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variables, the stability of the solutions in L1(R) space is established under certain
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1 Introduction
In this article, we investigate the Fornberg–Whitham(FW) equation

Vt – Vtxx – Vx +
3
2

VVx =
9
2

VxVxx +
3
2

VVxxx, (1)

which was first written down in Whitham [1]. The numerical and theoretical analysis of
solutions for Eq. (1) are made in Fornberg and Whitham [2] in which the peakon solution

V (t, x) =
8
9

e– 1
2 |x– 4

3 t| (2)

is found.
Recently, Holmes and Thompson [3] have established the existence and uniqueness of

the FW equation in the Besov space in both non-periodic and periodic cases and discussed
the sharpness of continuity on the data-to-solution map. A Cauchy–Kowalevski type re-
sult, which guarantees the existence and uniqueness of real analytic solutions for Eq. (1),
is given and the blow-up criterion for solutions is obtained in [3]. Haziot [4] employs the
estimates derived from the FW equation itself and some conclusions in [5] to derive suf-
ficient conditions on the initial value which lead to wave breaking of solutions. For the
detailed discussion about the discovery of wave breaking, we refer the reader to [2, 5–8].

We know that the dynamic properties of the Fornberg–Whitham equation are related to
those of the Camassa–Holm (CH) [9], Degasperis–Procesi (DP) [10], and Novikov equa-
tions [11]. The four types of equations possess the peakon solutions. Here, we recall sev-
eral works on the study of the CH, DP, and Novikov equations. The well-posedness of the
Cauchy problem for a generalized CH equation is established in Himonas and Holliman
[12]. The nonuniform dependence of the periodic CH equation and the well-posedness
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of the DP equation are discussed in [13] and [14], respectively. The continuity properties
of the data-to-solution map for the periodic b-family equation including the CH and DP
equations are obtained in [15]. Coclite and Karlsen [16] discuss the existence and stabil-
ity of the entropy solution for the DP equation. The existence and uniqueness of global
solutions for the DP equation are studied in Liu and Yin [17] in the case that the ini-
tial data satisfy the sign condition. Escher et al. [18] investigate the global weak solutions
and blow-up structure for the DP model under certain assumptions. Matsuno [19] finds
out the multisoliton solutions of the DP equation and analyzes their peakon limits. The
uniform stability of peakons for the Camassa–Holm model is established in Constantin
and Strauss [7]. Using the conservation law and assuming that the initial data satisfy the
sign condition, Lin and Liu [20] obtain the stability of peakons for the Degasperis–Procesi
equation. The Cauchy problem for the Novikov equation is considered in [21]. A general-
ized Novikov model with peakon solutions is studied in [22]. For other studies of the CH,
DP, and Novikov equations, the reader is referred to [21–29] and the references therein.

Motivated by the works made in Coclite and Karlsen [16], the aim of this article is to
investigate the stability of local strong solutions for the Fornberg–Whitham equation (1).
We find out the L2 conservation law to the FW model. Assuming that the initial data
belong to the space L1(R)∩Hs(R) with s > 3

2 , we obtain the stability of local strong solution
in the space L1(R). We state that the L1 stability for Eq. (1) has never been established in the
previous literature works. The main technique used in this work is the device of doubling
the space variables presented in [30].

The structure of this paper is that several lemmas are given in Sect. 2 and the proof of
our main result is presented in Sect. 3.

2 Several lemmas
Consider the Cauchy problem of Eq. (1)

⎧
⎨

⎩

Vt – Vtxx – Vx + 3
2 VVx = 9

2 VxVxx + 3
2 VVxxx,

V (0, x) = V0(x).
(3)

Letting �2 = 1 –∂2
x and noting the expression VVxxx = 1

2 (V 2)xxx – 3VxVxx, multiplying both
sides of the first equation of problem (3) by �–2, we obtain the nonlocal form of problem
(3) in the form

⎧
⎨

⎩

Vt + 3
2 VVx – (1 – ∂2

x )–2Vx = 0,

V (0, x) = V0(x),
(4)

where �–2g = 1
2
∫

R e–|x–y|g dy for any g ∈ L∞ or g ∈ Lp(R) with 1 ≤ p ≤ ∞.

