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Abstract
We construct the solutions to the Riemann problem for the isentropic extended
Chaplygin gas dynamic system for all kinds of situations by the phase plane analysis.
We investigate the asymptotic limits of solutions to this problem in detail when the
pressure given by the state equation of the system becomes the one of pressureless
gas. During the process of vanishing pressure, the two-shock Riemann solution tends
to a delta shock solution, whereas the two-rarefaction-wave Riemann solution tends
to a two-contact-discontinuity solution with a vacuum state.
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1 Introduction
The Chaplygin gas model was first proposed by Chaplygin [1] as a model in aerodynamics
with the equation of state in the form p = –B/ρ with constant B > 0. It was discovered in
[2] that the equation of state for the Chaplygin gas was very suitable to describe the dark
energy in the universe from the viewpoint of string theory. To be in more agreement with
observational data, it was extended to the generalized Chaplygin gas [3] with p = –B/ρα

and the modified Chaplygin gas [4] with p = Aρ – B/ρα , where A, B > 0 and 0 < α ≤ 1. The
equation of state for the modified Chaplygin gas contains two terms; the first term gives an
ordinary fluid obeying a linear barotropic equation of state, and the second one is related
to some power of the inverse of energy density. However, there are other barotropic fluids
with quadratic or higher-order equation of state. To overcome this drawback, the modified
Chaplygin gas has been further generalized by Pourhassan and Kahya [5] to the extended
Chaplygin gas with the equation of state in the form p =

∑n
k=1 Akρ

k – B/ρα . It is clear that
all the Chaplygin gas models mentioned are particular cases of the extended Chaplygin
gas model; see [6–9] for the related studies of the extended Chaplygin gas model.
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In the present paper, we are interested in the isentropic extended Chaplygin gas dynamic
system of the form

⎧
⎨

⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2 +
∑n

k=1 Akρ
k – B

ρ
)x = 0,

(1.1)

where ρ and u stand for the density and velocity, respectively. The equation of state p =
∑n

k=1 Akρ
k – B/ρ is chosen as a particular form of the extended Chaplygin gas with α = 1

for the conciseness of computation, in which Ak ≥ 0 (k = 1, . . . , n) and B > 0. In fact, the
result in this paper can be generalized to the general situation (0 < α ≤ 1) with the same
method by adding up a complicated computation.

If the pressure term p =
∑n

k=1 Akρ
k – B/ρ tends to zero, namely the limit Ak (k = 1, . . . , n),

B → 0 is taken, then system (1.1) formally becomes the following pressureless gas dynamic
system [10–15]:

⎧
⎨

⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = 0.
(1.2)

Model (1.2) was also used to describe some important physical phenomena, such as the
sticking process of free particles under collision [16, 17] and the formation of large-scale
structure in the universe [18]. It is worth noticing that the universe evolution behaves as a
pressureless fluid at early time of dark matter era and subsequently behaves like the cosmic
fluid to mimic the cosmological constant at late time of dark energy era [6]. In this work,
we investigate the transition between the two different eras of the universe by studying the
process of vanishing pressure from system (1.1) to system (1.2). More precisely, we focus
on the limiting relations of solutions to the Riemann problems for systems (1.1) and (1.2)
with the initial data of Riemann type

(u,ρ)(x, 0) =

⎧
⎨

⎩

(u–,ρ–), –∞ < x < 0,

(u+,ρ+), 0 < x < +∞.
(1.3)

The motivation comes from the the fact that both the δ-shock wave when u– > u+ and
the vacuum state when u– < u+ are included in the solutions to the Riemann problem
(1.2)–(1.3). Thus, the formation process of δ-shock wave and vacuum state can be ob-
served when we consider the limit of solutions to the Riemann problem for the isentropic
extended Chaplygin gas dynamic system (1.1) as the vanishing pressure Ak (k = 1, . . . , n),
B → 0. That is to say, if the limit Ak (k = 1, . . . , n), B → 0 is taken in the solution to the
Riemann problem (1.1) and (1.3) when u– > u+, then there is no solution in the space of
bounded variation functions such that we must solve it in the space of distributions due to
the blowup mechanism of solutions [15, 19, 20]. Specifically, we rigorously prove that the
limiting solutions to the Riemann problem (1.1) and (1.3) as Ak (k = 1, . . . , n), B → 0 are
exactly identical with the corresponding ones to the pressureless gas dynamic system (1.2)
with the same Riemann initial data. To be more precise, when u– > u+, the two-shock-wave
solution tends to a δ-shock wave solution as Ak (k = 1, . . . , n), B → 0, in which the inter-
mediate density between two shocks tends to be a weighted δ-measure. In contrast, when
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u– < u+, the two-rarefaction-wave solution tends to a two-contact-discontinuity solution
with a vacuum state between them, even if the initial data are far away from vacuum.

The formation of δ-shock wave and vacuum state to the Riemann problem (1.2) and
(1.3) was considered initially for the isothermal [21] and isentropic [10] situations by the
vanishing pressure limit approach. The result was further extended to the generalized
pressureless gas dynamics model in [22], the isentropic magneto-gas-dynamics model in
[23], and the Aw–Rascle model in [24]. Recently, the limiting relations of Riemann solu-
tions from a variety of Chaplygin gas dynamic systems to the pressureless gas dynamic
system have been extensively studied. More precisely, Sheng, Wang, and Yin [25] consid-
ered the asymptotic limits B → 0 of Riemann solutions for the generalized Chaplygin gas
p = –B/ρα . Furthermore, Chen and Sheng [26] have made a step further by considering
the isentropic magneto-gas-dynamics Euler system for the generalized Chaplygin gas as
the vanishing magnetic field. Yang and Wang made a step further by considering the mod-
ified Chaplygin gas p = Aρ – B/ρα with α = 1 in [27] and 0 < α < 1 in [28]. The vanishing
pressure limit problem for the Chaplygin gas p = –B/ρ and the generalized Chaplygin gas
p = –B/ρα with source term [29] has also been considered by Guo, Li, and Yin [30, 31]. Li
and Shao [32] have generalized these results to the relativistic Euler system with the gen-
eralized Chaplygin gas p = –B/ρα . Also see [33–35] for the other related study about the
formation of δ-shock wave. In this work, we make a step further by extending these results
to the relatively more general pressure term p =

∑n
k=1 Akρ

k – B/ρ . In a recent paper [36],
we have also considered the limiting relations of Riemann solutions from the isentropic
extended Chaplygin gas dynamic system to the isentropic Chaplygin gas dynamic system
when only the limit Ak (k = 1, . . . , n) → 0 is taken in system (1.1). We also refer to [37–43]
for other related works for the isentropic Chaplygin gas dynamic system.

