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Abstract
In this paper we mainly consider a free boundary problem for a single-species model
with stage structure in a radially symmetric setting. In our model, the individuals of a
new or invasive species are classified as belonging either to the immature or to the
mature cases. We firstly study the asymptotic behavior of the solution to the
corresponding initial problem, then obtain a spreading–vanishing dichotomy and
give sharp criteria governing spreading and vanishing for the free boundary problem.
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1 Introduction
Recently, Du and Lin [1] have proposed the new mathematical model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – duxx = u(a – bu), t > 0, 0 < x < h(t),

ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = –μux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 < x < h0,

(1)

to describe the expanding of a new or invasive species u, where x = h(t) is the moving
boundary to be determined by Stefan-like condition h′(t) = –μux(t, h(t)), a, b, d, μ and h0

are given positive constants, and u0 is a given nonnegative initial function.
Du and Lin [1] established various interesting results about the solution (u, h) of (1).

One of very remarkable results is a spreading–vanishing dichotomy of the species, i.e., the
solution (u, h) of (1) satisfies one of the following properties:

(i) Spreading of the species: h(t) → ∞, u(t, x) → a/b as t → ∞;
(ii) Vanishing of the species: h(t) → h∞ ≤ (π/2)

√
d/a, and u(t, x) → 0 as t → ∞.

Another is that the spreading speed approaches to a positive constant if the spreading
occurs. On the other hand, they derived the criteria for spreading and vanishing. Later
on, Du and Guo [2, 3], studied a free boundary problem similar to (1) in higher dimension
space, Kaneko and Yamada [4] discussed (1) and the case of bistable nonlinearity with
ux(t, 0) = 0 replaced by u(t, 0) = 0.

In problem (1), it is assumed that during the whole life histories the individual’s charac-
teristics are broadly similar to each other. In the real world, almost all animals have stage
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structure of the immature and mature cases. For many animals whose babies are raised
by their parents or are dependent on the nutrition from the eggs they stay in, the babies
are much weaker than the mature. It is important and practical to introduce the stage
structure into the model.

Stage-structured models have received much attention in recent years (see for example
[5–11] and the references therein). The pioneering work of Aiello and Freedman [5] (1990)
on a single-species growth model with stage structure represents a mathematically more
careful and biologically meaningful formulation approach.

The ODE version on a single-species growth model with stage structure takes the form

⎧
⎨

⎩

ut = av – αu – βu, t > 0,

vt = βu – bv2 – cv, t > 0,

where u and v are the population densities of immature and mature, respectively, a, α, β , b
are given positive constants, and c is a nonnegative constant. In the immature stage, both
the birth rate and the death rate obey the Malthus rule, while in the mature stage, the birth
rate obeys the Malthus rule and the death rate logistic type.

In the present paper, we firstly consider diffusion in the above ODE model and discuss
the long time behavior of the solution to PDE model

⎧
⎨

⎩

ut – d1�u = av – θu, t > 0, x ∈R
n,

vt – d2�v = βu – bv2 – cv, t > 0, x ∈R
n,

(2)

with θ > β . This problem admits a positive steady state if and only if

aβ > cθ , (3)

in which case the positive constant steady state is uniquely given by (ũ, ṽ), where

ũ =
a2β – acθ

bθ2 , ṽ =
aβ – cθ

bθ
.

Then, motivated by the work of [1–3] and [5–7, 9, 10], we investigate the diffusive stage-
structured model (2) with a free boundary, which reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – d1�u = av – θu, t > 0, 0 < r < h(t),

vt – d2�v = βu – bv2 – cv, t > 0, 0 < r < h(t),

ur(t, 0) = vr(t, 0) = u(t, h(t)) = v(t, h(t)) = 0, t > 0,

h′(t) = –μ[ur(t, h(t)) + ρvr(t, h(t))], t > 0,

h(0) = h0, u(0, r) = u0(r), v(0, r) = v0(r), 0 ≤ r ≤ h0,

(4)

where �u = urr + n–1
r ur , �v = vrr + n–1

r vr (r = |x|, x ∈ R
n), d1, d2, μ, ρ and h0 are given

positive constants, and the initial functions u0(r), v0(r) satisfy

u0, v0 ∈ C2([0, h0]
)
, u0(h0) = v0(h0) = 0, u0(r) > 0, v0(r) > 0

in [0, h0). (5)
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Ecologically, this problem (4) describes the spreading of a new or invasive species with
immature population density u(t, |x|) and mature population density v(t, |x|) over a radi-
ally symmetric setting, which exists initially in the ball r < h0, disperses through random
diffusion over an expanding ball r < h(t), whose boundary r = h(t) is the invading front,
and evolves according to the free boundary condition h′(t) = –μ[ur(t, h(t)) + ρvr(t, h(t))].

The well-known Stefan free boundary condition aries in many other applications. For
instance, it was used to describe the melting of ice in contact with water [12], the model-
ing of oxygen in the muscle [13], the wound healing [14], the tumor growth [15], and so
on. As far as population models are concerned, Wang and Zhao [16] used such a condi-
tion for a predator–prey system with double free boundaries in one dimension, in which
the prey lives in the whole space but the predator lives in a bounded area at the initial
state; in [17, 18], a Stefan condition was used for a competition system and a predator–
prey system in radially symmetric setting, respectively, in which one species lives in the
whole space but the other lives in a bounded area at the initial state. They established
the spreading–vanishing dichotomy, long time behavior of the solution and sharp criteria
for spreading and vanishing. For more biological discussion, we refer to [19–27] and the
references therein.

We now describe the main results of this paper as follows. Hereafter, (3) is always as-
sumed. First, it is proved that the positive constant steady state (ũ, ṽ) of problem (2) is
globally asymptotically stable.

Theorem 1.1 Suppose that (u0, v0) ∈ [Cb(Rn)]2 and (u(t, x), v(t, x)) is the solution of the
problem (2) with

u(0, x) = u0(x) ≥, 	≡ 0, v(0, x) = v0(x) ≥, 	≡ 0, x ∈R
n,

then

lim
t→∞

(
u(t, x), v(t, x)

)
= (ũ, ṽ)

uniformly in any bounded subset of Rn.

Then, we have the following existence and uniqueness result and a priori estimates for
the solution of the problem (4).

Theorem 1.2 For any given (u0, v0) satisfying (5) and any ν ∈ (0, 1), the problem (4) admits
a unique global solution (u, v, h) ∈ C(1+ν)/2,1+ν(	) × C(1+ν)/2,1+ν(	) × C1+ν/2([0,∞)) where

	 =
{

(t, r) : t > 0, 0 ≤ r ≤ h(t)
}

,

such that the following inequalities hold:

0 < u(t, r) ≤ M1, 0 < v(t, r) ≤ M1, 0 < h′(t) ≤ M2 (6)

for t > 0, 0 < r < h(t) with M1, M2 > 0 depending on d1, d2, a, θ , β , b, c and ‖u0‖∞, ‖v0‖∞.
Moreover,

‖u‖C(1+ν)/2,1+ν (	) + ‖v‖C(1+ν)/2,1+ν (	) + ‖h‖C1+ν/2([0,∞)) ≤ C, (7)

where the constant C > 0 depends on ν , the parameters in (4) and ‖u0‖C2([0,h0]), ‖v0‖C2([0,h0]).
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Next, a spreading–vanishing dichotomy is given.