Lemma 1 If V0(x) ∈ Hs(R), s > 3
2 and V (t, x) is the solution of problem (4), then

∫

R
V 2(t, x) dx =

∫

R
V 2

0 (x) dx. (5)

Proof Setting (1 – ∂2
x )–2V = W , we get W – Wxx = V and

∫

R
V

(
1 – ∂2

x
)–2Vx dx =

∫

R
VWx dx =

∫

R
(W – Wxx)Wx dx = 0, (6)



Gao et al. Boundary Value Problems  (2018) 2018:142 Page 3 of 13

from which we have

1
2

d
dt

∫

R
V 2 dx =

∫

R
VVt dx

=
∫

R

[

–
3
2

V 2Vx + V
(
1 – ∂2

x
)–2Vx)

]

dx

= 0 +
∫

R

[
V

(
1 – ∂2

x
)–2Vx)

]
dx

= 0,

which completes the proof. �

Lemma 2 ([3, 4, 23]) Assume V (0, x) = V0(x) ∈ Hs(R), s > 3
2 . Then problem (3) or (4) has a

unique strong solution V satisfying

V ∈ C
(
[0, T); Hs(R)

) ∩ C1([0, T); Hs–1(R)
)
,

where T = T(V0) > 0 is the maximal existence time.

Consider the ordinary differential equation

⎧
⎨

⎩

pt = 3
2 V (t, p), t ∈ [0, T),

p(0, x) = x.
(7)

Lemma 3 Assume that V0 ∈ Hs, s ≥ 3, and T > 0 is the maximal existence time of the
solution for problem (7). Then there exists a unique solution p ∈ C1([0, T) ×R) to problem
(7) and the map p(t, ·) is an increasing diffeomorphism of R with px(t, x) > 0 for (t, x) ∈
[0, T) ×R.

Proof Using Lemma 2, we have V ∈ C1([0, T); Hs–1(R)) and Hs ∈ C1(R). Therefore, we
know that functions V (t, x) and Vx(t, x) are bounded, Lipschitz in space, and C1 in time.
Making use of the existence and uniqueness theorem of ordinary differential equations,
we conclude that problem (7) has a unique solution p ∈ C1([0, T) ×R).

We differentiate (7) about the variable x and get

⎧
⎨

⎩

d
dt px = 3

2 Vx(t, p)px, t ∈ [0, T),

px(0, x) = 1,
(8)

which results in

px(t, x) = e
∫ t

0
3
2 Vx(τ ,p(τ ,x)) dτ . (9)

For every T ′ < T , applying the Sobolev imbedding theorem gives rise to

sup
(τ ,x)∈[0,T ′)×R

∣
∣Vx(τ , x)

∣
∣ < ∞, (10)
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from which we know that there exists a constant K0 > 0 to satisfy px(t, x) ≥ e–K0t > 0 for
(t, x) ∈ [0, T) ×R. The proof is finished. �

Lemma 4 Suppose that T is the maximal existence time of the solution V to problem (4)
and V0 ∈ Hs(R), s > 3

2 . Then

∥
∥V (t, x)

∥
∥

L∞ ≤ t‖V0‖L2 + ‖V0‖L∞ , ∀t ∈ [0, T], (11)
∣
∣�–2Vx

∣
∣ ≤ ‖V0‖L2 , ∀t ∈ [0, T]. (12)

Proof Using the density argument presented in [17], we only need to consider the case
s = 3 to prove Lemma 4. If the initial value V0 ∈ H3(R), we obtain V ∈ C([0, T), H3(R)) ∩
C1([0, T), H2(R)). From (4), we have

Vt +
3
2

VVx =
1
2

∫ ∞

–∞
e–|x–y| ∂

∂y
V (t, y) dy

=
1
2

∫ x

–∞
e–x+y ∂

∂y
V (t, y) dy +

1
2

∫ ∞

x
e–y+x ∂

∂y
V (t, y) dy

= –
1
2

∫ x

–∞
e–x+yV (t, y) dy +

1
2

∫ ∞

x
e–y+xV (t, y) dy (13)

and

dV (t, p(t, x))
dt

= Vt
(
t, p(t, x)

)
+ Vx

(
t, p(t, x)

