y

) ≥ tAx + (1 – t)Ay
)

for x, y ∈ D with y ≤ x and every t ∈ [0, 1].

Lemma 2.1 ([9]) Let P be a normal cone in E. Assume that T : P × P → P is a mixed
monotone operator and satisfies the following:

(A1) There exists h ∈ P with h 
= θ such that T(h, h) ∈ Ph;
(A2) For any u, v ∈ P and t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1] such that T(tu, t–1v) ≥

ϕ(t)T(u, v).
Then

(1) T : Ph × Ph → Ph;
(2) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0,

u0 ≤ T(u0, v0) ≤ T(v0, u0) ≤ v0;
(3) T has a unique fixed point x∗ in Ph;
(4) For any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = T(xn–1, yn–1), yn = T(yn–1, xn–1), n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

3 Main results
In this section, we study some fixed point theorems for a class of sum-type operators. This
problem is equivalent to researching the existence and uniqueness of positive solutions
for the operator equation A(x, x) + B(x, x) + Cx = x, where A, B are the mixed monotone
operators with different properties, C is an increasing operator. We assume that E is a real
Banach space with a partial order introduced by a normal cone P of E. Take h ∈ E, h > θ ,
Ph is given as in the preliminaries.

Theorem 3.1 We will make the assumptions: C : P → P is an increasing sub-homogeneous
operator, A, B : P × P → P are two mixed monotone operators satisfying the following con-
ditions:

(L1) Let α ∈ (0, 1) for any t ∈ (0, 1),

A
(
tx, t–1y

) ≥ tαA(x, y), ∀x, y ∈ P. (3.1)

(L2) For any fixed y ∈ P, B(·, y) : P → P is concave, that is, for any x1, x2 ∈ P with x2 ≤ x1

and every t ∈ (0, 1), we have

B
(
tx1 + (1 – t)x2, y

) ≥ tB(x1, y) + (1 – t)B(x2, y); (3.2)
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For any fixed x ∈ P, B(x, ·) : P → P is convex, that is, for any y1, y2 ∈ P with y2 ≤ y1

and every t ∈ (0, 1), we have

B
(
x, ty1 + (1 – t)y2

) ≤ tB(x, y1) + (1 – t)B(x, y2). (3.3)

(L3) There exists a constant b ∈ [ 1
2 , 1] such that

B(θ , lh) ≥ bB(lh, θ ), ∀l ≥ 1.

(L4) There is h ∈ P, h > θ , such that A(h, h) ∈ Ph, B(h, h) ∈ Ph, and Ch ∈ Ph.
(L5) There exists a constant δ0 > 0 such that

A(x, y) ≥ δ0
[
B(x, y) + Cx

]
, ∀x, y ∈ P. (3.4)

Then:
(1) A : Ph × Ph → Ph, B : Ph × Ph → Ph, C : Ph → Ph;
(2) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) + B(u0, v0) + Cu0 ≤ A(v0, u0) + B(v0, u0) + Cv0 ≤ v0;

(3) The operator equation A(x, x) + B(x, x) + Cx = x has a unique solution x∗ in Ph;
(4) For any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn–1, yn–1) + B(xn–1, yn–1) + Cxn–1, n = 1, 2, . . . ,

yn = A(yn–1, xn–1) + B(yn–1, xn–1) + Cyn–1, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Proof The proof will be divided into two steps.
Step one: We demonstrate A : Ph × Ph → Ph, B : Ph × Ph → Ph, C : Ph → Ph.
Firstly, for any t ∈ (0, 1), x, y ∈ P, by (3.3) in (L2), we have

B(x, y) = B
(
x, tt–1y + (1 – t)θ

) ≤ tB
(
x, t–1y

)
+ (1 – t)B(x, θ ).

This clearly forces

tB
(
x, t–1y

) ≥ B(x, y) – (1 – t)B(x, θ ). (3.5)

By finding a sufficiently large constant l ≥ 1 such that x, y, t–1y ≤ lh. On account of (L3),
(3.2), (3.5), and the monotone property of operator B, we obtain

B
(
tx, t–1y

)
= B

(
tx + (1 – t)θ , t–1y

)

≥ tB
(
x, t–1y

)
+ (1 – t)B

(
θ , t–1y

)

≥ B(x, y) – (1 – t)B(x, θ ) + (1 – t)B
(
θ , t–1y

)

≥ B(x, y) + (1 – t)
[
B(θ , lh) – B(lh, θ )

]
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≥ B(x, y) + (1 – t)
[

B(θ , lh) –
1
b

B(θ , lh)
]

= B(x, y) + (1 – t)
(

1 –
1
b

)
B(θ , lh)

≥ B(x, y) + (1 – t)
(

1 –
1
b

)
B(x, y)

=
[(

2 –
1
b

)
+

(
1
b

– 1
)

t
]

B(x, y) ≥ tB(x, y), ∀t ∈ (0, 1), x, y ∈ P. (3.6)

That is,

B
(

1
t

x, ty
)

≤ 1
t

B(x, y), ∀t ∈ (0, 1), x, y ∈ P. (3.7)

Secondly, from (3.1) and (2.1), for any t ∈ (0, 1), we have

A
(

1
t

x, ty
)

≤ 1
tα

A(x, y), ∀x, y ∈ P, (3.8)

C
(

1
t

x
)

≤ 1
t

Cx, ∀x ∈ P. (3.9)

Since A(h, h), B(h, h), Ch ∈ Ph, there exist positive constants μi, νi (i = 1, 2, 3) such that

μ1h ≤ A(h, h) ≤ ν1h, μ2h ≤ B(h, h) ≤ ν2h, μ3h ≤ Ch ≤ ν3h. (3.10)

For any x, y ∈ Ph, choose two sufficiently small numbers c1, c2 ∈ (0, 1) such that

c1h ≤ x ≤ 1
c1

h, c2h ≤ y ≤ 1
c2

h.