Theorem 1.3 Assume that (3) holds and (u, v, h) is the solution of (4), then there exists
R∗ > 0 such that the following alternative holds:

Either
(i) vanishing: h∞ ≤ R∗ and

lim
t→∞

∥
∥u(t, ·)∥∥C([0,h(t)]) = lim

t→∞
∥
∥v(t, ·)∥∥C([0,h(t)]) = 0;

or
(ii) spreading: h∞ = ∞, and

lim
t→∞

(
u(t, r), v(t, r)

)
= (ũ, ṽ)

uniformly for r in any bounded set of [0,∞).

From h′(t) > 0 for t > 0 and Theorem 1.3, we easily see that h0 ≥ R∗ implies h∞ = ∞.
Hence, we last only need to discuss the case h0 < R∗. Whether spreading or vanishing
occurs is dependent on (u0, v0) and coefficient μ with the other parameters fixed.

Theorem 1.4 Suppose that h0 < R∗, then there exists μ∗ > 0 depending on (u0, v0) and h0,
such that h∞ ≤ R∗ if μ ≤ μ∗, and h∞ = ∞ if μ > μ∗.

The rest of this paper is organized in the following way. In Sect. 2, we firstly discuss
the problem (2). We study a problem corresponding to (2) with fixed boundary and then
prove Theorem 1.1. Sections 3, 4 and 5 are devoted to investigating the free boundary
problem (4). In Sect. 3, we show Theorem 1.2 and give a comparison principle. Section 4
is applied to the long time behavior of solution (u, v) to the problem (4). From those results
we can also get the spreading–vanishing dichotomy (Theorem 1.3). In Sect. 5, the sharp
criteria for spreading and vanishing (Theorem 1.4) will be given. The last section is a brief
discussion.

2 Global stability
In this section, Theorem 1.1 will be proved. We firstly study the following initial-boundary
value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – d1�u = av – θu, t > 0, x ∈ BR,

vt – d2�v = βu – bv2 – cv, t > 0, x ∈ BR,

u(t, x) = v(t, x) = 0, t > 0, x ∈ ∂BR,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ BR,

(8)

where BR is a ball with center 0 and radius R, u0, v0 are positive functions satisfying

u0, v0 ∈ C2(BR), u0 = v0 = 0 on ∂BR. (9)
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In the sequel, we will use some characteristics of the principal eigenvalue λ1(d, R) of the
problem

⎧
⎨

⎩

–d�φ = λφ, x ∈ BR,

φ = 0, x ∈ ∂BR,

where d > 0 is a constant. It is well known that λ1(d, R) is a strictly decreasing continuous
function in R and satisfies

lim
R→0+

λ1(d, R) = +∞, lim
R→+∞λ1(d, R) = 0.

Therefore, for fixed d > 0 and any given L ∈ (0,∞), there is a unique RL(d) such that

λ1
(
d, RL(d)

)
= L

and

λ1(d, R) < L for R > RL(d); λ1(d, R) > L for R < RL(d).

We use a squeezing method as in [28] to prove the following theorem.

Theorem 2.1 If (3) holds, then there exists R∗ > 0 such that the problem

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = λ(av – θu), x ∈ BR,

–d2�v = λ(βu – bv2 – cv), x ∈ BR,

u = v = 0, x ∈ ∂BR,

(10)

has a unique positive solution (uλ, vλ) for every R > R∗ and λ ≥ 1; moreover,

(uλ, vλ) −→ (ũ, ṽ) (11)

uniformly on any compact subset of BR as λ −→ ∞.

Proof Step 1 Existence The existence follows from a upper and lower solutions argument.
Clearly, (ũ, ṽ) is an upper solution. Let (u, v) = (δ1φ, δ2φ), where φ satisfying ‖φ‖∞ = 1 is
a positive eigenfunction corresponding to λ1(d1, R), and λ1(d1, R), δ1, δ2 are positive con-
stants to be determined later. By direct calculations, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–d1�u = λ1(d1, R)u

= av – θu + [(λ1(d1, R) + θ )δ1 – aδ2]φ,

–d2�v = d2λ1(d1,R)
d1

v

= βu – bv2 – cv + ( d2λ1(d1,R)
d1

δ2 + cδ2 + bδ2
2φ – βδ1)φ.

Take R∗ such that

λ1
(
d1, R∗) =

–[d2θ + d1c] +
√

[d2θ + d1c]2 + 4d1d2[aβ – cθ ]
2d2

. (12)
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For every R > R∗, the following inequality holds:

λ1(d1, R) <
–[d2θ + d1c] +

√
[d2θ + d1c]2 + 4d1d2[aβ – cθ ]

2d2
.

Hence

aβ

λ1(d1, R) + θ
–

d2

d1
λ1(d1, R) – c > 0.

Take
⎧
⎨

⎩

δ1 = δ2
2β

( aβ

λ1(d1,R)+θ
+ d2

d1
λ1(d1, R) + c + bδ2),

δ2 = 1
Lb ( aβ

λ1(d1,R)+θ
– d2

d1
λ1(d1, R) – c),

(13)

where L > 2 is any constant. Then we can obtain δ1 < ũ, δ2 < ṽ and

(
λ1(d1, R) + θ

)
δ1 – aδ2 < 0,

d2λ1(d1, R)
d1

δ2 + cδ2 + bδ2
2φ – βδ1 < 0.

Therefore, (u, v) satisfies u < ũ, v < ṽ and

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u ≤ av – θu, x ∈ BR,

–d2�v ≤ βu – bv2 – cv, x ∈ BR,

u = v = 0, x ∈ ∂BR.

It follows from λ1(d1, R)u ≤ av – θu that av – θu ≤ λ(av – θu) for λ ≥ 1. Similarly, βu –
bv2 – cv ≤ λ(βu – bv2 – cv) for λ ≥ 1. Thus

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u ≤ λ(av – θu), x ∈ BR,

–d2�v ≤ λ(βu – bv2 – cv), x ∈ BR,

u = v = 0, x ∈ ∂BR.

So, (u, v) is a lower solution. Thus, the problem (10) has at least one positive solution.
Step 2 Uniqueness Now we verify the uniqueness of positive solution to (10). Fix R > R∗

and suppose that (10) has two positive solutions (u1, v1) and (u2, v2). Then (ui, vi) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–d1�ui + λθui = λavi > 0, x ∈ BR,

–d2�vi + λ(bvi + c)vi = λβui > 0, x ∈ BR,

ui = vi = 0, x ∈ ∂BR.

With the help of the maximum principle and the Hopf boundary lemma for elliptic equa-
tions, we can see that ui > 0, vi > 0 in BR and ∂νui < 0, ∂νvi < 0, i = 1, 2 on ∂BR. Hence there
exists M > 1 such that

(
M–1u1, M–1v1

)
< (ui, vi) < (Mu1, Mv1) in BR for i = 1, 2.
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It is easily seen that (Mu1, Mv1) is a upper solution of (10) and (M–1u1, M–1v1) is a lower
solution. As a result, there exist a minimal and a maximal solution to (10) in the order
interval [M–1u1, Mu1]×[M–1v1, Mv1] which is denoted by (u∗, v∗) and (u∗, v∗), respectively.
Thus (u∗, v∗) ≤ (ui, vi) ≤ (u∗, v∗), for i = 1, 2. Hence it suffices to show that (u∗, v∗) = (u∗, v∗).
To achieve this goal, let us define

σ∗ = inf
{
σ ∈R : u∗ ≤ σu∗, v∗ ≤ σv∗

}
.