The arrangement of this paper is as follows. In Sect. 2, we simply restate the solutions to
the Riemann problem for the pressureless gas dynamic system (1.2) for self-consistency.
In Sect. 3, we investigate in detail the basic properties of the isentropic extended Chap-
lygin gas dynamic system (1.1) and consequently construct the solutions to the Riemann
problem (1.1) and (1.3) for all kinds of Riemann initial data. In Sect. 4, we make a step
further by investigating the limit relations of Riemann solutions from the isentropic ex-
tended Chaplygin gas dynamic system (1.1) to the pressureless gas dynamic system (1.2)
as the limit Ak (k = 1, . . . , n), B → 0 is taken. The formation of δ-shock wave and vacuum
state can be observed during the process of vanishing pressure limit.

2 Preliminaries
In this section, for completeness, we recall the Riemann problem for the pressureless gas
dynamic system (1.2), which has been extensively investigated in [10, 14, 15]. System (1.2)
is nonstrictly hyperbolic since it has a pair of coincident eigenvalues λ = u associated
with the corresponding right eigenvector −→r = (0, 1)T . We further have ∇λ · −→r = 0, where
∇ = ( ∂

∂u , ∂
∂ρ

), which implies that the characteristic field of λ is linear degenerate and the
associated wave is contact discontinuity. For the case u– < u+, the solution contains two
contact discontinuities with vacuum state between them as follows:

(u,ρ)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(u–,ρ–), –∞ < x < u–t,

( x
t , 0), u–t < x < u+t,

(u+,ρ+), u+t < x < +∞.

(2.1)
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For the case u– > u+, a solution containing a weighted δ-measure supported on a curve
will be taken into account. We must then introduce the definition of δ-measure [10, 15,
44] for the purpose to describe the δ-shock wave solution to the Riemann problem (1.2)
and (1.3).

Definition 2.1 Let � = {(x(s), t(s)) : a < s < b} be a parameterized smooth curve. Then a
two-dimensional weighted Dirac delta function ω(t)δ� with the support on � is defined by

〈
ω(s)δs,ϕ

(
x(s), t(s)

)〉
=

∫ b

a
ω(s)ϕ

(
x(s), t(s)

)
ds (2.2)

for any test function ϕ(x, t) ∈ C∞
0 (R × R+).

For completeness, we give a more general definition of δ-shock wave solution suggested
by Danilov et al. [45, 46]. Suppose that � = {γi|i ∈ I} is a graph in the upper half-plane with
the requirement (x, t) ∈ R × R+, which is comprised of Lipschitz continuous curves γi for
i ∈ I , where I is a finite index set. Subsequently, I0 is a subset of I such that the curves γi

for i ∈ I0 start from the points on the x-axis. By �0 = {x0
k|k ∈ I0} we denote the set of initial

points of γk for k ∈ I0. As is shown further, the solutions of the initial value problem for
the pressureless gas dynamic system (1.2) with the δ-measure initial data are defined in
the distributional sense.

Definition 2.2 Consider the initial data of δ-shock wave type

(u,ρ)(x, 0) =
(

u0(x), ρ̂0(x) +
∑

k∈I0

wk
(
x0

k , 0
)
δ
(
x – x0

k
)
)

(2.3)

with u0, ρ̂0 ∈ L∞(R). A pair of distributions (u,ρ) is called a solution of δ-shock wave type
to the initial value problem (1.2) and (2.3) if the following integral identities are satisfied
for every test function ϕ ∈ C∞

c (R × R+):

∫

R+

∫

R
(ρ̂ϕt + ρ̂uϕx) dx dt +

∑

i∈I

∫

γi

wi(x, t)
∂ϕ(x, t)

∂l
dl

+
∫

R
ρ̂0(x)ϕ(x, 0) dx +

∑

k∈I0

wk
(
x0

k , 0
)
ϕ
(
x0

k , 0
)

= 0, (2.4)

∫

R+

∫

R

(
ρ̂uϕt + ρ̂u2ϕx

)
dx dt +

∑

i∈I

∫

γi

wi(x, t)uδ(x, t)
∂ϕ(x, t)

∂l
dl

+
∫

R
ρ̂0(x)u0(x)ϕ(x, 0) dx +

∑

k∈I0

wk
(
x0

k , 0
)
uδ

(
x0

k , 0
)
ϕ
(
x0

k , 0
)

= 0. (2.5)

In view of these definitions, as in [10, 14, 15], if u– > u+, then a δ-shock wave solution
can be constructed for the Riemann problem (1.2) and (1.3) in the following piecewise
smooth form:

(u,ρ)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(u–,ρ–), x < σδt,

(uδ(t),ω(t)δ(x – σδt)), x = σδt,

(u+,ρ+), x > σδt,

(2.6)
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in which

σδ = uδ(t) =
√

ρ+u+ + √
ρ–u–√

ρ+ + √
ρ–

, ω(t) =
√

ρ–ρ+(u– – u+)t. (2.7)

In addition, the δ-shock wave solution (2.6) associated with (2.7) must satisfy the gener-
alized Rankine–Hugoniot conditions

dx
dt

= σδ ,
dω(t)

dt
= σδ[ρ] – [ρu],

d(ω(t)uδ(t))
dt

= σδ[ρu] –
[
ρu2], (2.8)

and the over-compressive δ-entropy condition

u+ < σδ < u–. (2.9)

3 The Riemann problem for the isentropic extended Chaplygin gas dynamic
system (1.1)

In this section, we first analyze the properties of elementary waves and then construct the
solutions to the Riemann problem (1.1) and (1.3) for all kinds of situations. System (1.1)
has two distinct eigenvalues given by

λ1 = u –
1
ρ

√
√
√
√

n∑

k=1

kAkρk+1 + B, λ2 = u +
1
ρ

√
√
√
√

n∑

k=1

kAkρk+1 + B. (3.1)

System (1.1) is strictly hyperbolic for λ1 < λ2 when not all the n + 1 parameters Ak (k =
1, . . . , n) and B are equal to zero. The right eigenvectors corresponding to λ1 and λ2 are
computed respectively by

−→r1 =

(

–
1
ρ

√
√
√
√

n∑

k=1

kAkρk+1 + B,ρ

)T

, −→r2 =

(
1
ρ

√
√
√
√

n∑

k=1

kAkρk+1 + B,ρ

)T

. (3.2)

Let us denote ∇ = ( ∂
∂u , ∂

∂ρ
). Then we have

∇λ1 · −→r1 =
–

∑n
k=1 k(k + 1)Akρ

k

2
√∑n

k=1 kAkρk+1 + B
	= 0, ∇λ2 · −→r2 =

∑n
k=1 k(k + 1)Akρ

k

2
√∑n

k=1 kAkρk+1 + B
	= 0, (3.3)

when not all the n parameters Ak (k = 1, . . . , n) are equal to zero. Therefore, the character-
istic fields associated with λ1 and λ2 are genuinely nonlinear when not all the n parameters
Ak (k = 1, . . . , n) are equal to zero, in which the associated waves for both of them are either
shock waves or rarefaction waves.