Set c = min{c1, c2}, then c ∈ (0, 1), it follows from (3.1), (3.8), (3.10) that

A(x, y) ≤ A
(

1
c1

h, c2h
)

≤ A
(

1
c

h, ch
)

≤ 1
cα

A(h, h) ≤ 1
cα

ν1h,

A(x, y) ≥ A
(

c1h,
1
c2

h
)

≥ A
(

ch,
1
c

h
)

≥ cαA(h, h) ≥ cαμ1h.

Noting that 1
cα ν1 > 0, cαμ1 > 0, we can get A(x, y) ∈ Ph. That is, A : Ph × Ph → Ph.

Besides, by (3.6), (3.7), and (3.10), we deduce that

B(x, y) ≤ B
(

1
c1

h, c2h
)

≤ B
(

1
c

h, ch
)

≤ 1
c

B(h, h) ≤ 1
c
ν2h,

B(x, y) ≥ B
(

c1h,
1
c2

h
)

≥ B
(

ch,
1
c

h
)

≥ cB(h, h) ≥ cμ2h.

Evidently, 1
c ν2 > 0, cμ2 > 0. Thus B(h, h) ∈ Ph implies B : Ph × Ph → Ph.

Moreover, according to (2.1), (3.9), and (3.10), we get

Cx ≤ C
(

1
c1

h
)

≤ 1
c1

Ch ≤ 1
c1

ν3h,
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Cx ≥ C(c1h) ≥ c1Ch ≥ c1μ3h.

Clearly, 1
c1

ν3 > 0, c1μ3 > 0 show that Cx ∈ Ph, which means C : Ph → Ph. So conclusion (1)
is founded.

Step two: We define an operator T = A + B + C by

T(x, y) = A(x, y) + B(x, y) + Cx, ∀x, y ∈ P. (3.11)

Then T : P × P → P is a mixed monotone operator and T(h, h) ∈ Ph. Now we show that
there exist ϕ(t) ∈ (t, 1] such that

T
(
tx, t–1y

) ≥ ϕ(t)T(x, y), ∀t ∈ (0, 1), x, y ∈ P.

Let f be given by

f (t) =
tβ – t

tα – tβ
, ∀t ∈ (0, 1),β ∈ (α, 1).

Obviously, f is increasing in (0, 1) and

lim
t→0+

f (t) = 0, lim
t→1–

f (t) =
1 – β

β – α
.

Also, fixing t ∈ (0, 1), we have

lim
β→1–

f (t) = lim
β→1–

tβ – t
tα – tβ

= 0.

Hence there exists β0(t) ∈ (α, 1) with respect to t such that

tβ0(t) – t
tα – tβ0(t) ≤ δ0, t ∈ (0, 1).

Accordingly, ∀t ∈ (0, 1), x, y ∈ P, we have

A(x, y) ≥ δ0
[
B(x, y) + Cx

] ≥ tβ0(t) – t
tα – tβ0(t)

[
B(x, y) + Cx

]
.

Then we get

tαA(x, y) + tB(x, y) + tCx ≥ tβ0(t)[A(x, y) + B(x, y) + Cx
]
, ∀t ∈ (0, 1), x, y ∈ P. (3.12)

Consequently, by (3.12) we can obtain

T
(
tx, t–1y

)
= A

(
tx, t–1y

)
+ B

(
tx, t–1y

)
+ C(tx)

≥ tαA(x, y) + tB(x, y) + tCx

≥ tβ0(t)[A(x, y) + B(x, y) + Cx
]

= tβ0(t)T(x, y), ∀t ∈ (0, 1), x, y ∈ P.
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Let ϕ(t) = tβ0(t), t ∈ (0, 1), then ϕ(t) ∈ (t, 1], and

T
(
tx, t–1y

) ≥ ϕ(t)T(x, y), ∀t ∈ (0, 1), x, y ∈ P.

Combining step one and step two, we see at once that the operator T satisfies all the
conditions in Lemma 2.1. Having applied Lemma 2.1, we conclude that (c1) there exist
u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0, u0 ≤ T(u0, v0) ≤ T(v0, u0) ≤ v0; (c2) the
operator T has a unique fixed point x∗ in Ph; (c3) for any initial values x0, y0 ∈ Ph, con-
structing successively the sequences

xn = T(xn–1, yn–1), yn = T(yn–1, xn–1), n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞. That is, conclusions (2)–(4) hold, which com-
pletes the proof. �

By the proof of Theorem 3.1, we can obtain the following corollary.

Corollary 3.1 Suppose that C : P → P is an increasing sub-homogeneous operator, A, B :
P × P → P are two mixed monotone operators and they satisfy conditions (L1), (L4), and
(L5). Moreover, we assume that the operator B satisfies

B
(
tx, t–1y

) ≥ tB(x, y), ∀t ∈ (0, 1), x, y ∈ P.