Clearly σ∗ ≥ 1 and u∗ ≤ σ∗u∗, v∗ ≤ σ∗v∗. We next prove σ∗ = 1, which will therefore yield
(u∗, v∗) = (u∗, v∗). Suppose for contradiction that σ∗ > 1. Then, for

w := σ∗u∗ – u∗, z := σ∗v∗ – v∗,

it is easy to check that w, z ≥ 0, 	≡ 0, and (w, z) satisfies

⎧
⎨

⎩

–d1�w + λθw = λaz ≥ 0, 	≡ 0, x ∈ BR,

–d2�z + λcz + bv∗z ≥ λβw ≥ 0, 	≡ 0, x ∈ BR,

and w = z = 0 on ∂BR. Hence, we can use the strong maximum principle and the Hopf
boundary lemma for elliptic equations to deduce that w, z > 0 in BR, and ∂νw, ∂νz < 0 on
∂BR. It follows that w ≥ εu∗ and z ≥ εv∗ for some ε > 0 small, and hence u∗ ≤ (1 +ε)–1σ∗u∗,
v∗ ≤ (1 + ε)–1σ∗v∗, which contradict the definition of σ∗. Consequently, we must have σ∗ =
1, and the uniqueness conclusion is proved.

Step 3 Asymptotic behavior In what follows, let us denote by (uλ, vλ) the unique positive
solution of (10) for λ ≥ 1. We then want to show (11).

Given any compact subset K of BR and any small ε > 0 such that ε < min{ θ
a ũ, ṽ}. Observe

that (ūε , v̄ε) = (ũ + a
θ
ε, ṽ + ε) is a upper solution of (10) for every λ > 0. On the other hand,

we choose a small neighborhood U of ∂BR in BR such that U ∩K = ∅ and (δ1φ(x), δ2φ(x)) <
(ũ – a

θ
ε, ṽ – ε) for x ∈ U . Define

(
uε(x), vε(x)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(δ1φ(x), δ2φ(x)), x ∈ U ,

(wε(x), zε(x)), x ∈ BR \ (U ∪ K),

(ũ – a
θ
ε, ṽ – ε), x ∈ K ,

where δ1, δ2 is defined as in (13), φ is a positive eigenfunction corresponding to λ1(d1, R)
with ‖φ‖∞ = 1, wε(x), zε(x) are smooth positive functions with (wε(x), zε(x)) ≤ (ũ – a

θ
ε, ṽ –

ε) in BR \ (U ∪ K) such that uε , vε are smooth functions in BR and satisfy

bz2(x) + cz(x) < βw(x) <
aβ

θ
z(x).

We can obtain

⎧
⎪⎪⎨

⎪⎪⎩

–d1�uε ≤ λ(avε – θuε), x ∈ BR,

–d2�vε ≤ λ(βuε – bv2
ε – cvε), x ∈ BR,

uε = vε = 0, x ∈ ∂BR,
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for all large λ. Since (uε , vε) ≤ (ūε , v̄ε), we deduce that (uε , vε) ≤ (uλ, vλ) ≤ (ūε , v̄ε) in BR for
all large λ. In particular,

(

ũ –
a
θ
ε, ṽ – ε

)

≤ (uλ, vλ) ≤
(

ũ +
a
θ
ε, ṽ + ε

)

on K for all large λ. This shows that (uλ, vλ) −→ (ũ, ṽ) as λ −→ ∞ uniformly on K , as
required. The proof is complete. �

Theorem 2.2 Assume that (u0, v0) satisfies (9) and R > R∗. If (u, v) is the solution of (8),
then

lim
t→∞

(
u(t, x), v(t, x)

)
=

(
u∗(x), v∗(x)

)
uniformly in BR,

where (u∗(x), v∗(x)) is the unique positive solution of (10) with λ = 1.

Proof Since R > R∗, (10) has a unique positive solution (u∗(x), v∗(x)). With the help of the
maximum principle and the Hopf boundary lemma for elliptic equations, we can find
M > 1 such that

(u0, v0) ≤ (
Mu∗, Mv∗).

It is easy to verify that (Mu∗, Mv∗) is an upper solution of (10) when λ = 1. One can still
use the same analysis as in proof of Theorem 8 to deduce that (δ1φ, δ2φ) is a lower solution
of the problem (10), where φ is the positive eigenfunction corresponding to λ1(d1, R) with
‖φ‖∞ = 1 and δ1, δ2 is defined as in (13), choosing δ1, δ2 sufficiently small (i.e. L sufficiently
large) such that (δ1φ(x), δ2φ(x)) ≤ (u0(x), v0(x)) for x ∈ BR if necessary. We consider the
following two auxiliary problems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ūt – d1�ū = av̄ – θ ū, t > 0, x ∈ BR,

v̄t – d2�v̄ = βū – bv̄2 – cv̄, t > 0, x ∈ BR,

ū(t, x) = v̄(t, x) = 0, t > 0, x ∈ ∂BR,

ū(0, x) = Mu∗(x), v̄(0, x) = Mv∗(x), x ∈ BR,

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – d1�u = av – θu, t > 0, x ∈ BR,

vt – d2�v = βu – bv2 – cv, t > 0, x ∈ BR,

u(t, x) = v(t, x) = 0, t > 0, x ∈ ∂BR,

u(0, x) = δ1φ(x), v(0, x) = δ2φ(x), x ∈ BR.

We easily see that

(
u(t, x), v(t, x)

) ≤ (
u(t, x), v(t, x)

) ≤ (
ū(t, x), v̄(t, x)

)
(14)
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due to the comparison principle. From the theory of monotone dynamical systems (see
[29, Corollary 3.6]), we see that (u(t, x), v(t, x)) is increasing while (ū(t, x), v̄(t, x)) is decreas-
ing in t, and

lim
t→∞

(
u(t, x), v(t, x)

)
=

(
u∗(x), v∗(x)

)
, lim

t→∞
(
ū(t, x), v̄(t, x)

)
=

(
ū∗(x), v̄∗(x)

)
(15)

uniformly in BR, where (u∗, v∗) and (ū∗, v̄∗) satisfy (10) with λ = 1 and

(δ1φ, δ2φ) ≤ (
u∗, v∗) ≤ (

ū∗, v̄∗).

So (u∗, v∗) = (ū∗, v̄∗) = (u∗, v∗), since the positive solution of (10) is unique. Due to (14) and
(15), we have limt→∞(u(t, x), v(t, x)) = (u∗(x), v∗(x)) uniformly in BR. �

Proof of Theorem 1.1 First we recall that the comparison principle gives (u(t, x), v(t, x)) ≤
(ū(t), v̄(t)) for t > 0, x ∈R

n, where (ū(t), v̄(t)) is the solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

ūt = av̄ – θ ū, t > 0,

v̄t = βū – bv̄2 – cv̄, t > 0,

ū(0) = ‖u0‖∞, v̄(0) = ‖v0‖∞.