Under uniform stretching of coordinates (x, t) → (αx,αt) for any constant α > 0, both
system (1.1) and initial data (1.3) remain unchanged. Hence we are looking for the self-
similar solutions of the form

(u,ρ)(x, t) = (u,ρ)(ξ ), ξ =
x
t

. (3.4)
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Then the Riemann problem (1.1) and (1.3) is reduced to the following system of ordinary
differential equations:

⎧
⎨

⎩

–ξρξ + (ρu)ξ = 0,

–ξ (ρu)ξ + (ρu2 +
∑n

k=1 Akρ
k – B

ρ
)ξ = 0,

(3.5)

in companion with the boundary conditions at infinity given by (u,ρ)(±∞) = (u±,ρ±). For
smooth solutions, (3.5) is simplified to be

(
ρ u – ξ

2uρ – ξρ u2 +
∑n

k=1 kAkρ
k–1 + B

ρ2 – ξu

)(
du
dρ

)

=

(
0
0

)

. (3.6)

Except for the constant states, (3.6) also provides the 1-rarefaction wave

R1(u–,ρ–) :

⎧
⎪⎨

⎪⎩

ξ = λ1 = u – 1
ρ

√∑n
k=1 kAkρk+1 + B,

du + 1
ρ2

√∑n
k=1 kAkρk+1 + B dρ = 0,

(3.7)

and the 2-rarefaction wave

R2(u–,ρ–) :

⎧
⎪⎨

⎪⎩

ξ = λ2 = u + 1
ρ

√∑n
k=1 kAkρk+1 + B,

du – 1
ρ2

√∑n
k=1 kAkρk+1 + B dρ = 0.

(3.8)

More precisely, since uξ = 1 > 0 and uρ = – 1
ρ2

√∑n
k=1 kAkρk+1 + B < 0 by (3.7), the 1-

rarefaction wave is

R1(u–,ρ–) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ = λ1(u,ρ) = u – 1
ρ

√∑n
k=1 kAkρk+1 + B,

u = u– –
∫ ρ

ρ–
1
s2

√∑n
k=1 kAksk+1 + B ds,

u > u–, ρ < ρ–.

(3.9)

Similarly, since uξ = 1 > 0 and uρ = 1
ρ2

√∑n
k=1 kAkρk+1 + B > 0 by (3.8), the 2-rarefaction

wave is

R2(u–,ρ–) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ = λ2(u,ρ) = u + 1
ρ

√∑n
k=1 kAkρk+1 + B,

u = u– +
∫ ρ

ρ–
1
s2

√∑n
k=1 kAksk+1 + B ds,

u > u–, ρ > ρ–.

(3.10)

For the 1-rarefaction wave, it follows from the second equation of (3.7) that

uρρ = –
∑n

k=1 k(k – 3)Akρ
k+1 – 4B

2ρ3
√∑n

k=1 kAkρk+1 + B
. (3.11)

If n = 1, 2, 3, then we have uρρ > 0 for all the ρ ≥ 0. Otherwise, if n ≥ 4, then there exists
only one ρ0 ∈ (0, +∞) such that uρρ > 0 for 0 ≤ ρ < ρ0 and uρρ < 0 for ρ > ρ0. In other
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words, the concavity or convexity of the 1-rarefaction curve changes at ρ = ρ0 in the (u,ρ)
phase plane, but it does not affect the construction of Riemann solutions. In addition, from
the second equation of (3.9) we have

u – u– =
∫ ρ–

ρ

1
s2

√
√
√
√

n∑

k=1

kAksk+1 + B ds ≥
∫ ρ–

ρ

√
B

s2 ds =
√

B
ρ

(
1
ρ

–
1
ρ–

)

, (3.12)

which means that the limiting relation limρ→0 u = +∞ holds on the 1-rarefaction curve R1

in the (u,ρ) phase plane.
Similarly, from the second equation of (3.8) we also have

uρρ =
∑n

k=1 k(k – 3)Akρ
k+1 – 4B

2ρ3
√∑n

k=1 kAkρk+1 + B
. (3.13)

With an analogous analysis as before, if n = 1, 2, 3, then we have uρρ < 0 for all ρ ≥ 0.
Otherwise, if n ≥ 4, then there also exists only one ρ0 ∈ (0, +∞) such that we have uρρ > 0
for 0 ≤ ρ < ρ0 and uρρ > 0 for ρ > ρ0. In addition, from the second equation of (3.10) we
also have

u – u– =
∫ ρ

ρ–

1
s2

√
√
√
√

n∑

k=1

kAksk+1 + B ds ≥
∫ ρ

ρ–

√
B

s2 ds =
√

B
ρ

(
1
ρ–

–
1
ρ

)

, (3.14)

which implies that the limiting relation limρ→+∞ u = +∞ holds on the 2-rarefaction curve
R2 in the (u,ρ) phase space.

From now on, we focus on the shock wave, which is the other elementary wave for system
(1.1). Denote by (u–,ρ–) and (u,ρ) the left and right states of a shock wave, respectively.
The Rankine–Hugoniot conditions at a bounded discontinuity ξ = σ read as

⎧
⎨

⎩

σ [ρ] = [ρu],

σ [ρu] = [ρu2 +
∑n

k=1 Akρ
k – B

ρ
],

(3.15)

where [ρ] = ρ – ρ– denotes the jump of state variable ρ across the discontinuity and so
on. If σ = 0, then we can only arrive at the trivial case (u,ρ) = (u–,ρ–). Otherwise, if σ 	= 0,
then we have

[ρu]2 = [ρ]

[

ρu2 +
n∑

k=1

Akρ
k –

B
ρ

]

, (3.16)

which gives

(ρu – ρ–u–)2 = (ρ – ρ–)

(

ρu2 – ρ–u2
– +

n∑

k=1

Ak
(
ρk – ρk

–
)

–
B
ρ

+
B
ρ–

)

. (3.17)

Simplifying (3.17) yields

ρ–ρ(u – u–)2 = (ρ – ρ–)

( n∑

k=1

Ak
(
ρk – ρk

–
)

+ B
(

1
ρ–

–
1
ρ

))

, (3.18)
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so that we further get

u – u– = ±
√
√
√
√

(
1
ρ–

–
1
ρ

)( n∑

k=1

Ak
(
ρk – ρk

–
)

+ B
(

1
ρ–

–
1
ρ

))

. (3.19)

In what follows, the sign in (3.19) should be determined. It is known from [47] that the
1-shock wave should satisfy the Lax entropy conditions

σ < λ1(u–,ρ–), λ1(u,ρ) < σ < λ2(u,ρ), (3.20)

whereas the 2-shock wave should satisfy the Lax entropy conditions

λ1(u–,ρ–) < σ < λ2(u–,ρ–), λ2(u,ρ) < σ . (3.21)