Then conclusions (1)–(4) in Theorem 3.1 also hold.

Corollary 3.2 Assume all the conditions about operators A, B, C in Theorem 3.1 or Corol-
lary 3.1 hold. Then, for any given λ > 0, the operator equation A(x, x) + B(x, x) + Cx = λx has
a unique positive solution x∗

λ ∈ Ph. Moreover, for any initial values x0, y0 ∈ Ph, constructing
successively the sequences

xn =
1
λ

[
A(xn–1, yn–1) + B(xn–1, yn–1) + Cxn–1

]
, n = 1, 2, . . . ,

yn =
1
λ

[
A(yn–1, xn–1) + B(yn–1, xn–1) + Cyn–1

]
, n = 1, 2, . . . ,

we obtain xn → x∗
λ and yn → x∗

λ as n → ∞.

Proof If we set operator T = λ–1(A + B + C) (λ > 0), similar to the proof of Theorem 3.1,
we can easily obtain that the operator T satisfies all the conditions of Lemma 2.1. �

Corollary 3.3 Making the assumptions: A, B : P × P → P are two mixed monotone opera-
tors and they satisfy (L1)–(L3). Besides, we assume that:

(L′
4) There is h ∈ P, h > θ , such that A(h, h) ∈ Ph and B(h, h) ∈ Ph.

(L′
5) There exists a constant δ0 > 0 such that

A(x, y) ≥ δ0B(x, y), ∀x, y ∈ P.

Then:
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(1) A : Ph × Ph → Ph, B : Ph × Ph → Ph;
(2) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) + B(u0, v0) ≤ A(v0, u0) + B(v0, u0) ≤ v0;

(3) The operator equation A(x, x) + B(x, x) = x has a unique solution x∗ in Ph;
(4) For any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn–1, yn–1) + B(xn–1, yn–1), n = 1, 2, . . . ,

yn = A(yn–1, xn–1) + B(yn–1, xn–1), n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Theorem 3.2 Assume C : P → P is an increasing α-concave operator, A, B : P × P → P are
two mixed monotone operators. The operators satisfy conditions (L2)–(L4) and the follow-
ing hypotheses:

(L6) For any t ∈ (0, 1),

A
(
tx, t–1y

) ≥ tA(x, y), ∀x, y ∈ P. (3.13)

(L7) There exists a constant δ0 > 0 such that

A(x, y) + B(x, y) ≤ δ0Cx, ∀x, y ∈ P. (3.14)

Then conclusions (1)–(4) in Theorem 3.1 also hold true.

Proof In this section, the operator B can be handled in much the same way as in The-
orem 3.1, so it follows easily that B : Ph × Ph → Ph. Next, we only need to analyze the
operators A and C. By (3.13) and (2.2), it is obvious that

A
(

1
t

x, ty
)

≤ 1
t

A(x, y), ∀t ∈ (0, 1), x, y ∈ P. (3.15)

C
(

1
t

x
)

≤ 1
tα

Cx, ∀x ∈ (0, 1), x, y ∈ P. (3.16)

Similar to the analysis in the proof of Theorem 3.1, we deduce A : Ph × Ph → Ph and C :
Ph → Ph, which gives that conclusion (1) holds true.

Furthermore, we define the operator T = A + B + C such that (3.11). Clearly, T : P ×
P → P is a mixed monotone operator and T(h, h) ∈ Ph. So condition (A1) in Lemma 2.1
is established. In the following, we only need to prove that there exist ϕ(t) ∈ (t, 1] with
respect to t ∈ (0, 1) such that

T
(
tx, t–1y

) ≥ ϕ(t)T(x, y), ∀x, y ∈ P.

In fact, we define an auxiliary function:

f (t) =
tα – tβ

tβ – t
, ∀t ∈ (0, 1),β ∈ (α, 1).
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It is easily seen that f is decreasing with respect to t ∈ (0, 1) and

lim
t→0+

f (t) = +∞, lim
t→1–

f (t) =
β – α

1 – β
.

Fix t ∈ (0, 1),

lim
β→1–

f (t) = lim
β→1–

tα – tβ

tβ – t
= +∞.

We conclude from the above equations that there exists β0(t) ∈ (α, 1) with respect to t
such that

tα – tβ0(t)

tβ0(t) – t
≥ δ0, t ∈ (0, 1),

hence that

A(x, y) + B(x, y) ≤ δ0Cx ≤ tα – tβ0(t)

tβ0(t) – t
Cx, ∀t ∈ (0, 1), x, y ∈ P,

and finally that

tA(x, y) + tB(x, y) + tαCx ≥ tβ0(t)[A(x, y) + B(x, y) + Cx
]
, ∀t ∈ (0, 1), x, y ∈ P. (3.17)

In consequence, by (3.17), ∀t ∈ (0, 1), x, y ∈ P, we have

T
(
tx, t–1y

)
= A

(
tx, t–1y

)
+ B

(
tx, t–1y

)
+ C(tx)

≥ tA(x, y) + tB(x, y) + tαCx

≥ tβ0(t)[A(x, y) + B(x, y) + Cx
]

= tβ0(t)T(x, y).