)dp(t, x)
dt

=
(

Vt +
3
2

VVx

)
(
t, p(t, x)

)
. (14)

Using the identity
∫ ∞

–∞ e–2|x–y| dy = 1 and ‖V‖L2 = ‖V0‖L2 (see Lemma 1), we have

∣
∣
∣
∣–

1
2

∫ x

–∞
e–x+yV (t, y) dy +

1
2

∫ ∞

x
e–y+xV (t, y) dy

∣
∣
∣
∣

≤ 1
2

∫ x

–∞
e–x+y∣∣V (t, y)

∣
∣dy +

1
2

∫ ∞

x
e–y+x∣∣V (t, y)

∣
∣dy

≤
(∫ ∞

–∞
e–2|x–y| dy

) 1
2
(∫ ∞

–∞
V 2(t, y) dy

) 1
2

≤ ‖V‖L2(R)

= ‖V0‖L2(R), (15)

from which together with (13) we derive that (12) holds.
From (13)–(15), we derive that

∣
∣
∣
∣

∫ t

0

dV (t, p(t, x))
dt

dt
∣
∣
∣
∣ ≤ 1

2

∫ t

0

∣
∣
∣
∣

∫ ∞

–∞
e–|p(t,x)–y| ∂

∂y
V (t, y) dy

∣
∣
∣
∣dt

≤ t‖V0‖L2(R), (16)
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from which we obtain

∣
∣V

(
t, p(t, x)

)∣
∣ ≤ ∥

∥V
(
t, p(t, x)

)∥
∥

L∞ ≤ t‖V0‖L2(R) + ‖V0‖L∞ . (17)

Using Lemma 3, for every t ∈ [0, T ′), T ′ < T , we get that there exists a function K(t) > 0
such that

e–K (t) ≤ px(t, x) ≤ eK (t), x ∈R. (18)

We deduce from (18) that the function p(t, ·) is strictly increasing on R with limx→±∞ p(t,
x) = ±∞ as long as t ∈ [0, T ′). Applying (17) produces

∥
∥V (t, x)

∥
∥

L∞ =
∥
∥V

(
t, p(t, x)

)∥
∥

L∞ ≤ t‖V0‖L2(R) + ‖V0‖L∞ .

The proof is finished. �

Lemma 5 Suppose that V1(t, x) and V2(t, x) are two solutions of problem (4) with initial
data V1,0(x), V2,0(x) ∈ Hs(R) (s > 3

2 ), respectively. Assume f (t, x) ∈ C∞
0 ([0,∞) × (–∞,∞).

Then
∫ ∞

–∞

∣
∣
∣
∣�

–2 ∂

∂x
V1(t, x) – �–2 ∂

∂x
V2(t, x)

∣
∣
∣
∣

∣
∣f (t, x)

∣
∣dx

≤ c0

∫ ∞

–∞

∣
∣V1(t, x) – V2(t, x)

∣
∣dx, (19)

where c0 > 0 depends on f .

Proof We have

∫ ∞

–∞

∣
∣
∣
∣�

–2 ∂

∂x
V1(t, x) – �–2 ∂

∂x
V2(t, x)

∣
∣
∣
∣

∣
∣f (t, x)

∣
∣dx

≤
∫ ∞

–∞

∣
∣∂x�

–2(V1 – V2)
∣
∣
∣
∣f (t, x)

∣
∣dx

≤
∫ ∞

–∞

∣
∣
∣
∣

∫ ∞

–∞
e–|x–y| sign(x – y)

(
V1(t, y) – V2(t, y)

)
dy

∣
∣
∣
∣

∣
∣f (t, x)

∣
∣dx

≤
∫ ∞

–∞

∫ ∞

–∞
e–|x–y|∣∣V1(t, y) – V2(t, y)

∣
∣
∣
∣f (t, x)

∣
∣dy dx

≤ c0

∫ ∞

–∞
|V1 – V2|dy,

in which we have applied the Tonelli theorem. The proof is completed. �

Assume that δ(σ ) is a function which is infinitely differentiable on (–∞, +∞) such that
δ(σ ) ≥ 0, δ(σ ) = 0 for |σ | ≥ 1 and

∫ ∞
–∞ δ(σ ) dσ = 1. For an arbitrary h > 0, set δh(σ ) = δ(h–1σ )

h .
We conclude that δh(σ ) is a function in C∞(–∞,∞) and

⎧
⎨

⎩

δh(σ ) ≥ 0, δh(σ ) = 0 if |σ | ≥ h,

|δh(σ )| ≤ c
h ,

∫ ∞
–∞ δh(σ ) dσ = 1.