It follows from the first equation of (3.15) that

σ =
ρu – ρ–u–

ρ – ρ–
= u– +

ρ(u – u–)
ρ – ρ–

= u +
ρ–(u – u–)

ρ – ρ–
. (3.22)

It is deduced from (3.20) that the state set (u,ρ) on the 1-shock wave curve S1(u–,ρ–)
must satisfy

–

√
√
√
√

n∑

k=1

kAkρk+1 + B <
ρρ–(u – u–)

ρ – ρ–
< –

√
√
√
√

n∑

k=1

kAkρk+1
– + B. (3.23)

Similarly, it is deduced from (3.21) that the state set (u,ρ) on the 2-shock wave curve
S2(u–,ρ–) must satisfy

√
√
√
√

n∑

k=1

kAkρk+1 + B <
ρρ–(u – u–)

ρ – ρ–
<

√
√
√
√

n∑

k=1

kAkρk+1
– + B. (3.24)

Simplifying (3.23) and (3.24), we obtain that ρ > ρ– and u < u– for the 1-shock wave and
ρ < ρ– and u < u– for the 2-shock wave. Thus the minus sign should be chosen in (3.19)
for both shock waves S1(u–,ρ–) and S2(u–,ρ–).

In summary, for the given left state (u–,ρ–), the two shock waves can be expressed re-
spectively by

S1(u–,ρ–) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ = u– + ρ(u–u–)
ρ–ρ–

,

u = u– –
√

( 1
ρ–

– 1
ρ

)(
∑n

k=1 Ak(ρk – ρk
–) + B( 1

ρ–
– 1

ρ
)),

u < u–, ρ > ρ–,

(3.25)

and

S2(u–,ρ–) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ = u– + ρ(u–u–)
ρ–ρ–

,

u = u– –
√

( 1
ρ–

– 1
ρ

)(
∑n

k=1 Ak(ρk – ρk
–) + B( 1

ρ–
– 1

ρ
)),

u < u–, ρ < ρ–.

(3.26)
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Figure 1 The elementary wave curves for system
(1.1) in the (u,ρ) phase plane

It follows from (3.25) or (3.26) that

uρ = –
∑n

k=1 Ak(kρk(ρ – ρ–) + ρ–(ρk – ρk
–) + 2Bρ–( 1

ρ–
– 1

ρ
))

2ρ–ρ2
√

( 1
ρ–

– 1
ρ–

)(
∑n

k=1 Ak(ρk – ρk
–) + B( 1

ρ–
– 1

ρ–
))

. (3.27)

We have uρ < 0 from ρ > ρ– for the 1-shock curve and uρ > 0 from ρ < ρ– for the 2-shock
curve. The concavity or convexity of the 1-rarefaction (or 2-rarefaction) curve is similar
to that for the 1-shock (or 2-shock) curve. The calculation is trivial but tedious and thus
is omitted here. In addition, the limiting relation limρ→+∞ u = –∞ can be established for
the 1-shock curve, provided that not all the n parameters Ak (k = 1, . . . , n) are equal to
zero. Similarly, the limiting relation limρ→0 u = –∞ can also be established for the 2-shock
curve.

Gathering the formulae (3.9), (3.10), (3.25), and (3.26) together, we can see that if the
left state (u–,ρ–) is fixed, then the half-upper (u,ρ) phase plane is divided into four re-
gions denoted with I , II , III , and IV respectively by the elementary wave curves R1(u–,ρ–),
R2(u–,ρ–), S1(u–,ρ–), and S2(u–,ρ–) starting from the left state (u–,ρ–) (see Fig. 1). By using
the method of phase plane analysis, for the given left state (u–,ρ–) ∈ R × R+, the unique
solution to the Riemann problem (1.1) and (1.3) can be constructed for any right state
(u+,ρ+) ∈ R × R+. More precisely, if (u+,ρ+) ∈ I, II, III , or IV , then the solution to the Rie-
mann problem (1.1) and (1.3) can be expressed by the symbols R1 + R2, R1 + S2, S1 + R2, or
S1 + S2 respectively, in which the symbol R1 + R2 is used to express a 1-rarefaction wave
R1 followed by a 2-rarefaction wave R2, and so on.

4 The limits of Riemann solutions from system (1.1) to system (1.2) as Ak

(k = 1, . . . , n), B → 0
In this section, we focus ourselves on the asymptotic limits of solutions to the Riemann
problem (1.1) and (1.3) as all the parameters Ak (k = 1, . . . , n) and B tend to zero. Let the left
state (u–,ρ–) be fixed. If the limit Ak (k = 1, . . . , n), B → 0 is taken, then it can be seen from
(3.9), (3.10), (3.25), and (3.26) that all the wave curves R1(u–,ρ–), R2(u–,ρ–), S1(u–,ρ–), and
S2(u–,ρ–) tend to the line u = u– in the half-upper (u,ρ) phase space. We further observe
that the regions II and III disappear in the limit Ak (k = 1, . . . , n), B → 0 situation. Hence,
if u+ < u–, then the right state (u+,ρ+) is located in the region IV for sufficiently small Ak

(k = 1, . . . , n) and B. Otherwise, if u+ > u–, then the right state (u+,ρ+) is located in the
region I for sufficiently small Ak (k = 1, . . . , n) and B. In the special situation, if u+ = u–,
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then the right state (u+,ρ+) is located in the region II for 0 ≤ ρ+ < ρ– or in the region III
for ρ+ > ρ– when all the parameters Ak (k = 1, . . . , n) and B are sufficiently small.

Let us first consider the situation u+ < u–, in which the right state (u+,ρ+) is located in
the region IV for sufficiently small Ak (k = 1, . . . , n) and B. In what follows, we are devoted
to studying the formation of δ-shock wave solution from the solution consisting of two
shock waves by studying the vanishing pressure limits of solutions to the Riemann problem
(1.1) and (1.3). When (u+,ρ+) ∈ IV , for any fixed Ak (k = 1, . . . , n), B > 0, let (u∗,ρ∗) be the
intermediate state between two shock waves. Then (u–,ρ–) and (u∗,ρ∗) are connected by
the 1-shock wave S1 with the speed σ1, whereas (u∗,ρ∗) and (u+,ρ+) are connected by the
2-shock wave S2 with speed σ2. More specifically, we have

S1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ1 = ρ∗u∗–ρ–u–
ρ∗–ρ–

,

u∗ = u– –
√

( 1
ρ–

– 1
ρ∗ )(

∑n
k=1 Ak(ρk∗ – ρk

–) + B( 1
ρ–

– 1
ρ∗ )),

u∗ < u–, ρ∗ > ρ–,

(4.1)

and

S2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ2 = ρ+u+–ρ∗u∗
ρ+–ρ∗ ,

u+ = u∗ –
√

( 1
ρ∗ – 1

ρ+
)(
∑n

k=1 Ak(ρk
+ – ρk∗ ) + B( 1

ρ∗ – 1
ρ+

)),

u∗ > u+, ρ∗ > ρ+.