Hence, condition (A2) in Lemma 2.1 holds true. An application of Lemma 2.1 implies that
conclusions (2)–(4) hold true. The proof is completed. �

Corollary 3.4 Let α ∈ (0, 1). C : P → P is an increasing α-concave operator, B : P × P → P
is a mixed monotone operator and satisfies conditions (L2)–(L3). Furthermore, we assume
that

(L′
6) There is h ∈ P, h > θ , such that B(h, h) ∈ Ph and Ch ∈ Ph.

(L′
7) There exists a constant δ0 > 0 such that

B(x, y) ≤ δ0Cx, ∀x, y ∈ P.

Then:
(1) B : Ph × Ph → Ph, C : Ph → Ph;
(2) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ B(u0, v0) + Cu0 ≤ B(v0, u0) + Cv0 ≤ v0;
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(3) The operator equation B(x, x) + Cx = x has a unique solution x∗ in Ph;
(4) For any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = B(xn–1, yn–1) + Cxn–1, n = 1, 2, . . . ,

yn = B(yn–1, xn–1) + Cyn–1, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Corollary 3.5 Assume all the conditions about operators A, B, C in Theorem 3.2 hold.
Then the operator equation A(x, x) + B(x, x) + Cx = λx has a unique positive solution x∗

λ ∈ Ph

for any given λ > 0. Besides, constructing successively the sequences

xn =
1
λ

[
A(xn–1, yn–1) + B(xn–1, yn–1) + Cxn–1

]
, n = 1, 2, . . . ,

yn =
1
λ

[
A(yn–1, xn–1) + B(yn–1, xn–1) + Cyn–1

]
, n = 1, 2, . . . ,

for any initial values x0, y0 ∈ Ph, we obtain xn → x∗
λ and yn → x∗

λ as n → ∞.

In view of the fact that Ph = P̊ with h 
= θ and h ∈ P̊, we suppose that operators A, B :
Ph × Ph → Ph, C : Ph → Ph or A, B : P̊ × P̊ → P̊, C : P̊ → P̊ with P is a solid cone, then
A(h, h) ∈ Ph, B(h, h) ∈ Ph and Ch ∈ Ph are automatically satisfied. So if we let D = P̊ or Ph,
we have the following results.

Corollary 3.6 Let C : D → D be an increasing sub-homogeneous operator, A, B : D × D →
D be two mixed monotone operators. Assume that

(M1) Set α ∈ (0, 1), for any t ∈ (0, 1),

A
(
tx, t–1y

) ≥ tαA(x, y), ∀x, y ∈ D.

(M2) For any fixed y ∈ D, B(·, y) : D → D is concave, for any fixed x ∈ D, B(x, ·) : D → D
is convex.

(M3) There exists a constant b ∈ [ 1
2 , 1] such that

B(θ , lh) ≥ bB(lh, θ ), ∀l ≥ 1.

(M4) There exists a constant δ0 > 0 such that

A(x, y) ≥ δ0
[
B(x, y) + Cx

]
, ∀x, y ∈ D.

Then conclusions (2)–(4) of Theorem 3.1 hold.

Corollary 3.7 Assume that C : D → D is an increasing α-concave operator, A, B : D×D →
D are two mixed monotone operators satisfying conditions (M2)–(M4) and also meeting the
following hypotheses:

(M5) For any t ∈ (0, 1),

A
(
tx, t–1y

) ≥ tA(x, y), ∀x, y ∈ D.
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(M6) There exists a constant δ0 > 0 such that

A(x, y) + B(x, y) ≤ δ0Cx, ∀x, y ∈ D.

Then conclusions (2)–(4) of Theorem 3.1 hold.

Remark 3.1 If we take the operator B ≡ 0 in Theorem 3.1, Theorem 3.2 and Corollar-
ies 3.1–3.2, Corollaries 3.5–3.7, the corresponding results have been obtained by Zhai in
[13]. In this case, our results generalize and improve some known results.

4 Applications
As the extensive development of the theory for fractional calculus itself, the fractional dif-
ferential equations have been applied in many research fields, such as physics, chemistry,
biology, control theory, economics, signal and image processing, etc. (see [26–29] and the
references therein). Note that nonlinear operator theory has been proved to be a valu-
able tool in dealing with various differential and integral equations. Especially, fixed point
method has been shown to be very useful in the study of the existence and uniqueness of
solutions for differential equations. Such as in [11–18], the authors use the fixed point the-
orems of sum-type operators to study the fractional differential equations. In [30], Agar-
wal et al. apply Schauder’s fixed point theorem, the upper and lower solution method,
and topological degree theory to establish existence theory for unbounded solution. In
[31], Becker et al. obtain positive solutions of an array of fractional differential equations
by Schaefer’s fixed point theorem. In [32], by means of fixed point methods combined
with Karamata regular variation theory, Masmoudi et al. discuss existence, uniqueness,
and boundary behavior of a positive solution to the nonlinear Sturm–Liouville problem.
Motivated by the existing research, in this section we consider the following nonlinear
fractional differential equation with the multi-point fractional boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

–Dν
0+ u(t) = f (t, u(t), u(t)) + g(t, u(t), u(t)) + h(t, u(t)), 0 < t < 1;

u(0) = u′(0) = · · ·u(n–2)(0) = 0;

Dp
0+ u(t)|t=1 =

∑m
i=1 aiD

q
0+ u(t)|t=ξi ,

(4.1)

where Dν
0+ , Dp

0+ , Dq
0+ are the Riemann–Liouville fractional derivatives. The orders ν , p,

q ∈R, and they satisfy ν ∈ (n – 1, n], p ∈ [1, n – 2], q ∈ [0, p], and n ∈N, n ≥ 3. ξi ∈R for all
i = 1, 2, . . . , m(m ∈N), 0 < ξ1 < · · · < ξm < 1. ai ≥ 0 for all i = 1, 2, . . . , m(m ∈N).