(16)

Similarly to the proof of Theorem 2.1 in [30], we see that the positive constant steady state
(ũ, ṽ) of (16) is globally asymptotically stable. So limt→∞(ū(t), v̄(t)) = (ũ, ṽ), moreover,

lim sup
t→∞

u(t, x) ≤ ũ, lim sup
t→∞

v(t, x) ≤ ṽ uniformly for x ∈R
n.

Next, we show

lim inf
t→∞ u(t, x) ≥ ũ, lim inf

t→∞ v(t, x) ≥ ṽ

locally uniformly for x ∈R
n.

Let (uR(t, x), vR(t, x)) be the unique solution of (8) with any R > R∗. It follows from
comparison principle that (uR(t, x), vR(t, x)) ≤ (u(t, x), v(t, x)) for any R. By using of The-
orem 2.2, we easily see that (uR(t, x), vR(t, x)) → (u∗

R(x), v∗
R(x)) as t → ∞ uniformly in BR,

where (u∗
R(r), v∗

R(r)) is the unique positive solution of (8) with λ = 1. It follows that

lim inf
t→∞ u(t, x) ≥ u∗

R(x), lim inf
t→∞ v(t, x) ≥ v∗

R(x) (17)

uniformly in BR. Let

(
wR(y), zR(y)

)
=

(

u∗
R

(
R

2R∗ y
)

, v∗
R

(
R

2R∗ y
))

,

then (wR(y), zR(y)) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–d1�ywR = ( R
2R∗ )2(azR – θwR), y ∈ B2R∗ ,

–d2�yzR = ( R
2R∗ )2(βwR – bz2

R – czR), y ∈ B2R∗ ,

w = z = 0, y ∈ ∂B2R∗ .
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Using Theorem 2.1, we easily see that (wR(y), zR(y)) → (ũ, ṽ) as R → ∞ uniformly in any
compact subset of B2R∗ . Therefore (u∗

R(x), v∗
R(x)) → (ũ, ṽ) as R → ∞ uniformly in any com-

pact subset of Rn and then

lim inf
t→∞ u(t, x) ≥ ũ, lim inf

t→∞ v(t, x) ≥ ṽ

locally uniformly for x ∈R
n, due to (17). This completes the proof of the desired result. �

3 Existence and uniqueness
For the existence and uniqueness of local solution, in previous work, for example in the
references [17, 18, 24], the embedding theorem

‖u‖C(1+ν)/2,1+ν (QT ) ≤ C‖u‖W 1,2(QT ), p > n + 2,

was used, where QT = {(t, x)|0 ≤ t ≤ T , x ∈ Q}, Q is a bounded domain of Rn. This is not
appropriate because the embedding constant C = C(T–1) depends on T–1 and C(T–1) →
∞ as T → 0. For example, for the function u ≡ 1, ‖u‖C(1+ν)/2,1+ν (QT ) = 1 and ‖u‖W 1,2(QT ) =
|Q|1/pT1/p → 0 as T → 0. Very recently, Wang has overcome this loophole and given a
strict proof in [31]. So the existence and uniqueness of local solution can be obtained
from the proof of Theorem 1.1 in [31], and the local solution can be extended to 	 by
Theorem 2.4 in [17], we omit the details. Therefore, we will only show the inequalities (6)
and (7). Then some comparison results for (4) are given.

Theorem 3.1 Let (u, v, h) be a solution to the problem (4) defined for t ∈ (0,∞). Then there
exist constants M1 and M2 such that

0 < u(t, r) ≤ M1, 0 < v(t, r) ≤ M1, 0 < h′(t) ≤ M2

for all t > 0 and 0 ≤ r ≤ h(t).

Proof Using the strong maximum principle, we are easy to see that u > 0 in (0,∞) ×
[0, h(t)) and v > 0 in (0,∞) × [0, h(t)) as long as the solution exists. It follows from the
comparison principle that (u(t, r), v(t, r)) ≤ (ū(t), v̄(t)) for t > 0 and r ∈ [0, h(t)], where
(ū(t), v̄(t)) solves the initial value problem (16). Let U(t) = ū(t) + v̄(t), then U satisfies
U(0) = ‖u0‖∞ + ‖v0‖∞ and

Ut = av̄ – (θ – β)ū – bv̄2 – cv̄

= –(θ – β)(ū + v̄) – b
(

v –
a + θ – β – c

2b

)2

+
(a + θ – β – c)2

4b

≤ –(θ – β)U +
(a + θ – β – c)2

4b
.

By using of the comparison principle again, we have

ū(t) + v̄(t) = U(t) ≤ M1 := max

{

‖u0‖∞ + ‖v0‖∞,
(a + θ – β – c)2

4b(θ – β)

}

.
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Thus

u(t, r) ≤ M1, v(t, r) ≤ M1.

By straightening the free boundaries with s = h0r
h(t) , we can obtain a fixed boundary

problem. Then the strong maximum principle yields the inequalities ur(t, h(t)) < 0 and
vr(t, h(t)) < 0, and therefore h′(t) > 0 in (0,∞). It remains to show that h′(t) ≤ M2 for some
positive constant M2. To this end, let M be a positive constant, define

	M :=
{

(t, r) : 0 < t < ∞, h(t) – 1/M < r < h(t)
}

and construct an auxiliary function

w(t, r) = M1
[
2M

(
h(t) – r

)
– M2(h(t) – r

)2].

We will choose M so that (w(t, r), w(t, r)) ≥ (u(t, r), v(t, r)) holds over 	M .
Direct calculations show that, for (t, r) ∈ 	M ,

wt = 2M1Mh′(t)
[
1 – M

(
h(t) – r

)] ≥ 0,

–wr = 2M1M
[
1 – M

(
h(t) – r

)] ≥ 0,

–�w = –wrr –
n – 1

r
wr ≥ 2M1M2,

av – θu ≤ aM1, βu – bv2 – cv ≤ βM1.

It follows that

⎧
⎨

⎩

wt – d1�w ≥ 2d1M1M2 ≥ av – θu, (t, r) ∈ 	M,

wt – d2�w ≥ 2d2M1M2 ≥ βu – bv2 – cv, (t, r) ∈ 	M,

if M2 ≥ max{ a
2d1

, β

2d2
}. On the other hand,

w
(
t, h(t) – M–1) = M1 ≥ max

{
u
(
t, h(t) – M–1), v

(
t, h(t) – M–1)},

w
(
t, h(t)

)
= 0 = u

(
t, h(t)

)
= v

(
t, h(t)

)
.

Note that

u0(r) = –
∫ h0

r
u′

0(s) ds ≤ (h0 – r)
∥
∥u′

0
∥
∥

C([0,h0]) in
[
h0 – M–1, h0

]
,

w(0, r) = M1
[
2M(h0 – r) – M2(h0 – r)2] ≥ M1M(h0 – r) in

[
h0 – M–1, h0

]
,

we know that if MM1 ≥ ‖u′
0‖C([0,h0]), then

u0(r) ≤ (h0 – r)
∥
∥u′

0
∥
∥

C([0,h0]) ≤ w(0, r) in
[
h0 – M–1, h0

]
.
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Similarly, if MM1 ≥ ‖v′
0‖C([0,h0]) then

v0(r) ≤ (h0 – r)
∥
∥v′

0
∥
∥

C([0,h0]) ≤ w(0, r) in
[
h0 – M–1, h0

]
.