(4.2)

In what follows, we give some lemmas to show the limiting behaviors of the solutions
to the Riemann problem (1.1) and (1.3) consisting of two shock waves for the situation
u+ < u– when Ak (k = 1, . . . , n), B → 0.

Lemma 4.1 When u+ < u–, if the solution to the Riemann problem (1.1) and (1.3) consists
of two shock waves for sufficiently small Ak (k = 1, . . . , n) and B, then we have

lim
Ak (k=1,...,n),B→0

ρ∗ = +∞, lim
Ak (k=1,...,n),B→0

n∑

k=1

Akρ
k
∗ =

ρ–ρ+

(√ρ– + √
ρ+)2 (u– – u+)2. (4.3)

In addition, we further have

lim
Ak (k=1,...,n),B→0

σ1 = lim
Ak (k=1,...,n),B→0

σ2 = lim
Ak (k=1,...,n),B→0

u∗ =
√

ρ+u+ + √
ρ–u–√

ρ+ + √
ρ–

= σδ . (4.4)

Proof It follows from (4.1) and (4.2) that

u– – u+ =

√
√
√
√ρ∗ – ρ–

ρ∗ρ–

( n∑

k=1

Ak
(
ρk∗ – ρk

–
)

+ B
(

1
ρ–

–
1
ρ∗

))

+

√
√
√
√ρ+ – ρ∗

ρ∗ρ+

( n∑

k=1

Ak
(
ρk

+ – ρk∗
)

+ B
(

1
ρ∗

–
1
ρ+

))

. (4.5)

If limAk (k=1,...,n),B→0 ρ∗ = M ∈ (max(ρ–,ρ+), +∞), then taking the limit of (4.5) as Ak

(k = 1, . . . , n), B → 0 leads to u– – u+ = 0, which contradicts with u+ < u–. Therefore,
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limAk (k=1,...,n),B→0 ρ∗ = +∞ must be established. With this fact in mind, if we take the limit
of (4.5) as Ak (k = 1, . . . , n), B → 0 again, then we have

u– – u+ = lim
Ak (k=1,...,n),B→0

√
√
√
√ 1

ρ–

n∑

k=1

Akρk∗ + lim
Ak (k=1,...,n),B→0

√
√
√
√ 1

ρ+

n∑

k=1

Akρk∗ , (4.6)

which gives the second limiting relation in (4.3).
On the other hand, it can be deduced from (4.1) and (4.2) that

lim
Ak (k=1,...,n),B→0

σ1 = lim
Ak (k=1,...,n),B→0

ρ∗u∗ – ρ–u–

ρ∗ – ρ–

= lim
Ak (k=1,...,n),B→0

u∗ – ρ–u–
ρ∗

1 – ρ–
ρ∗

= lim
Ak (k=1,...,n),B→0

u∗, (4.7)

lim
Ak (k=1,...,n),B→0

σ2 = lim
Ak (k=1,...,n),B→0

ρ+u+ – ρ∗u∗
ρ+ – ρ∗

= lim
Ak (k=1,...,n),B→0

ρ+u+
ρ∗ – u∗
ρ+
ρ∗ – 1

= lim
Ak (k=1,...,n),B→0

u∗. (4.8)

More precisely, from (4.1) we get

lim
Ak (k=1,...,n),B→0

u∗

= u– – lim
Ak (k=1,...,n),B→0

√
√
√
√

(
1
ρ–

–
1
ρ∗

)( n∑

k=1

Ak
(
ρk∗ – ρk

–
)

+ B
(

1
ρ–

–
1
ρ∗

))

= u– – lim
Ak (k=1,...,n),B→0

√
√
√
√ 1

ρ–

n∑

k=1

Akρk∗

= u– –

√
1
ρ–

ρ–ρ+

(√ρ– + √
ρ+)2 (u– – u+)2

= u– –
√

ρ+√
ρ+ + √

ρ–
(u– – u+) =

√
ρ+u+ + √

ρ–u–√
ρ+ + √

ρ–
= σδ .

Hence the limiting relation (4.4) can also be established. The proof is completed. �

Moreover, we have the following limiting relations of mass and momentum in the limit
Ak (k = 1, . . . , n), B → 0 situation, which can be described by the following lemma.

Lemma 4.2 The limiting relations of mass and momentum between two shock waves as
Ak (k = 1, . . . , n), B → 0 are as follows:

lim
Ak (k=1,...,n),B→0

∫ σ2

σ1

ρ∗ dξ = σδ[ρ] – [ρu], (4.9)

lim
Ak (k=1,...,n),B→0

∫ σ2

σ1

ρ∗u∗ dξ = σδ[ρu] –
[
ρu2], (4.10)

in which the jump of ρ is given by [ρ] = ρ+ – ρ–, and so on.
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Proof If the first equation of the Rankine–Hugoniot conditions (3.15) is carried out on the
two shock waves S1 and S2, then we have

⎧
⎨

⎩

σ1(ρ∗ – ρ–) = ρ∗u∗ – ρ–u–,

σ2(ρ+ – ρ∗) = ρ+u+ – ρ∗u∗,
(4.11)

which leads to

lim
Ak (k=1,...,n),B→0

(σ2 – σ1)ρ∗ = lim
Ak (k=1,...,n),B→0

(–σ1ρ– + σ2ρ+ – ρ+u+ + ρ–u–)

= σδ[ρ] – [ρu]. (4.12)

Similarly, if the second equation of the Rankine–Hugoniot conditions (3.15) is carried out
on the two shock waves S1 and S2, then we also have

⎧
⎨

⎩

σ1(ρ∗u∗ – ρ–u–) = ρ∗u2∗ – ρ–u2
– +

∑n
k=1 Ak(ρk∗ – ρk

–) – B( 1
ρ∗ – 1

ρ–
),

σ2(ρ+u+ – ρ∗u∗) = ρ+u2
+ – ρ∗u2∗ +

∑n
k=1 Ak(ρk

+ – ρk∗ ) – B( 1
ρ+

– 1
ρ∗ ),

(4.13)

which gives rise to

lim
Ak (k=1,...,n),B→0

(σ2 – σ1)ρ∗u∗

= lim
Ak (k=1,...,n),B→0

(

–σ1ρ–u– + σ2ρ+u+ + ρ–u2
– – ρ+u2

+

+
n∑

k=1

Ak
(
ρk

– – ρk
+
)

+ B
(

1
ρ+

–
1
ρ–

))

= σδ[ρu] –
[
ρu2]. (4.14)

From (4.12) and (4.14) we then get

lim
Ak (k=1,...,n),B→0

∫ σ2

σ1

ρ∗ dξ = lim
Ak (k=1,...,n),B→0

(σ2 – σ1)ρ∗ = σδ[ρ] – [ρu],

lim
Ak (k=1,...,n),B→0

∫ σ2

σ1

ρ∗u∗ dξ = lim
Ak (k=1,...,n),B→0

(σ2 – σ1)ρ∗u∗ = σδ[ρu] –
[
ρu2].