1
�(ν – p)

–
1

�(ν – q)

m∑

i=1

aiξ
ν–q–1
i > 0.

By applying the fixed point theorems of sum-type operator obtained in Sect. 3, we focus
on studying the existence and uniqueness of positive solution for problem (4.1), and also
on constructing two sequences uniformly converging to the unique positive solution.

In the following, we will work in the Banach apace E = C[0, 1] = {x : [0, 1] → R is conti-
nuous} with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Notice that this space can be
equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for all t ∈ [0, 1].
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Set P = {x ∈ C[0, 1] | x(t) ≥ 0, t ∈ [0, 1]}, the standard cone. It is clear that P is a normal
cone in E and the normality constant is 1.

Definition 4.1 ([28]) Let ν > 0. Suppose that u : (0, +∞) → R is a continuous function.
Then the Riemann–Liouville fractional derivative of order ν for the function u is defined
as

Dν
0+ u(t) =

1
�(n – ν)

(
d
dt

)n ∫ t

0
(t – τ )n–ν–1u(τ ) dτ ,

where n = [ν] + 1 with [ν] standing for the largest integer less than the number ν . �(ν) is
the Euler gamma function defined by

�(ν) =
∫ +∞

0
tν–1e–t dt.

Lemma 4.1 (see Lemmas 1 and 2 in [33]) Assume that x̃ ∈ C[0, 1]∩L1(0, 1) is a continuous
function. Then u ∈ C[0, 1] is the solution of the fractional boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

–Dν
0+ u(t) = x̃(t), 0 < t < 1, n – 1 < ν ≤ n;

u(0) = u′(0) = · · ·u(n–2)(0) = 0, n ∈N, n ≥ 3;

Dp
0+ u(t)|t=1 =

∑m
i=1 aiD

q
0+ u(t)|t=ξi , 1 ≤ p ≤ n – 2, 0 ≤ q ≤ p,

where ai ≥ 0, ξi ∈ R for all i = 1, 2, . . . , m(m ∈ N) and 0 < ξ1 < · · · < ξm < 1, 1
�(ν–p) –

1
�(ν–q)

∑m
i=1 aiξ

ν–q–1
i > 0, if and only if u satisfies the integral equation

u(t) =
∫ 1

0
G(t, s)̃x(s) ds, t ∈ [0, 1],

where G(t, s) is called the fractional Green function, which can be written as

G(t, s) = g1(t, s) +
tν–1



m∑

i=1

aig2(ξi, s), ∀(t, s) ∈ [0, 1] × [0, 1], (4.2)

with

g1(t, s) =
1

�(ν)

⎧
⎨

⎩
tν–1(1 – s)ν–p–1 – (t – s)ν–1, 0 ≤ s ≤ t ≤ 1;

tν–1(1 – s)ν–p–1, 0 ≤ t ≤ s ≤ 1,

g2(t, s) =
1

�(ν – q)

⎧
⎨

⎩
tν–q–1(1 – s)ν–p–1 – (t – s)ν–q–1, 0 ≤ s ≤ t ≤ 1;

tν–q–1(1 – s)ν–p–1, 0 ≤ t ≤ s ≤ 1,

and

 =
�(ν)

�(ν – p)
–

�(ν)
�(ν – q)

m∑

i=1

aiξ
ν–q–1
i > 0. (4.3)
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By Lemmas 3 and 4 in [33], we can easily obtain that the Green function G(t, s) defined by
(4.2) has the following properties.

Lemma 4.2 The function G(t, s) satisfies the following conditions:
(1) G(t, s) is continuous on the unit square [0, 1] × [0, 1];
(2) G(t, s) ≥ 0 for each (t, s) ∈ [0, 1] × [0, 1];
(3) tν–1J(s) ≤ G(t, s) ≤ σ tν–1, ∀t, s ∈ [0, 1],

where

J(s) = (1 – s)ν–p–1 1 – (1 – s)p

�(ν)
+

1


m∑

i=1

aig2(ξi, s), s ∈ [0, 1], (4.4)

with  defined in (4.3).