Let

M = max

{√
a

2d1
,

√
β

2d2
,
‖u′

0‖C([0,h0])

M1
,
‖v′

0‖C([0,h0])

M1

}

.

Applying the maximum principle to w – u and w – v over 	M we can deduce that
u(t, r), v(t, r) ≤ w(t, r) for (t, r) ∈ 	M . Thanks to w(t, h(t)) = 0 = u(t, h(t)) = v(t, h(t)), it
would then follow that

h′(t) = –μ
[
ur

(
t, h(t)

)
+ ρvr

(
t, h(t)

)] ≤ –μ
[
wr

(
t, h(t)

)
+ ρwr

(
t, h(t)

)]

≤ 2μ(1 + ρ)M1M := M2.

The proof is complete. �

Theorem 3.2 If (u, v, h) is a solution to problem (4) defined for t ∈ (0,∞), then, for any
ν ∈ (0, 1), the estimate (7) holds, i.e.

‖u‖C(1+ν)/2,1+ν (	) + ‖v‖C(1+ν)/2,1+ν (	) + ‖h‖C1+ν/2([0,∞)) ≤ C,

where

	 =
{

(t, r) : t > 0, 0 ≤ r ≤ h(t)
}

,

the constant C > 0 depends on ν , the parameters in (4) and ‖u0‖C2([0,h0]), ‖v0‖C2([0,h0]).

Proof We first consider the case h∞ < ∞. Define

s =
h0r
h(t)

,
(
w(t, s), z(t, s)

)
=

(
u(t, r), v(t, r)

)
.

Hence w(t, s) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

wt – d1h2
0

h2(t) �sw – h′(t)s
h(t) ws = az – θw, t > 0, 0 ≤ s < h0,

ws(t, 0) = w(t, h0) = 0, t > 0,

w(0, s) = u0(s), 0 ≤ s ≤ h0.

This is an initial-boundary value problem over a fixed ball {s < h0}. Since h0 ≤ h(t) < h∞ <
∞, the differential operator is uniformly parabolic. It follows from Theorem 3.1 that

‖az – θw‖∞ ≤ (a + θ )M1,
∥
∥
∥
∥

h′(t)s
h(t)

∥
∥
∥
∥∞

≤ M2.
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Therefore, we can apply the standard Lp theory and the Sobolev embedding theorem ([32,
33]) to obtain, for any ν ∈ (0, 1),

‖w‖C(1+ν)/2,1+ν ([0,2]×[0,h0]) ≤ C1.

Furthermore, by virtue of a similar analysis to Proposition A.1 of [16] we can conclude
that

‖w‖C(1+ν)/2,1+ν ([1,∞)×[0,h0]) ≤ C2,

where C1 and C2 are constants depending on ν , h0, h∞, M1, M2 and ‖u0‖C1+ν ([0,h0]). Thus

‖w‖C(1+ν)/2,1+ν ([0,∞)×[0,h0]) ≤ max{C1, C2}.

Similarly, we may obtain

‖z‖C(1+ν)/2,1+ν ([0,∞)×[0,h0]) ≤ C3,

where C3 is a positive constant depending on ν , h0, h∞, M1, M2 and ‖v0‖C1+ν ([0,h0]).
It follows that there exists a constant C depending on ν , h0, h∞, M1, M2, ‖u0‖C1+ν ([0,h0])

and ‖v0‖C1+ν ([0,h0]) such that

‖u‖C(1+ν)/2,1+ν (	) + ‖v‖C(1+ν)/2,1+ν (	) + ‖h‖C1+ν/2([0,∞)) ≤ C.

When h∞ = ∞, similarly to the arguments in Theorem 2.2 of [34] we can obtain (7). So
we omit the details.

The proof is complete. �

We now present some comparison principles which will be used in the following sec-
tions to estimate the solution (u(t, r), v(t, r)) and the free boundary r = h(t) of (4).

Theorem 3.3 (The comparison principle) Assume that T ∈ (0,∞), ū, v̄ ∈ C(DT ) ∩
C1,2(DT ) with DT = {(t, r) ∈R

2 : t ∈ (0, T], r ∈ [0, h̄(t)]}, and (ū, v̄, h̄) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ūt – d1�ū ≥ av̄ – θ ū, 0 < t < T , 0 < r < h̄(t),

v̄t – d2�v̄ ≥ βū – bv̄2 – cv̄, 0 < t < T , 0 < r < h̄(t),

ūr(t, 0) = v̄r(t, 0) = 0, 0 < t < T ,

ū(t, h̄(t)) = v̄(t, h̄(t)) = 0, 0 < t < T ,

h̄′(t) ≥ –μ[ūr(t, h̄(t)) + ρv̄r(t, h̄(t))], 0 < t < T ,

h̄(0) ≥ h0, ū(0, r) ≥ u0(r), v̄(0, r) ≥ v0(r), 0 ≤ r < h0.

Let (u, v, h) be the unique positive solution of (4). Then h(t) ≤ h̄(t) in (0, T] and

u(t, r) ≤ ū(t, r), v(t, r) ≤ v̄(t, r) for (t, r) ∈ (0, T] × [
0, h(t)

)
. (18)
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Proof First assume that h0 < h̄(0). We claim that h(t) < h̄(t) for all t ∈ (0, T]. Clearly, this
is true for small t > 0. If our claim does not hold, then we can find a first τ ≤ T such that
h(t) < h̄(t) for all t ∈ (0, τ ) and h(τ ) = h̄(τ ). It follows that

h′(τ ) ≥ h̄′(τ ). (19)

We now show that

u(t, r) ≤ ū(t, r), v(t, r) ≤ v̄(t, r) for (t, r) ∈ [0, τ ] × [0,∞).

Let U = ū – u, V = v̄ – v, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut – d1�U ≥ aV – θU , 0 < t ≤ τ , 0 < r < h(t),

Vt – d2�V ≥ βU – (b(v̄ + v) + c)V , 0 < t ≤ τ , 0 < r < h(t),

Ur(t, 0) = Vr(t, 0) = 0, 0 < t ≤ τ ,

U(t, h(t)) ≥ 0, V (t, h(t)) ≥ 0, 0 < t ≤ τ ,

U(0, r) ≥ 0, U(0, r) ≥ 0, 0 ≤ r ≤ h0.

The strong maximum principle yields U(t, r) > 0 and V (t, r) > 0 for (t, r) ∈ (0, τ ] × [0, h(t)).
It follows from the Hopf boundary lemma that Ur(τ , h(τ )) < 0 and Vr(τ , h(τ )) < 0, i.e.

ūr
(
τ , h(τ )

)
< ur

(
τ , h(τ )

)
, v̄r

(
τ , h(τ )

)
< vr

(
τ , h(τ )

)
.

We then deduce that h′(τ ) < h̄′(τ ). But this contradicts (19). This proves our claim that
h(t) < h̄(t) for all t ∈ (0, T]. We may now apply the above procedure over [0, T] × [0, h(t))
to conclude (18). Moreover, (u, v) < (ū, v̄) for t ∈ (0, T] and r ∈ [0, h(t)).