The proof is finished. �

Remark 4.1 It can be concluded from the lemmas that if u+ < u–, then the shock waves
S1 and S2 coincide with each other, and the intermediate density ρ∗ becomes the singular
measure of Dirac mass for the solution to the Riemann problem (1.1) and (1.3) in the limit
Ak (k = 1, . . . , n), B → 0 situation, which is just the δ-shock wave solution (2.6) associated
with (2.7) to the Riemann problem for the pressureless gas dynamic system (1.2) with the
same Riemann initial data (1.3) as in Sect. 2.

In what follows, for the situation u+ < u–, we use the following theorem to describe the
formation of singularity of solution in the sense of distributions, which is similar to the
result of Theorem 3.1 in [10].
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Theorem 4.3 When u+ < u–, we assume that the solution to the Riemann problem (1.1)
and (1.3) consists of two shock waves for sufficiently small Ak (k = 1, . . . , n) and B. Then the
limit of solution as Ak (k = 1, . . . , n), B → 0 converges to the δ-shock wave solution (2.6) asso-
ciated with (2.7) in the sense of distributions, which is identical with that for the pressureless
gas dynamic system (1.2). In addition, the limit of momentum ρu as Ak (k = 1, . . . , n), B → 0
is the sum of a step function and a Dirac δ-function of the form

lim
Ak (k=1,...,n),B→0

ρu = ρ–u– + [ρu]H(x – σδt) +
(
σδ[ρu] –

[
ρu2])tδ(x – σδt). (4.15)

Proof Given ξ = x
t , for fixed sufficiently small Ak (k = 1, . . . , n), B > 0, the solution consist-

ing of two shock waves to the Riemann problem (1.1) and (1.3) takes the form

(u,ρ)(ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

(u–,ρ–), –∞ < ξ < σ1,

(u∗,ρ∗), σ1 < ξ < σ2,

(u+,ρ+), σ2 < ξ < +∞.

(4.16)

The solution (4.16) should satisfy the following weak forms of system (3.5):

–
∫ +∞

–∞
ρ(ξ )

(
u(ξ ) – ξ

)
φ′(ξ ) dξ +

∫ +∞

–∞
ρ(ξ )φ(ξ ) dξ = 0, (4.17)

–
∫ +∞

–∞
ρ(ξ )u(ξ )

(
u(ξ ) – ξ

)
φ′(ξ ) dξ –

∫ +∞

–∞

( n∑

k=1

Akρ(ξ )k –
B

ρ(ξ )

)

φ′(ξ ) dξ

+
∫ +∞

–∞
ρ(ξ )u(ξ )φ(ξ ) dξ = 0, (4.18)

for arbitrary test function φ(ξ ) ∈ C∞
0 (–∞, +∞).

We will focus on the integral formula (4.18) only for the reason that the integral formula
(4.17) has been widely investigated in [10, 24, 26, 27]. We first consider

∫ +∞

–∞
ρ(ξ )u(ξ )

(
u(ξ ) – ξ

)
φ′(ξ ) dξ

=
(∫ σ1

–∞
+

∫ σ2

σ1

+
∫ +∞

σ2

)

ρ(ξ )u(ξ )
(
u(ξ ) – ξ

)
φ′(ξ ) dξ . (4.19)

Summing the first and third parts of (4.19), we have

lim
Ak (k=1,...,n),B→0

∫ σ1

–∞
ρ(ξ )u(ξ )

(
u(ξ ) – ξ

)
φ′(ξ ) dξ

+ lim
Ak (k=1,...,n),B→0

∫ +∞

σ2

ρ(ξ )u(ξ )
(
u(ξ ) – ξ

)
φ′(ξ ) dξ

= lim
Ak (k=1,...,n),B→0

∫ σ1

–∞
ρ–u–(u– – ξ )φ′(ξ ) dξ

+ lim
Ak (k=1,...,n),B→0

∫ +∞

σ2

ρ+u+(u+ – ξ )φ′(ξ ) dξ

=
(
σδ[ρu] –

[
ρu2])φ(σδ) +

∫ +∞

–∞

(
ρ–u– + [ρu]H(ξ – σδ)

)
φ(ξ ) dξ , (4.20)
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where H is the standard Heaviside function. For the second part of (4.19), we have

lim
Ak (k=1,...,n),B→0

∫ σ2

σ1

ρ(ξ )u(ξ )
(
u(ξ ) – ξ

)
φ′(ξ ) dξ

= lim
Ak (k=1,...,n),B→0

∫ σ2

σ1

ρ∗u∗(u∗ – ξ )φ′(ξ ) dξ

= lim
Ak (k=1,...,n),B→0

ρ∗u∗(σ2 – σ1)

×
(

u∗
(

φ(σ2) – φ(σ1)
σ2 – σ1

)

–
σ2φ(σ2) – σ1φ(σ1)

σ2 – σ1
+

1
σ2 – σ1

∫ σ2

σ1

φ(ξ ) dξ

)

=
(
σδ[ρu] –

[
ρu2])(σδφ

′(σδ) – σδφ
′(σδ) – φ(σδ) + φ(σδ)

)
= 0. (4.21)

Summing (4.20) and (4.21) leads to

lim
Ak (k=1,...,n),B→0

∫ +∞

–∞
ρ(ξ )u(ξ )

(
u(ξ ) – ξ

)
φ′(ξ ) dξ

=
(
σδ[ρu] –

[
ρu2])φ(σδ) +

∫ +∞

–∞

(
ρ–u– + [ρu]H(ξ – σδ)

)
φ(ξ ) dξ . (4.22)

On the other hand, by Lemmas 4.1 and 4.2 we then have

lim
Ak (k=1,...,n),B→0

∫ +∞

–∞

( n∑

k=1

Ak
(
ρ(ξ )

)k –
B

ρ(ξ )

)

φ′(ξ ) dξ

= lim
Ak (k=1,...,n),B→0

(∫ σ1

–∞
+

∫ σ2

σ1

+
∫ +∞

σ2

)( n∑

k=1

Akρ(ξ )k –
B

ρ(ξ )

)

φ′(ξ ) dξ

= lim
Ak (k=1,...,n),B→0

(∫ σ1

–∞

( n∑

k=1

Akρ
k
– –

B
ρ–

)

φ′(ξ ) dξ +
∫ σ2

σ1

( n∑

k=1

Akρ
k
∗ –

B
ρ∗

)