σ =
1

�(ν)
+

1
�(ν – q)

m∑

i=1

aiξ
ν–q–1
i . (4.5)

Theorem 4.1 Assume the following conditions:
(H1) f , g : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) and h : [0, 1] × [0, +∞) → [0, +∞) are

continuous with f (t, 0, 1) 
≡ 0, g(t, 0, 1) 
≡ 0, and h(t, 0) 
≡ 0;
(H2) f (t, u, v), g(t, u, v) are increasing in u ∈ [0, +∞) for fixed t ∈ [0, 1] and v ∈ [0, +∞),

decreasing in v ∈ [0, +∞) for fixed t ∈ [0, 1] and u ∈ [0, +∞); g(t, u) is increasing in
u ∈ [0, +∞) for fixed t ∈ [0, 1];

(H3) For any λ ∈ (0, 1), there exists a constant α ∈ (0, 1) such that ∀t ∈ [0, 1], u, v ∈
[0, +∞), f (t,λu,λ–1v) ≥ λαf (t, u, v); for fixed t ∈ [0, 1], v ∈ [0, +∞), g(t, ·, v) is con-
cave, for fixed t ∈ [0, 1], u ∈ [0, +∞), g(t, u, ·) is convex; and for all λ ∈ (0, 1),
∀t ∈ [0, 1], u ∈ [0, +∞), h(t,λu) ≥ λh(t, u);

(H4) There exists 1
2 ≤ b ≤ 1 such that g(t, 0, lh(t)) ≥ bg(t, lh(t), 0), ∀l ≥ 1;

(H5) There exists a constant δ0 > 0 such that f (t, u, v) ≥ δ0(g(t, u, v) + h(t, u)), t ∈ [0, 1],
u, v ∈ [0, +∞).

Then:
(1) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0 and

⎧
⎨

⎩
u0(t) ≤ ∫ 1

0 G(t, s)[f (s, u0(s), v0(s)) + g(s, u0(s), v0(s)) + h(s, u0(s))] ds, t ∈ [0, 1],

v0(t) ≥ ∫ 1
0 G(t, s)[f (s, v0(s), u0(s)) + g(s, v0(s), u0(s)) + h(s, v0(s))] ds, t ∈ [0, 1],

where h(t) = tα–1, t ∈ [0, 1];
(2) Problem (4.1) has a unique positive solution u∗ in Ph;
(3) For any x0, y0 ∈ Ph, constructing successively the sequences

⎧
⎨

⎩
xn+1(t) =

∫ 1
0 G(t, s)[f (s, xn(s), yn(s)) + g(s, xn(s), yn(s)) + h(s, xn(s))] ds, n = 0, 1, 2, . . . ,

yn+1(t) =
∫ 1

0 G(t, s)[f (s, yn(s), xn(s)) + g(s, yn(s), xn(s)) + h(s, yn(s))] ds, n = 0, 1, 2, . . . ,

we have both xn(t) and yn(t) converge uniformly to u∗(t) for all t ∈ [0, 1].
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Proof To begin with, we define three operators A : P × P → E; B : P × P → E; C : P → E
by

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds, B(u, v)(t) =

∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds,

Cu(t) =
∫ 1

0
G(t, s)h

(
s, u(s)

)
ds.

Set x̃(t) = f (t, u(t), u(t)) + g(t, u(t), u(t)) + h(t, u(t)) in Lemma 4.1, it is easy to prove that u
is the solution of problem (4.1) if and only if it is a fixed point of the operator equation
u = A(u, u) + B(u, u) + Cu. In the sequel, we check that A, B, C satisfy all the assumptions
of Theorem 3.1.

Firstly, it follows from (H1) and the fact G(t, s) ≥ 0, ∀t, s ∈ [0, 1] that A, B : P ×P → P and
C : P → P. Further, by (H2), we can easily obtain A, B are two monotone operators, and C
is an increasing operator.

Secondly, we show that A, B satisfy conditions (3.1)–(3.3) and C is a sub-homogeneous
operator. In fact, for any λ ∈ (0, 1) and u, v ∈ P, by (H3) we have

A
(
λu,λ–1v

)
(t) =

∫ 1

0
G(t, s)f

(
s,λu(s),λ–1v(s)

)
ds

≥ λα

∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds = λαA(u, v)(t),

that is A(λu,λ–1v) ≥ λαA(u, v) for λ ∈ (0, 1), u, v ∈ P, which satisfies (3.1).
Also, for fixed t ∈ (0, 1), v ∈ P, for any a ∈ (0, 1), u1, u2 ∈ P,

B
(
au1 + (1 – a)u2, v

)
(t)

=
∫ 1

0
G(t, s)g

(
s, au1(s) + (1 – a)u2(s), v(s)

)
ds

≥
∫ 1

0
G(t, s)

[
ag

(
s, u1(s), v(s)

)
+ (1 – a)g

(
s, u2(s), v(s)

)]
ds

= a
∫ 1

0
G(t, s)g

(
s, u1(s), v(s)

)
ds + (1 – a)

∫ 1

0
G(t, s)g

(
s, u2(s), v(s)

)
ds

= aB(u1, v)(t) + (1 – a)B(u2, v)(t),

which means B(au1 + (1 – a)u2, v) ≥ aB(u1, v) + (1 – a)B(u2, v). So, for fixed v ∈ P, B(t, ·, v) :
P → P is concave. Besides, for any a ∈ (0, 1), v1, v2 ∈ P,

B
(
u, av1 + (1 – a)v2

)
(t)

=
∫ 1

0
G(t, s)g

(
s, u(s), av1(s) + (1 – a)v2(s)

)
ds

≤
∫ 1

0
G(t, s)

[
ag

(
s, , u(s), v1(s)

)
+ (1 – a)g

(
s, u(s), v2(s)

)]
ds

= a
∫ 1

0
G(t, s)g

(
s, u(s), v1(s)

)
ds + (1 – a)

∫ 1

0
G(t, s)g

(
s, u(s), v2(s)