If h̄(0) = h0, we use approximation. For small ε > 0, let (uε , vε , hε) denote the unique
solution of (4) with h0 replaced by h0(1 – ε). Since the unique solution of (4) depends
continuously on the parameters in (4), as ε → 0, (uε , vε , hε) converges to (u, v, h), the
unique solution of (4). The desired result then follows by letting ε → 0 in the inequali-
ties (uε , vε) < (ū, v̄) and hε < h̄. �

Remark 3.1 The pair (ū, v̄, h̄) in Theorem 3.3 is called an upper solution of the problem
(4). We can define a lower solution by reversing all the inequalities in the above places.
Moreover, one can easily prove an analog of Theorem 3.3 for lower solutions.

We next fix u0, v0, d1, d2, a, θ , β , b, c and h0 to examine the dependence of the solution
on μ. The solution is denoted as (uμ, vμ, hμ) to emphasize this dependence. As a conse-
quence of Theorem 3.3, we have the following result.

Corollary 3.1 For fixed u0, v0, d1, d2, a, θ , β , b, c and h0. If μ1 ≤ μ2, then hμ1 (t) ≤ hμ2 (t)
in (0,∞) and

uμ1 (t, r) ≤ uμ2 (t, r), vμ1 (t, r) ≤ vμ2 (t, r)

for t ∈ (0,∞), r ∈ [0, hμ1 (t)].
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4 Spreading and vanishing
In this section, we will prove Theorem 1.3. Precisely, we can deduce Theorem 1.3 directly
from the following three theorems. To discuss the asymptotic behavior of u and v for the
vanishing case (s∞ < ∞), we first give the following proposition.

Proposition 4.1 Let D, η, σ and s0 be positive constants and C be any real number. Sup-
pose

w0 ∈ C2([0, s0]
)
, w0r(0) = w0(s0) = 0, w0(r) > 0 in (0, s0).

Assume that s(t) ∈ C1+ σ
2 ([0,∞)), s(t) > 0 for 0 ≤ t < ∞, limt→∞ s(t) = s∞ < ∞,

limt→∞ s′(t) = 0; and that w ∈ C 1+σ
2 ,1+σ ([0,∞) × [0, s(t)]), w(t, r) > 0 for 0 ≤ t < ∞ and

0 < r < s(t), ‖w(t, ·)‖C1[0,r(t)] ≤ M for any t ≥ 1 and some M > 0. If (w, r) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wt – D�w ≥ Cw, t > 0, 0 < r < s(t),

wr(t, 0) = w(t, s(t)) = 0, t > 0,

s′(t) ≥ –ηwr , t > 0, r = s(t),

w(0, r) = w0(r), 0 ≤ r ≤ s0 = s(0),

then limt→∞ max0≤x≤r(t) w(t, x) = 0.

Proof The proof is identical to that of Proposition 3.1 in [23], so we leave out the details. �

Theorem 4.1 Assume that (u, v, s) is the solution of problem (2). If h∞ < ∞, then

lim
t→∞

∥
∥u(t, ·)∥∥C([0,h(t)]) = lim

t→∞
∥
∥v(t, ·)∥∥C([0,h(t)]) = 0. (20)

Proof By the estimate of (7) we know that ‖h′‖
C

ν
2 ([1,∞))

≤ C. Combining this with h′(t) > 0
and h∞ < ∞ implies h′(t) → 0 as t → ∞.

From the proof of Theorem 3.1 we can find that u, v > 0 for t > 0, 0 < r < h(t) and
ur(t, h(t)) < 0, vr(t, h(t)) < 0. Thus it follows that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – d1�u ≥ –θu, t > 0, 0 < r < h(t),

ur(t, 0) = u(t, h(t)) = 0, t > 0,

h′(t) ≥ –μur(t, h(t)), t > 0,

h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

By virtue of (5), (7) and Proposition 4.1 it is derived that

lim
t→∞ max

0≤x≤s(t)
u(t, x) = 0.

In the same way we immediately get limt→∞ max0≤x≤s(t) v(t, x) = 0.
This proof is completed. �

The result of Theorem 4.1 shows that if the new or invasive species cannot spread into
the whole space, then it will die out eventually. In the following theorem, we will give a
necessary condition for vanishing.
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Theorem 4.2 Let (u, v, h) be any solution of (4). If h∞ < ∞, then h∞ ≤ R∗, where R∗ is
defined as in (12).

Proof Theorem 3.1 implies that, if h∞ < ∞, then (20) holds. We assume h∞ > R∗ to get a
contradiction. It is easy to see that there exists τ � 1 such that R∗ < h(τ ) := R. Let (w, z) be
the positive solution of the following initial-boundary value problem with fixed boundary:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wt – d1�w = az – θw, t > τ , 0 < r < R,

zt – d2�z = βw – bz2 – cz, t > τ , 0 < r < R,

wr(t, 0) = zr(t, 0) = w(t, R) = z(t, R) = 0, t > τ ,

w(τ , r) = u(τ , r), z(τ , r) = v(τ , r), 0 ≤ r ≤ R.

By the comparison principle,

(
w(t, r), z(t, r)

) ≤ (
u(t, r), v(t, r)

)
, ∀t ≥ τ , 0 ≤ r ≤ R.

Since R > R∗ and Theorem 2.2, one can easily see that (w(t, r), z(t, r)) → (u∗
R(r), v∗

R(r)) as
t → ∞ uniformly in [0, R], where (u∗

R(r), v∗
R(r)) is the unique positive solution of (10) with

λ = 1. Therefore,

lim inf
t→∞ u(t, r) ≥ u∗

R(r), lim inf
t→∞ v(t, r) ≥ v∗

R(r) for r ∈ [0, R].

This is a contradiction to Eq. (20). Therefore, h∞ ≤ R∗. �

Theorem 4.3 If h∞ = ∞, then

lim
t→∞

(
u(t, r), v(t, r)

)
= (ũ, ṽ)

uniformly in any bounded subset of [0,∞).

Proof First, we consider the ODE problem (16). By the comparison principle, we can eas-
ily see that (u(t, r), v(t, r)) ≤ (ū(t), v̄(t)) for t > 0 and r ∈ [0, h(t)]. Similarly to the proof of
Theorem 2.1 in [30], we see that the positive constant steady state (ũ, ṽ) of (16) is globally
asymptotically stable. So limt→∞(ū(t), v̄(t)) = (ũ, ṽ), moreover,

lim sup
t→∞

u(t, r) ≤ ũ, lim sup
t→∞

v(t, r) ≤ ṽ uniformly for r ∈ [0,∞).

Next, we show

lim inf
t→∞ u(t, r) ≥ ũ, lim inf

t→∞ v(t, r) ≥ ṽ

locally uniformly for r ∈ [0,∞). For any R > max{h0, R∗}, there exists tR > 0 such that h(tR) =
R. By use of the comparison principle we have (u(t, r), v(t, r)) ≥ (uR(t, r), vR(t, r)) in (tR,∞)×
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(0, R), where (uR(t, r), vR(t, r)) is the solution of the following problem with fixed boundary:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uR)t – d1�uR = avR – θuR, t > tR, 0 < r < R,

(vR)t – d2�vR = βuR – bv2
R – cvR, t > tR, 0 < r < R,

(uR)r(t, 0) = (vR)r(t, 0) = 0, t > tR,

uR(t, R) = vR(t, R) = 0, t > tR,

uR(tR, r) = u(tR, r), vR(tR, r) = v(tR, r), 0 ≤ r ≤ R.