φ′(ξ ) dξ

+
∫ +∞

σ2

( n∑

k=1

Akρ
k
+ –

B
ρ+

)

φ′(ξ ) dξ

)

= lim
Ak (k=1,...,n),B→0

(( n∑

k=1

Akρ
k
– –

B
ρ–

)

φ(σ1) +

( n∑

k=1

Akρ
k
∗ –

B
ρ∗

)
(
φ(σ2) – φ(σ1)

)

–

( n∑

k=1

Akρ
k
+ –

B
ρ+

)

φ(σ2)

)

= 0. (4.23)

Combining (4.18), (4.22), and (4.23), we obtain

lim
Ak (k=1,...,n),B→0

∫ +∞

–∞

(
ρ(ξ )u(ξ ) – ρ–u– – [ρu]H(ξ – σδ)

)
φ(ξ ) dξ

=
(
σδ[ρu] –

[
ρu2])φ(σδ). (4.24)
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As in [10, 24, 26, 27], if the same method is carried out for (4.17), then we also have

lim
Ak (k=1,...,n),B→0

∫ +∞

–∞

(
ρ(ξ ) – ρ– – [ρ]H(ξ – σδ)

)
φ(ξ ) dξ

=
(
σδ[ρ] – [ρu]

)
φ(ξ )(σδ). (4.25)

Finally, we consider the limits of ρu and ρ . Letting ψ(x, t) ∈ C∞
0 (R × R+), then we have

lim
Ak (k=1,...,n),B→0

∫ +∞

0

∫ +∞

–∞
ρ

(
x
t

)

u
(

x
t

)

ψ(x, t) dx dt

= lim
Ak (k=1,...,n),B→0

∫ +∞

0

∫ +∞

–∞
ρ(ξ )u(ξ )ψ(ξ t, t)d(ξ t) dt

=
∫ +∞

0

(
σδ[ρu] –

[
ρu2])tψ(σδt, t) dt

+
∫ +∞

0

∫ +∞

–∞

(
ρ–u– + [ρu]H(ξ – σδ)

)
tψ(ξ t, t) dξ dt. (4.26)

Therefore we can conclude that

lim
Ak (k=1,...,n),B→0

∫ ∞

0

∫ ∞

–∞

(

ρ

(
x
t

)

u
(

x
t

)

– ρ–u– – [ρu]H(x – σδt)
)

ψ(x, t) dx dt

=
∫ ∞

0

(
σδ[ρu] –

[
ρu2])tψ(σδt, t) dt. (4.27)

Analogously, from (4.25) we also have

lim
Ak (k=1,...,n),B→0

∫ ∞

0

∫ ∞

–∞

(

ρ

(
x
t

)

– ρ– – [ρ]H(x – σδt)
)

ψ(x, t) dx dt

=
∫ ∞

0

(
σδ[ρ] – [ρu]

)
tψ(σδt, t) dt. (4.28)

The conclusion of the theorem can be drawn by taking into account Definition 2.1. The
proof is completed. �

We are now in position to consider the situation u– < u+, in which the solution to the
Riemann problem (1.1) and (1.3) consists of two rarefaction waves for sufficiently small Ak

(k = 1, . . . , n) and B. In the u– < u+ situation, the formation of a vacuum state can be derived
from the vanishing pressure limit of the solution consisting of two rarefaction waves to the
Riemann problem (1.1) and (1.3). For fixed sufficiently small Ak (k = 1, . . . , n) and B > 0, let
(u∗,ρ∗) be the intermediate state between two rarefaction waves. Then (u–,ρ–) and (u∗,ρ∗)
are connected by the 1-rarefaction wave R1, whereas (u∗,ρ∗) and (u+,ρ+) are connected
by the 2-rarefaction wave R2. More specifically, we can derive from (3.9) and (3.10) that

R1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ = λ1(u,ρ) = u – 1
ρ

√∑n
k=1 kAkρk+1 + B,

u – u– = –
∫ ρ

ρ–
1
s2

√∑n
k=1 kAksk+1 + B ds,

u– ≤ u ≤ u∗, ρ– ≥ ρ ≥ ρ∗,

(4.29)
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and

R2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ = λ2(u,ρ) = u + 1
ρ

√∑n
k=1 kAkρk+1 + B,

u+ – u =
∫ ρ+
ρ

1
s2

√∑n
k=1 kAksk+1 + B ds,

u∗ ≤ u ≤ u+, ρ∗ ≤ ρ ≤ ρ+.

(4.30)

Theorem 4.4 When u– < u+, if the solution to the Riemann problem (1.1) and (1.3) con-
sists of two rarefaction waves for sufficiently small Ak (k = 1, . . . , n) and B, then the limit of
solution as Ak (k = 1, . . . , n), B → 0 is a two-contact-discontinuity solution with a vacuum
state of the form (2.1), which is identical with that for the pressureless gas dynamic system
(1.2).

Proof From (4.29) and (4.30) we derive that

⎧
⎪⎨

⎪⎩

u∗ – u– = –
∫ ρ∗
ρ–

1
ρ2

√∑n
k=1 kAkρk+1 + B dρ,

u+ – u∗ =
∫ ρ+
ρ∗

1
ρ2

√∑n
k=1 kAkρk+1 + B dρ,

(4.31)

where ρ∗ ≤ min(ρ–,ρ+). Therefore, we can conclude from (4.31) that

u+ – u– =
∫ ρ–

ρ∗

1
ρ2

√
√
√
√

n∑

k=1

kAkρk+1 + B dρ +
∫ ρ+

ρ∗

1
ρ2

√
√
√
√

n∑

k=1

kAkρk+1 + B dρ

≤
∫ ρ–

ρ∗

1
ρ2∗

√
√
√
√

n∑

k=1

kAkρk+1
– + B dρ +

∫ ρ+

ρ∗

1
ρ2∗

√
√
√
√

n∑

k=1

kAkρk+1
+ + B dρ

≤ ρ–

ρ2∗

√
√
√
√

n∑

k=1

kAkρk+1
– + B +

ρ+

ρ2∗

√
√
√
√

n∑

k=1

kAkρk+1
+ + B, (4.32)

where we have used the fact that ρ∗ ≤ min(ρ–,ρ+). If limAk (k=1,...,n),B→0 ρ∗ > 0, then we
have u+ – u– = 0 from (4.32), which contradicts the fact u– < u+. Thus, we obtain
limAk (k=1,...,n),B→0 ρ∗ = 0, which means that the intermediate state becomes vacuum in the
limit Ak (k = 1, . . . , n), B → 0 situation. In fact, the intermediate state cannot be seen as
a constant state again when a vacuum state is formed. The rarefaction curve R1 in (4.29)
turns out to be the line of contact discontinuity J1 : u = u–, whereas the rarefaction curve
R2 in (4.30) turns out to be the line of contact discontinuity J2 : u = u+ in the the half-upper
(u,ρ) phase plane as Ak (k = 1, . . . , n), B → 0. Hence we further have

lim
Ak (k=1,...,n),B→0

λ1(u–,ρ–) = lim
Ak (k=1,...,n),B→0

λ1(u∗,ρ∗) = u–, (4.33)

lim
Ak (k=1,...,n),B→0

λ2(u∗,ρ∗) = lim
Ak (k=1,...,n),B→0

λ2(u+,ρ+) = u+, (4.34)

which means that the rarefaction wave R1 tends to the contact discontinuity J1 with the
speed u–, whereas the rarefaction wave R2 tends to the contact discontinuity J2 with the
speed u+ as Ak (k = 1, . . . , n), B → 0. The proof is completed. �
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Finally, we are dedicating to investigating the special situation u– = u+, in which the
formation of contact discontinuity may be illustrated well by using the following theorem.