)
ds

= aB(u, v1)(t) + (1 – a)B(u, v2)(t),
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which implies B(u, av1 + (1 – a)v2) ≤ aB(u, v1) + (1 – a)B(u, v2), hence for fixed u ∈ P,
C(t, u, ·) : P → P is convex and satisfies (3.3). Furthermore, for any λ ∈ (0, 1), u ∈ P, from
(H3) we know that

C(λu)(t) =
∫ 1

0
G(t, s)h

(
s,λu(s)

)
ds ≥ λ

∫ 1

0
G(t, s)h

(
s, u(s)

)
ds = λCu(t),

that is, C(λu) ≥ λCu for λ ∈ (0, 1), u ∈ P and the operator C is sub-homogeneous.
Thirdly, we prove that condition (L3) of Theorem 3.1 is satisfied. From (H4), there exists

b ∈ [ 1
2 , 1] such that

B(θ , lh)(t) =
∫ 1

0
G(t, s)g

(
s, 0, lh(s)

)
ds

≥ b
∫ 1

0
G(t, s)g

(
s, lh(s), 0

)
ds = bB(lh, θ )(t), ∀l ≥ 1.

Fourthly, we show that A(h, h) ∈ Ph, B(h, h) ∈ Ph and Ch ∈ Ph. Let h ∈ Ph be defined by
h(t) = tν–1, t ∈ [0, 1]. We can obtain that h(t) ∈ [0, 1]. From (H2) and Lemma 4.2, we deduce

A(h, h)(t) =
∫ 1

0
G(t, s)f

(
s, sν–1, sν–1)ds ≥ h(t)

∫ 1

0
J(s)f (s, 0, 1) ds,

A(h, h)(t) =
∫ 1

0
G(t, s)f

(
s, sν–1, sν–1)ds ≤ σh(t)

∫ 1

0
f (s, 1, 0) ds,

where J(s) and σ are defined by (4.4), (4.5). Denote

c1 =
∫ 1

0
J(s)f (s, 0, 1) ds, c2 = σ

∫ 1

0
f (s, 1, 0) ds.

Then we have c1h ≤ A(h, h) ≤ c2h. It follows from (H2), (H1) that

f (s, 1, 0) ≥ f (s, 0, 1) ≥ 0, ∀s ∈ [0, 1].

Since f (t, 0, 1) 
≡ 0, we get

∫ 1

0
f (s, 1, 0) ds ≥

∫ 1

0
f (s, 0, 1) ds > 0.

Hence, we have c1 > 0, c2 > 0, which means A(h, h) ∈ Ph.
Similarly,

h(t)
∫ 1

0
J(s)g(s, 0, 1) ds ≤ B(h, h) ≤ σh(t)

∫ 1

0
g(s, 1, 0) ds,

h(t)
∫ 1

0
J(s)h(s, 0) ds ≤ Ch ≤ σh(t)

∫ 1

0
h(s, 1) ds.

According to the fact that g(t, 0, 1) 
≡ 0, h(t, 0) 
≡ 0, we easily prove B(h, h) ∈ Ph, Ch ∈ Ph.
As a result, condition (L4) of Theorem 3.1 is satisfied.
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Lastly, we show that condition (L5) of Theorem 3.1 holds true for u, v ∈ P and any t ∈
[0, 1]. From (H5), we derive that

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds ≥ δ0

∫ 1

0
G(t, s)

(
g
(
s, u(s), v(s)

)
+ h

(
s, u(s)

))
ds

= δ0

[∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds +

∫ 1

0
G(t, s)h

(
s, u(s)

)
ds

]

= δ0
[
B(u, v)(t) + (Cu)(t)

]
,

then we get A(u, v) ≥ δ0(B(u, v) + Cu) for u, v ∈ P. So all the conditions of Theorem 3.1 are
satisfied. An application of Theorem 3.1 implies that problem (4.1) has a unique positive
solution u∗ in Ph and also conclusions (1) and (3) in Theorem 4.1 hold true. �

By using Theorem 3.2, we can easily prove the following result.

Theorem 4.2 Assume that (H1), (H2), and (H4) hold, and the following conditions are also
satisfied.

(H6) f (t,λu,λ–1v) ≥ λf (t, u, v), ∀t ∈ [0, 1], λ ∈ (0, 1), u, v ∈ [0, +∞); for fixed t ∈ [0, 1],
v ∈ [0, +∞), g(t, ·, v) is concave, for fixed t ∈ [0, 1], u ∈ [0, +∞), g(t, u, ·) is convex; and there
exists a constant α ∈ (0, 1) such that h(t,λu) ≥ λαh(t, u) for λ ∈ (0, 1), t ∈ [0, 1], u ∈ [0, +∞);

(H7) There exists a constant δ0 > 0 such that f (t, u, v) + g(t, u, v) ≤ δ0h(t, u), ∀t ∈ [0, 1],
u, v ∈ [0, +∞).

Then, conclusions (1)–(3) of Theorem 4.1 still hold.

In what follows, we give a concrete example to illustrate our main result.