By virtue of R > R∗ and Theorem 2.2, we easily see that (uR(t, r), vR(t, r)) → (u∗
R(r), v∗

R(r)) as
t → ∞ uniformly in [0, R], where (u∗

R(r), v∗
R(r)) is the unique positive solution of (10) with

λ = 1. It follows that

lim inf
t→∞ u(t, r) ≥ u∗

R(r), lim inf
t→∞ v(t, r) ≥ v∗

R(r) (21)

uniformly in compact subsets of [0, R). Similarly to the process of the last half proof of
Theorem 1.1, we see that (u∗

R(r), v∗
R(r)) → (ũ, ṽ) as R → ∞ uniformly in any compact subset

of [0,∞) and then

lim inf
t→∞ u(t, r) ≥ ũ, lim inf

t→∞ v(t, r) ≥ ṽ

locally uniformly for r ∈ [0,∞), due to (21). This completes the proof of the desired re-
sult. �

Combining Theorems 4.1, 4.2 and 4.3, we have Theorem 1.3.

5 The criteria governing spreading and vanishing
Now we decide exactly when each of the two alternative occurs. The discussion will be
divided into two cases:

(a) h0 ≥ R∗, (b) h0 < R∗.

For the case (a), due to h′(t) > 0 for t > 0, we must have h∞ > R∗. Hence Theorem 4.2
implies that if h0 ≥ R∗, then h∞ = ∞.

Next we discuss the case (b).

Theorem 5.1 If h0 < R∗, then there exists μ0 > 0 depending on (u0, v0) such that h∞ = ∞ if
μ ≥ μ0.

Proof This proof is similar to [24, Lemma 3.6]. We give the details below for completeness.
We see from (6) that there exists a constant δ∗ > 0 such that the solution (u, v, h) of

problem (4) satisfies

av – θu ≥ –δ∗u, βu – bv2 – cv ≥ –δ∗v
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for all (t, r) ∈ 	. We next consider the auxiliary free boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt – d1�w = –δ∗w, t > 0, 0 < r < g(t),

zt – d2�z = –δ∗z, t > 0, 0 < r < g(t),

zr(t, 0) = wr(t, 0) = z(t, g(t)) = w(t, g(t)) = 0, t > 0,

g ′(t) = –μ(wr + ρzr), t > 0, r = g(t),

g(0) = h0, z(0, r) = u0(r), w(0, r) = v0(r), 0 ≤ r ≤ h0.

(22)

Arguing as in proving the existence and uniqueness of the solution to (4), one will easily
see that (22) also admits a unique solution (w, z, g) which is well defined for all t > 0. More-
over, due to the Hopf boundary lemma, g ′(t) > 0 for t > 0. To stress the dependence of the
solutions on the parameter μ, in the sequel, we always write (uμ, vμ, hμ) and (wμ, zμ, gμ)
instead of (u, v, h) and (w, z, g). By Lemma 11, we have

uμ(t, r) ≥ wμ(t, x), vμ(t, r) ≥ zμ(t, r), hμ(t) ≥ gμ(t),

∀t ≥ 0, r ∈ [
0, gμ(t)

]
. (23)

In what follows, we are going to prove that, for all large μ,

gμ(2) ≥ 2R∗. (24)

To the end, we first choose a smooth function g(t) with g(0) = h0/2, g ′(t) > 0 and g(2) =
2R∗. We then consider the following initial-boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt – d1�w = –δ∗w, t > 0, 0 < r < g(t),

zt – d2�z = –δ∗z, t > 0, 0 < r < g(t),

wr(t, 0) = zr(t, 0) = 0, t > 0,

w(t, g(t)) = z(t, g(t)) = 0, t > 0,

w(0, r) = w0(r), z(0, r) = z0(r), 0 ≤ r ≤ h0/2.

(25)

Here, for the smooth initial value (w0, z0), we require

⎧
⎨

⎩

w0 ≤ u0 on [0, h0/2], (w0)r(0) = w0(h0/2) = 0, (w0)r(h0/2) < 0,

z0 ≤ v0 on [0, h0/2], (z0)r(0) = z0(h0/2) = 0, (z0)r(h0/2) < 0.
(26)

The standard theory for parabolic equations ensures that (25) has a unique positive so-
lution (w, z), and wr(t, g(t)) < 0, zr(t, g(t)) < 0 for all t ∈ [0, 2] due to the Hopf boundary
lemma. According to our choice of g(t) and (w0, z0), there is a constant μ0 > 0 such that,
for all μ ≥ μ0,

g ′(t) ≤ –μ
[
wr

(
t, g(t)

)
+ ρzr

(
t, g(t)

)]
, 0 ≤ t ≤ 2. (27)

On the other hand, for system (25), we can establish the comparison principle analogous
with lower solution to Theorem 3.3 by the same argument. Thus, note that g(0) = h0/2 < h0,



Zhao et al. Boundary Value Problems  (2018) 2018:138 Page 19 of 23

it follows from (25), (26) and (27) that

wμ(t, r) ≥ w(t, r), zμ(t, r) ≥ z(t, r), gμ(t) ≥ g(t), ∀t ∈ [0, 2], r ∈ [
0, g(t)

]
.

This particularly implies gμ(2) ≥ g(2) = 2R∗, and so (24) holds. Hence, in view of (23) and
(24), we find

h∞ = lim
t→∞ hμ(t) > hμ(2) ≥ 2R∗.

This, together with Theorem 4.2, yields the desired result. �

Theorem 5.2 If h0 < R∗, then there exists μ0 > 0 depending on (u0, v0) such that h∞ < ∞ if
μ ≤ μ0.

Proof We are going to construct a suitable supper solution to (4) and then apply Theo-
rem 3.3.

Inspired by [2], for t > 0 and r ∈ [0,η(t)], we define

η(t) = h0

(

1 + δ –
δ

2
e–γ t

)

, ū(t, r) = K1e–γ tφ

(
h0r
η(t)

)

, v̄(t, r) = K2e–γ tφ

(
h0r
η(t)

)

,

where δ, γ , K1 and K2 are positive constants to be chosen later and φ(|x|) is the first eigen-
function of the problem

⎧
⎨

⎩

–d1�φ = λ1(d1, h0)φ, x ∈ Bh0 ,

φ = 0, x ∈ ∂Bh0 ,

with φ > 0 in Bh0 and ‖φ‖∞ = 1. Since h0 < R∗, we have

λ1(d1, h0) >
–[d2θ + d1c] +

√
[d2θ + d1c]2 + 4d1d2[aβ – cθ ]

2d2
. (28)

We also observe that φ′(0) = 0 and

–
(
rn–1φ′)′ = rn–1λ1(d1, h0)φ > 0, ∀0 < r < h0.

It follows that

φ′(r) < 0, ∀0 < r ≤ h0.