Theorem 4.5 When u– = u+, the limit of solution to the Riemann problem (1.1) and (1.3)
as Ak (k = 1, . . . , n), B → 0 is only a contact discontinuity connecting the two constant states
(u–,ρ–) and (u+,ρ+) directly, which is identical with that for the pressureless gas dynamic
system (1.2).

Proof Our proof is divided into two parts according to ρ+ > ρ– or not. If ρ+ > ρ–, then
we have (u+,ρ+) ∈ III for any Ak (k = 1, . . . , n) and B. That is to say, (u–,ρ–) and (u∗,ρ∗)
are connected by the 1-shock wave S1 with the speed σ1, whereas (u∗,ρ∗) and (u+,ρ+) are
connected by the 2-rarefaction wave R2, which can be expressed by the formulae (4.1)
and (4.30), respectively. Therefore the intermediate state (u∗,ρ∗) between S1 and R2 is
determined by

⎧
⎪⎨

⎪⎩

u∗ = u– –
√

( 1
ρ–

– 1
ρ∗ )(

∑n
k=1 Ak(ρk∗ – ρk

–) + B( 1
ρ–

– 1
ρ∗ )),

u+ – u∗ =
∫ ρ+
ρ∗

1
ρ2

√∑n
k=1 kAkρk+1 + B dρ,

(4.35)

where ρ– < ρ∗ < ρ+ and u∗ < u– = u+. More specifically, the solution to the Riemann prob-
lem (1.1) and (1.3) can be displayed in the form

(u,ρ)(ξ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u–,ρ–), –∞ < ξ < σ1,

(u∗,ρ∗), σ1 < ξ < λ2(u∗,ρ∗),

R2, λ2(u∗,ρ∗) ≤ ξ ≤ λ2(u+,ρ+),

(u+,ρ+), λ2(u+,ρ+) < ξ < +∞,

(4.36)

where the propagating speed of S1 is given by σ1 = ρ∗u∗–ρ–u–
ρ∗–ρ–

, and the state (u,ρ) in R2

should satisfy (4.30). For ρ– < ρ∗ < ρ+, we directly get limAk (k=1,...,n),B→0 u∗ = u– in the first
equation of (4.35).

On the one hand, we can derive from the first equation of (4.35) that

ρ–(u∗ – u–)
ρ∗ – ρ–

= –
1
ρ∗

√
√
√
√

( n∑

k=1

Akρ–ρ∗
(

ρk∗ – ρk
–

ρ∗ – ρ–

)

+ B

)

= –
1
ρ∗

√
√
√
√

( n∑

k=1

Akρ–ρ∗
(
ρk–1∗ + ρk–2∗ ρ– + · · · + ρk–1

–
)

+ B

)

, (4.37)

so that we have

lim
Ak (k=1,...,n),B→0

σ1 = lim
Ak (k=1,...,n),B→0

ρ∗u∗ – ρ–u–

ρ∗ – ρ–

= lim
Ak (k=1,...,n),B→0

(

u∗ +
ρ–(u∗ – u–)

ρ∗ – ρ–

)

= u–. (4.38)

On the other hand, from (4.30) it directly follows that

lim
Ak (k=1,...,n),B→0

λ2(u∗,ρ∗) = lim
Ak (k=1,...,n),B→0

λ2(u+,ρ+) = u+ = u–. (4.39)
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In view of (4.38) and (4.39), if u– = u+ and ρ+ > ρ–, then the limit of solution to the Riemann
problem (1.1) and (1.3) as Ak (k = 1, . . . , n), B → 0 is a contact discontinuity with the speed
u– connecting (u–,ρ–) and (u+,ρ+) directly.

Otherwise, if ρ+ < ρ–, then we have (u+,ρ+) ∈ II for any Ak (k = 1, . . . , n) and B. In other
words, (u–,ρ–) and (u∗,ρ∗) are connected by the 1-rarefaction wave R1, whereas (u∗,ρ∗)
and (u+,ρ+) are connected by the 2-shock wave S2 with speed σ2, which can be expressed
by the formulae (4.29) and (4.2), respectively. As before, the intermediate state (u∗,ρ∗)
between R1 and S2 is determined by

⎧
⎪⎨

⎪⎩

u∗ – u– = –
∫ ρ∗
ρ–

1
ρ2

√∑n
k=1 kAkρk+1 + B dρ,

u+ = u∗ –
√

( 1
ρ∗ – 1

ρ+
)(
∑n

k=1 Ak(ρk
+ – ρk∗ ) + B( 1

ρ∗ – 1
ρ+

)),
(4.40)

where ρ– > ρ∗ > ρ+ and u∗ > u– = u+. Analogously, the solution to the Riemann problem
(1.1) and (1.3) is given by

(u,ρ)(ξ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u–,ρ–), –∞ < ξ < λ1(u–,ρ–),

R1, λ1(u–,ρ–) ≤ ξ ≤ λ1(u∗,ρ∗),

(u∗,ρ∗), λ1(u∗,ρ∗) < ξ < σ2,

(u+,ρ+), σ2 < ξ < ∞,

(4.41)

where the propagating speed of S2 is given by σ2 = ρ+u+–ρ∗u∗
ρ+–ρ∗ , and the state (u,ρ) in R1

should satisfy (4.29). For ρ– > ρ∗ > ρ+, we immediately obtain limAk (k=1,...,n),B→0 u∗ = u+ in
the second equation of (4.40). With the similar method as before, we can also arrive at the
limiting relations

lim
Ak (k=1,...,n),B→0

λ1(u–,ρ–) = lim
Ak (k=1,...,n),B→0

λ1(u∗,ρ∗) = lim
Ak (k=1,...,n),B→0

σ2 = u+ = u–. (4.42)

Thus, if u– = u+ and ρ+ < ρ–, then the limit of solution to the Riemann problem (1.1) and
(1.3) as Ak (k = 1, . . . , n), B → 0 is also a contact discontinuity connecting (u–,ρ–) and
(u+,ρ+) directly. The proof is finished. �
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