(20)
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Suppose that the function W1(x) is locally integrable in (–∞,∞). The approximation func-
tion of W1 is defined by

W h
1 (x) =

1
h

∫ ∞

–∞
δ

(
x – y

h

)

W1(y) dy, h > 0. (21)

We call x0 a Lebesgue point of function W1(x) if

lim
h→0

1
h

∫

|x–x0|≤h

∣
∣W1(x) – W1(x0)

∣
∣dx = 0.

We introduce notation about the concept of a characteristic cone. For any M > 0, we
define M > N = maxt∈[0,T] ‖V‖L∞ < ∞. Let � designate the cone {(t, x) : |x| < M – Nt, 0 ≤
t ≤ T0 = min(T , MN–1)}. We let Sτ designate the cross section of the cone � by the plane
t = τ , τ ∈ [0, T0].

Let Kr+2ρ = {x : |x| ≤ r + 2ρ} where r > 0, ρ > 0 and ζT = [0, T] × R. The space of all
infinitely differentiable functions f (t, x) with compact support in [0, T] ×R is denoted by
C∞

0 (ζT ).

Lemma 6 ([30]) Let the function U(t, x) be a bounded and measurable function in some
cylinder 	T = [0, T] × Kr . If for some ρ ∈ (0, min[r, T]) and any number h ∈ (0,ρ), then the
following function

Uh =
1
h2

∫∫∫∫

| t–τ
2 |≤h,ρ≤ t+τ

2 ≤T–ρ,| x–y
2 |≤h,| x+y

2 |≤r–ρ

∣
∣U(t, x) – U(τ , y)

∣
∣dx dt dy dτ

satisfies limh→0 Uh = 0.

Lemma 7 ([30]) If the function G(U) satisfies a Lipschitz condition on the interval [–N , N],
then the function

G1(U1, U2) = sign(U1 – U2)
(
G(U1) – G(U2)

)

satisfies the Lipschitz condition in U1 and U2, respectively.

Lemma 8 Suppose that V is the strong solution of problem (4), f (t, x) ∈ C∞
0 (ζT ) and

f (0, x) = 0. Then

∫∫

ζT

{

|V – k|ft +
3
4

sign(V – k)
[
V 2 – k2]fx + sign(V – k)�–2Vxf

}

dx dt = 0, (22)

where k is an arbitrary constant.

Proof Here we mention that the method to prove this lemma comes from [30]. We as-
sume that 
(V ) is an arbitrary twice differentiable function on the line –∞ < V < ∞. We
multiply the first equation of Eq. (4) by the function 
′(V )f (t, x), where f (t, x) ∈ C∞

0 (ζT ).
Integrating over ζT and integrating by parts (transferring the derivatives with respect to t
and x to function f ), for any constant k, we have

∫ ∞

–∞

[∫ V

k

′(z)z dz

]

fx dx = –
∫ ∞

–∞

[
f 
′(V )VVx

]
dx
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and

∫∫

ζT

{


(V )ft +
3
2

[∫ V

k

′(z)z dz

]

fx – 
′(V )�–2Vxf
}

dx dt = 0. (23)

Integration by parts yields

∫ ∞

–∞

[∫ V

k

′(z)z dz

]

fx dx =
∫ ∞

–∞

[
1
2

′(V )V 2 –

1
2

′(k)k2

–
1
2

∫ V

k

(
z2 – k2)
′′(z) dz

]

fx dx. (24)

Choosing that 
h(V ) is an approximation of the function |V – k|, setting 
(V ) = 
h(V ),
and making use of the properties of the sign(V –k), (23), (24) and sending h → 0, we notice
that the last term in (24) becomes zero. Thus, we have

∫∫

ζT

{

|V – k|ft +
3
4

sign(V – k)
[
V 2 – k2]fx + sign(V – k)�–2Vxf

}

dx dt = 0. (25)