Set σ (t) = η(t)/h0, then η(t) = h0σ (t). Direct computations yield

ūt – d1�ū – av̄ + θ ū

= K1e–γ t
[

–γφ – rσ –2σ ′φ′ +
(

–d1�φ

(
r
σ

))

–
aK2

K1
φ + θφ

]

≥ K1e–γ t
[

–γφ + σ –2λ1(d1, h0)φ –
aK2

K1
φ + θφ

]
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≥ K1e–γ tφ

[

–γ + σ –2λ1(d1, h0) –
aK2

K1
+ θ

]

,

v̄t – d2�v̄ – βū + bv̄2 + cv̄

= K2e–γ t
[

–γφ – rσ –2σ ′φ′ +
(

–d2�φ

(
r
σ

))

–
βK1

K2
φ + bK2e–γ tφ2 + cφ

]

≥ K2e–γ t
[

–γφ +
d2

d1σ 2 λ1(d1, h0)φ –
βK1

K2
φ + bK2e–γ tφ2 + cφ

]

≥ K2e–γ tφ

[

–γ +
d2

d1

λ1(d1, h0)
(1 + δ)2 –

βK1

K2
+ bK2e–γ tφ + c

]

.

We easily see that

h0(1 + δ/2) ≤ η(t) ≤ h0(1 + δ), 1 + δ/2 ≤ σ (t) ≤ 1 + δ.

Hence, due to (28), we can choose γ , δ > 0 sufficiently small such that

λ1(d1, h0)
(1 + δ)2 >

1
2d2

{
–
[
d2(θ – γ ) + d1(c – γ )

]

+
√

[
d2(θ – γ ) + d1(c – γ )

]2 + 4d1d2
[
aβ – (c – γ )(θ – γ )

]}
.

Then

d2λ1(d1, h0)
d1(1 + δ)2 –

aβ

θ – γ + (1 + δ)–2λ1(d1, h0)
+ c – γ > 0.

Let K1
K2

satisfy

a
θ – γ + (1 + δ)–2λ1(d1, h0)

≤ K1

K2
≤ 1

β

(
d2λ1(d1, h0)
d1(1 + δ)2 + c – γ

)

. (29)

It can be derived that

ūt – d1�ū – av̄ + θ ū ≥ 0, t > 0, r ∈ [
0,η(t)

]
,

v̄t – d2�v̄ – βū + bv̄2 + cv̄ ≥ 0, t > 0, r ∈ [
0,η(t)

]
.

We now choose K1, K2 > 0 satisfying (29) and sufficiently large such that

u0(r) ≤ K1φ

(
r

1 + δ/2

)

= ū(0, r), r ∈ [0, h0],

v0(r) ≤ K2φ

(
r

1 + δ/2

)

= v̄(0, r), r ∈ [0, h0].

The direct calculation yields

η′(t) =
1
2

h0γ δe–γ t ,
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–μ
[
ūr

(
t,η(t)

)
+ ρv̄r

(
t,η(t)

)]
= μ(K1 + ρK2)e–γ t h0|φr(h0)|

η(t)

≤ μ(K1 + ρK2)e–γ t h0|φr(h0)|
1 + δ/2

.

Therefore, if we take

μ0 =
h0γ δ(1 + δ/2)

2(K1 + ρK2)|φr(h0)| ,

then, for any 0 < μ ≤ μ0, we have η′(t) ≥ –μ[ūr(t,η(t))+ρv̄r(t,η(t))]. Thus, (ū, v̄,η) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ūt – d1�ū ≥ av̄ – θ ū, t > 0, 0 < r < η(t),

v̄t – d2�v̄ ≥ βū – bv̄2 – cv̄, t > 0, 0 < r < η(t),

ūr(t, 0) = v̄r(t, 0) = 0, t > 0,

ū(t,η(t)) = v̄(t,η(t)) = 0, t > 0,

η′(t) ≥ –μ[ūr(t,η(t)) + ρv̄r(t,η(t))], t > 0,

ū(0, r) ≥ u0(r), v̄(0, r) ≥ v0(r), 0 ≤ r ≤ h0,

η(0) = h0(1 + δ/2).

We can apply Theorem 3.3 to conclude that h(t) ≤ η(t), u(t, r) ≤ ū(t, r) and v(t, r) ≤ v̄(t, r)
for (t, r) ∈ 	. Therefore, h∞ ≤ limt→∞ η(t) ≤ h0(1 + δ) < ∞. �

Proof of Theorem 1.4 The proof is similar to that of Theorem 5.2 of [16] and Theorem 4.11
of [4]. For convenience of the reader we shall give the details. Denote (uμ, vμ, hμ) in place
of (u, v, h) to clarify the dependence of the solution of (4) on μ. Set

� =
{
μ > 0 : hμ,∞ ≤ R∗}.

By Theorem 5.2 and Theorem 3.3, (0,μ0] ⊂ �. In view of Theorem 5.1, � ∩ [μ0,∞) = ∅.
Therefore, μ∗ := sup� ∈ [μ0,μ0]. By this definition and Corollary 3.1 we find that hμ,∞ ≤
R∗ when μ < μ∗ and hμ,∞ = ∞ when μ > μ∗.

We will show that μ∗ ∈ �. Otherwise, hμ∗ ,∞ = ∞. There exists T > 0 such that hμ∗ (T) >
R∗. By the continuous dependence of (uμ, vμ, hμ) on μ, there is ε > 0 such that hμ(T) > R∗

for μ ∈ (μ∗ – ε,μ∗ + ε). It follows that, for all such μ,

lim
t→∞ hμ(t) > hμ(T) > R∗.

This implies that [μ∗ –ε,μ∗ +ε]∩� = ∅, and sup� ≤ μ∗ –ε. This contradicts the definition
of μ∗. The proof is completed. �

6 Discussion
We have examined a free boundary problem of a single-species stage-structured model
with higher space dimensions and heterogeneous environment for the special case that the
environment and solution are radially symmetric. If the environment or solution is not ra-
dially symmetric, then the boundary of the spreading domain would not still be a sphere
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and the Stefan condition h′(t) = –μ[ur(t, h(t)) + ρvr(t, h(t))] would become very compli-
cated. Similar to the classical Stefan problem, smooth solutions to these free boundary
problems need not exist even if the initial data are smooth. It is necessary to make use of
other methods to discuss these problems.

In this paper, we firstly discuss the model on R
n, prove that the positive constant steady

state is globally asymptotically stable (Theorem 1.1). Then we investigate a free boundary
problem of the single-species stage-structured model. Our results about vanishing and
spreading of the model generalize and unify the previous Theorems 1.2–1.4, which are
the existence and uniqueness of solution, the spreading–vanishing dichotomy, the long
time behavior of the solution and sharp criteria for spreading and vanishing.

Biologically, the model with stage structure is more realistic than the model without
stage structure. From our results, one can control vanishing and spreading of the species
more flexibly by the introduction of stage structure. Note that with (12) and Theorem 1.3, if
(u0, v0) and h0 are fixed, then R∗ is a direct factor determining the vanishing and spreading.
To help the species spreading to infinity, it can be realized by enlarging the birth rate a of
the immature or the birth rate β of the mature.

There are some problems left unsolved in our work. When spreading happens, can we
find the spreading speed? Can we extend system (4) into the two-species competitive sys-
tem with staged structure? We leave these problems to our future work.
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