Example 4.1 Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–D
17
4

0+ u(t) = (u(t) + 1) 1
2 + (u(t) + 1)– 1

2 + 1
3 e–u(t) – 1

3 e–u(t) + u(t)
1+u(t) s(t) – 2t2 + 6,

0 < t < 1;

u(0) = u′(0) = u′′(0) = u′′′(0) = 0;

D
5
2
0+ u(t)|t=1 = D

9
4
0+ u(t)|t= 1

5
+ 1

2 D
9
4
0+ u(t)|t= 2

5
+ 1

3 D
9
4
0+ u(t)|t= 3

5
+ 1

4 D
9
4
0+ u(t)|t= 4

5
,

(4.6)

where

n = 5, ν =
17
4

, p =
5
2

, q =
9
4

, m = 4, ξ1 =
1
5

, ξ2 =
2
5

,

ξ3 =
3
5

, ξ4 =
4
5

, a1 = 1, a2 =
1
2

, a3 =
1
3

, a4 =
1
4

,

1
�(ν – p)

–
1

�(ν – q)

m∑

i=1

aiξ
ν–q–1
i =

1
�( 7

4 )
–

1
�(2)

· 4
5

= 0.288065 > 0,

and s : [0, 1] → [0, +∞) is continuous with s 
= 0. Here we set smax = max{s(t) : t ∈ [0, 1]} > 0.

This example can be written in the form of (4.1) with the functions f , g , h defined by

f (t, x, y) = (x + 1)
1
2 + (y + 1)– 1

2 + 3 – t2,
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g(t, x, y) =
1
3

e–y –
1
3

e–x + 2 – t2, h(t, x) =
x

1 + x
s(t) + 1.

Next, we show that all the conditions of Theorem 4.1 are satisfied.
(1) f , g : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) and h : [0, 1] × [0, +∞) → [0, +∞) are

continuous with f (t, 0, 1) = 4 + 2– 1
2 – t2 
≡ 0, g(t, 0, 1) = 5

3 + 1
3e – t2 
≡ 0, h(t, 0) = 1 
= 0.

(2) Obviously, f (t, x, y), g(t, x, y) are increasing in x ∈ [0, +∞) for fixed t ∈ [0, 1] and
y ∈ [0, +∞), decreasing in y ∈ [0, +∞) for fixed t ∈ [0, 1] and x ∈ [0, +∞), and h(t, x)
is increasing in x ∈ [0, +∞) for fixed t ∈ [0, 1].

(3) For λ ∈ (0, 1), t ∈ [0, 1], x, y ∈ [0, +∞), taking α = 1
2 , we have

f
(
t,λx,λ–1y

)
= (λx + 1)

1
2 +

(
λ–1y + 1

)– 1
2 + 3 – t2

≥ λ
1
2
(
(x + 1)

1
2 + (y + 1)– 1

2 + 3 – t2) = λαf (t, x, y).

For all λ ∈ (0, 1), t ∈ [0, 1], and x ∈ [0, +∞), we deduce

h(t,λx) =
λx

1 + λx
s(t) + 1 ≥ λx

1 + x
s(t) + λ = λh(t, x).

Besides, we can easily obtain

g ′′
xx(t, x, y) = –

1
3

e–x < 0, g ′′
yy(t, x, y) =

1
3

e–y > 0.

So, for fixed t ∈ [0, 1], y ∈ [0, +∞), g(t, ·, y) is concave; for fixed t ∈ (0, 1), x ∈ [0, +∞),
g(t, x, ·) is convex.

(4) For all s ∈ [0, 1], y ∈ [0, +∞), taking b = 1
2 , we derive

g(s, 0, y) =
(
1 – s2) +

(
2
3

+
1
3

e–y
)

≥ 1
2

[(
1 – s2) +

(
4
3

–
1
3

e–y
)]

= g(s, y, 0).

(5) If we take δ0 = min{ 2
3(smax+1) , 1}, then we obtain

f (t, x, y) = (x + 1)
1
2 + (y + 1)– 1

2 + 3 – t2

≥ (x + 1)
1
2 + (y + 1)– 1

2 +
2
3

+
1
3

e–y –
1
3

e–x + 2 – t2

≥ 2
3(smax + 1)

· (smax + 1) +
1
3

e–y –
1
3

e–x + 2 – t2

≥ 2
3(smax + 1)

·
(

x
1 + x

s(t) + 1
)

+
1
3

e–y –
1
3

e–x + 2 – t2

≥ δ0

(
x

1 + x
s(t) + 1 +

1
3

e–y –
1
3

e–x + 2 – t2
)

= δ0
(
g(t, x, y) + h(t, x)

) ∀t ∈ [0, 1], x, y ∈ [0, +∞).

Hence all the conditions of Theorem 4.1 are satisfied. An application of Theorem 4.1
implies that problem (4.6) has a unique positive solution in Ph, where h(t) = tν–1 = t 13

4 ,
t ∈ [0, 1].
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5 Conclusions
In this paper, we investigate a class of nonlinear sum-type operators without consider-
ing the existence of upper-lower solutions or compactness or continuity. The sufficient
conditions have been established for such sum-type operators to have a unique positive
fixed point in Ph, and two iterative sequences are also constructed to converge to the fixed
point. Further, we apply the obtained results to prove the existence and uniqueness of pos-
itive solutions for a nonlinear fractional differential equation with multi-point fractional
boundary conditions. The main contribution is that we provide a new method to deal with
the unique positive solution of the nonlinear differential equations. Our study enriches the
fixed point theorems of nonlinear sum-type operators.
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