The proof is finished. �

3 Main result
Now, we give the main result of this work.

Theorem 1 Assume that V1 and V2 are two local strong solutions of Eq. (1) with initial
data V1,0(x), V2,0(x) ∈ L1(R) ∩ Hs(R), s > 3

2 . Let T be the maximal existence time of the
solutions. Then

∥
∥V1(t, ·) – V2(t, ·)∥∥L1(R) ≤ c0ec0t

∫ ∞

–∞

∣
∣V10(x) – V20(x)

∣
∣dx, t ∈ [0, T), (26)

where c0 > 0 is a constant.

Proof From Lemma 2, we know the existence of local strong solutions for Eq. (1). Let
f (t, x) ∈ C∞

0 (ζT ). Assume f (t, x) = 0 outside the cylinder

� =
{

(t, x)
}

= [ρ, T – 2ρ] × Kr–2ρ , 0 < 2ρ ≤ min(T , r). (27)

We let

ξ = f
(

t + τ

2
,

x + y
2

)

δh

(
t – τ

2

)

δh

(
x – y

2

)

= f (· · · )λh(∗), (28)

where (· · · ) = ( t+τ
2 , x+y

2 ) and (∗) = ( t–τ
2 , x–y

2 ). The function δh(σ ) is defined in (20). We obtain

ξt + ξτ = ft(· · · )λh(∗), ξx + ξy = fx(· · · )λh(∗). (29)

We apply the technique of Kruzkov’s device of doubling the space variables [30]. In (22),
we set k = V1(τ , y) and f = ξ (t, x, τ , y) for a fixed point (τ , y). We note that V1(τ , y) is defined
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almost everywhere in ζT = [0, T]×R. We integrate (22) over ζT for variable (τ , y) and then
get

∫∫∫∫

ζT ×ζT

{
∣
∣V1(t, x) – V2(τ , y)

∣
∣ξt

+
3
4

sign
(
V1(t, x) – V2(τ , y)

)
(

V 2
1 (t, x)

2
–

V 2
2 (τ , y)

2

)

ξx

+ sign
(
V1(t, x) – V2(τ , y)

)
�–2∂x

(
V1(t, x)

)
ξ

}

dt dx dy dτ = 0. (30)

Similarly, it has

∫∫∫∫

ζT ×ζT

{
∣
∣V2(τ , y) – V1(t, x)

∣
∣ξτ

+
3
4

sign
(
V2(τ , y) – V1(t, x)

)
(

V 2
2 (τ , y)

2
–

V 2
1 (t, x)

2

)

ξy

+ sign
(
V2(τ , y) – V1(t, x)

)
�–2∂y

(
V2(τ , y)

)
ξ

}

dx dt dy dτ = 0. (31)

Using (30) and (31), we acquire the inequality

0 ≤
∫∫∫∫

ζT ×ζT

{
∣
∣V1(t, x) – V2(τ , y)

∣
∣(ξt + ξτ )

+
3
4

sign
(
V1(t, x) – V2(τ , y)

)
(

V 2
1 (t, x)

2
–

V 2
2 (τ , y)

2

)

(ξx + ξy)
}

dx dt dy dτ

+
∣
∣
∣
∣

∫∫∫∫

ζT ×ζT

sign
(
V1(t, x) – V2(t, x)

)

× (
�–2∂xV1(t, x) – �–2∂yV2(τ , y)

)
ξ dx dt dy dτ

∣
∣
∣
∣.

= L1 + L2 +
∣
∣
∣
∣

∫∫∫∫

ζT ×ζT

L3 dx dt dy dτ

∣
∣
∣
∣. (32)

We claim that the following inequality

0 ≤
∫∫

ζT

{
∣
∣V1(t, x) – V2(t, x)

∣
∣ft

+
3
4

sign
(
V1(t, x) – V2(t, x)

)
(

V 2
1 (t, x)

2
–

V 2
2 (t, x)

2

)

fx

}

dx dt

+
∣
∣
∣
∣

∫∫

ζT

sign
(
V1(t, x) – V2(t, x)

)
�–2∂x

[
V1(t, x) – V2(t, x)

]
f dx dt

∣
∣
∣
∣ (33)

holds.
In fact, for the choice of ξ , the first two terms in the integrand of (32) can be represented

in the form

Dh = D
(
t, x, τ , y, V1(t, x), V2(τ , y)

)
λh(∗).
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From Lemma 4, we know ‖V1‖L∞ < CT and ‖V2‖L∞ < CT ; from Lemma 7, we know Dh

satisfies the Lipschitz condition in V1 and V2, respectively. By the choice of ξ , we derive
that Dh = 0 outside the region

{
(t, x; τ , y)

}
=

{

ρ ≤ t + τ

2
≤ T – 2ρ,

|t – τ |
2

≤ h,

|x + y|
2

≤ r – 2ρ,
|x – y|

2
≤ h

}

. (34)

Furthermore, we get

∫∫∫∫

ζT ×ζT

Dh dx dt dy dτ

=
∫∫∫∫

ζT ×ζT

[
D

(
t, x, τ , y, V1(t, x), V2(τ , y)

)

– D
(
t, x, t, x, V1(t, x), V2(t, x)

)]
λh(∗) dx dt dy dτ

+
∫∫∫∫

ζT ×ζT

D
(
t, x, t, x, V1(t, x), V2(t, x)

)
λh(∗) dx dt dy dτ

= B11(h) + B12. (35)

Noticing |λ(∗)| ≤ c
h2 and the definition of Dh gives rise to

∣
∣B11(h)

∣
∣

≤ c
[

h +
1
h2

×
∫∫∫∫

| t–τ
2 |≤h,ρ≤ t+τ

2 ≤T–ρ,| x–y
2 |≤h,| x+y

2 |≤r–ρ

∣
∣V1(t, x) – V2(τ , y)

∣
∣dx dt dy dτ

]

, (36)

where the constant c does not depend on h. Using Lemma 6, we get B11(h) → 0 as h → 0.
The integral B12 does not depend on h. Substituting t = α, t–τ

2 = β , x = η, x–y
2 = μ and

noting the identity

∫ h

–h

∫ ∞

–∞
λh(β ,μ) dμdβ = 1, (37)

we derive that

B12 = 22
∫∫

ζT

Dh
(
α,η,α,η, V1(α,η), V2(α,η)

)
{∫ h

–h

∫ ∞

–∞
λh(β ,μ) dμdβ

}

dη dα

= 4
∫∫

ζT

Dh
(
t, x, t, x, V1(t, x), V2(t, x)

)
dx dt. (38)

Thus, we have

lim
h→0

∫∫∫∫

ζT ×ζT

Dh dx dt dy dτ = 4
∫∫

ζT

D
(
t, x, t, x, V1(t, x), V2(t, x)

)
dx dt. (39)
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We write

L3 = sign
(
u(t, x) – v(τ , y)

)(
�–2∂xV1(t, x) – �–2∂yV2(τ , y)

)
f (· · · )λh(∗)

= L3(t.x, τ , y)λh(∗) (40)

and
∫∫∫∫

ζT ×ζT

L3 dx dt dy dτ =
∫∫∫∫

ζT ×ζT

[
L3(t.x, τ , y) – L3(t.x, t, x)

]
λh(∗) dx dt dy dτ

+
∫∫∫∫

ζT ×ζT

L3(t.x, t, x)λh(∗) dx dt dy dτ

= B21(h) + B22, (41)

from which we have

∣
∣B21(h)

∣
∣

≤ c
(

h +
1
h2

∫∫∫∫

| t–τ
2 |≤h,ρ≤ t+τ

2 ≤T–ρ,| x–y
2 |≤h,| x+y

2 |≤r–ρ

∣
∣�–2∂xV1(t, x)

– �–2∂yV2(τ , y)
∣
∣dx dt dy dτ

)

. (42)

Using Lemmas 5 and 6, we have B21(h) → 0 as h → 0. Using (37), we have

B22 = 22
∫∫

ζT

L3
(
α,η,α,η, V1(α,η), V2(α,η)

)
{∫

R

∫ h

–h
λh(β ,μ) dμdβ

}

dη dα

= 4
∫∫

ζT

L3
(
t, x, t, x, V1(t, x), V2(t, x)

)
dx dt

= 4
∫∫

ζT

sign
(
V1(t, x) – V2(t, x)

)
(�–2∂x

[
V1(t, x) – V2(t, x)

]
f (t, x) dx dt. (43)

From (36), (37), (42), and (43), we prove that inequality (33) holds.
Set

X(t) =
∫ ∞

–∞

∣
∣V1(t, x) – V2(t, x)

∣
∣dx. (44)

Let

γh =
∫ σ

–∞
δh(τ ) dτ

(
γ ′

h(σ ) = δh(σ ) ≥ 0
)

(45)

and choose two numbers ρ and τ ∈ (0, T0),ρ < τ . In (33), we choose

f =
[
γh(t – ρ) – γh(t – τ )

]
χ (t, x), h < min(ρ, T0 – τ ), (46)

where

χ (t, x) = χε(t, x) = 1 – γε

(|x| + Nt – M + ε
)
, ε > 0. (47)
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We know that the function χ (t, x) = 0 outside the cone � and f (t, x) = 0 outside the set �.
If (t, x) ∈�, we get the relations

0 = χt + N |χx| ≥ χt + Nχx. (48)

Applying (46)–(48) and (33), we have

0 ≤
∫ T0

0

∫ ∞

–∞

{[
δh(t – ρ) – δh(t – τ )

]
χε

∣
∣V1(t, x) – V2(t, x)

∣
∣
}

dx dt

+
∫ T0

0

∫ ∞

–∞

[
γh(t – ρ) – γh(t – τ )

]∣
∣(�–2∂x

[
V1(t, x) – V2(t, x)

]
χ (t, x)

∣
∣dx dt. (49)

Using Lemma 5 and letting ε → 0 and M → ∞, we obtain

0 ≤
∫ T0

0

{
[
δh(t – ρ) – δh(t – τ )

]
∫ ∞

–∞

∣
∣V1(t, x) – V2(t, x)

∣
∣dx

}

dt

+ c0(1 + T0)
∫ T0

0

[
γh(t – ρ) – γh(t – τ )

]
∫ ∞

–∞

∣
∣V1(t, x) – V2(t, x)

∣
∣dx dt. (50)

Using the properties of the function δh(σ ) for h ≤ min(ρ, T0 – ρ) yields

∣
∣
∣
∣

∫ T0

0
δh(t – ρ)X(t) dt – X(ρ)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ T0

0
δh(t – ρ)

∣
∣X(t) – X(ρ)

∣
∣dt

∣
∣
∣
∣

≤ c
1
h

∫ ρ+h

ρ–h

∣
∣X(t) – X(ρ)

∣
∣dt → 0 as h → 0, (51)

where c is independent of h. Denoting

L(ρ) =
∫ T0

0
γh(t – ρ)X(t) dt =

∫ T0

0

∫ t–ρ

–∞
δh(σ ) dσX(t) dt, (52)

we get

L′(ρ) = –
∫ T0

0
δh(t – ρ)X(t) dt → –X(ρ) as h → 0, (53)

and

L(ρ) → L(0) –
∫ ρ

0
X(σ ) dσ as h → 0. (54)

Similarly, we obtain

L(τ ) → L(0) –
∫ τ

0
X(σ ) dσ as h → 0. (55)

It follows from (54) and (55) that

L(ρ) – L(τ ) →
∫ τ

ρ

X(σ ) dσ as h → 0. (56)
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Send ρ → 0, τ → t, and note that

∣
∣V1(ρ, x) – V2(ρ, x)

∣
∣ ≤ ∣

∣V1(ρ, x) – V10(x)
∣
∣

+
∣
∣V2(ρ, x) – V20(x)

∣
∣ +

∣
∣V10(x) – V20(x)

∣
∣. (57)

Thus, from (50), (51), (56)–(57), we have

∫ ∞

–∞

∣
∣V1(t, x) – V2(t, x)

∣
∣dx ≤

∫ ∞

–∞
|V10 – V20|dx

+ c0

∫ t

0

∫ ∞

–∞

∣
∣V1(t, x) – V2(t, x)

∣
∣dx dt. (58)

Using the Gronwall inequality and (58), we complete the proof. �
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