RESEARCH

Open Access

The stability of solutions for the Fornberg–Whitham equation in $L^1(\mathbb{R})$ space

Xiujuan Gao¹, Shaoyong Lai^{1*} and Hongjin Chen¹

*Correspondence: Laishaoy@swufe.edu.cn ¹Department of Mathematics, Southwestern University of Finance and Economics, Chengdu, China

Abstract

The $L^2(\mathbb{R})$ conservation law of solutions for the nonlinear Fornberg–Whitham equation is derived. Making use of the Kruzkov's device of doubling the space variables, the stability of the solutions in $L^1(\mathbb{R})$ space is established under certain assumptions on the initial value.

MSC: 35G25; 35L05

Keywords: L¹ stability; Local strong solutions; The Fornberg–Whitham equation

1 Introduction

In this article, we investigate the Fornberg–Whitham(FW) equation

$$V_t - V_{txx} - V_x + \frac{3}{2}VV_x = \frac{9}{2}V_x V_{xx} + \frac{3}{2}VV_{xxx},$$
(1)

which was first written down in Whitham [1]. The numerical and theoretical analysis of solutions for Eq. (1) are made in Fornberg and Whitham [2] in which the peakon solution

$$V(t,x) = \frac{8}{9}e^{-\frac{1}{2}|x-\frac{4}{3}t|}$$
(2)

is found.

Recently, Holmes and Thompson [3] have established the existence and uniqueness of the FW equation in the Besov space in both non-periodic and periodic cases and discussed the sharpness of continuity on the data-to-solution map. A Cauchy–Kowalevski type result, which guarantees the existence and uniqueness of real analytic solutions for Eq. (1), is given and the blow-up criterion for solutions is obtained in [3]. Haziot [4] employs the estimates derived from the FW equation itself and some conclusions in [5] to derive sufficient conditions on the initial value which lead to wave breaking of solutions. For the detailed discussion about the discovery of wave breaking, we refer the reader to [2, 5-8].

We know that the dynamic properties of the Fornberg–Whitham equation are related to those of the Camassa–Holm (CH) [9], Degasperis–Procesi (DP) [10], and Novikov equations [11]. The four types of equations possess the peakon solutions. Here, we recall several works on the study of the CH, DP, and Novikov equations. The well-posedness of the Cauchy problem for a generalized CH equation is established in Himonas and Holliman [12]. The nonuniform dependence of the periodic CH equation and the well-posedness

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

of the DP equation are discussed in [13] and [14], respectively. The continuity properties of the data-to-solution map for the periodic b-family equation including the CH and DP equations are obtained in [15]. Coclite and Karlsen [16] discuss the existence and stability of the entropy solution for the DP equation. The existence and uniqueness of global solutions for the DP equation are studied in Liu and Yin [17] in the case that the initial data satisfy the sign condition. Escher et al. [18] investigate the global weak solutions and blow-up structure for the DP model under certain assumptions. Matsuno [19] finds out the multisoliton solutions of the DP equation and analyzes their peakon limits. The uniform stability of peakons for the Camassa–Holm model is established in Constantin and Strauss [7]. Using the conservation law and assuming that the initial data satisfy the sign condition, Lin and Liu [20] obtain the stability of peakons for the Degasperis–Procesi equation. The Cauchy problem for the Novikov equation is considered in [21]. A generalized Novikov model with peakon solutions is studied in [22]. For other studies of the CH, DP, and Novikov equations, the reader is referred to [21–29] and the references therein.

Motivated by the works made in Coclite and Karlsen [16], the aim of this article is to investigate the stability of local strong solutions for the Fornberg–Whitham equation (1). We find out the L^2 conservation law to the FW model. Assuming that the initial data belong to the space $L^1(\mathbb{R}) \cap H^s(\mathbb{R})$ with $s > \frac{3}{2}$, we obtain the stability of local strong solution in the space $L^1(\mathbb{R})$. We state that the L^1 stability for Eq. (1) has never been established in the previous literature works. The main technique used in this work is the device of doubling the space variables presented in [30].

The structure of this paper is that several lemmas are given in Sect. 2 and the proof of our main result is presented in Sect. 3.

2 Several lemmas

Consider the Cauchy problem of Eq. (1)

$$\begin{cases} V_t - V_{txx} - V_x + \frac{3}{2}VV_x = \frac{9}{2}V_xV_{xx} + \frac{3}{2}VV_{xxx}, \\ V(0,x) = V_0(x). \end{cases}$$
(3)

Letting $\Lambda^2 = 1 - \partial_x^2$ and noting the expression $VV_{xxx} = \frac{1}{2}(V^2)_{xxx} - 3V_xV_{xx}$, multiplying both sides of the first equation of problem (3) by Λ^{-2} , we obtain the nonlocal form of problem (3) in the form

$$\begin{cases} V_t + \frac{3}{2}VV_x - (1 - \partial_x^2)^{-2}V_x = 0, \\ V(0, x) = V_0(x), \end{cases}$$
(4)

where $\Lambda^{-2}g = \frac{1}{2}\int_{\mathbb{R}} e^{-|x-y|}g \, dy$ for any $g \in L^{\infty}$ or $g \in L^p(\mathbb{R})$ with $1 \le p \le \infty$.

Lemma 1 If $V_0(x) \in H^s(\mathbb{R})$, $s > \frac{3}{2}$ and V(t, x) is the solution of problem (4), then

$$\int_{R} V^{2}(t,x) \, dx = \int_{R} V_{0}^{2}(x) \, dx.$$
(5)

Proof Setting $(1 - \partial_x^2)^{-2}V = W$, we get $W - W_{xx} = V$ and

$$\int_{R} V (1 - \partial_x^2)^{-2} V_x \, dx = \int_{R} V W_x \, dx = \int_{R} (W - W_{xx}) W_x \, dx = 0, \tag{6}$$

from which we have

$$\frac{1}{2}\frac{d}{dt}\int_{R}V^{2} dx = \int_{R}VV_{t} dx$$
$$= \int_{R} \left[-\frac{3}{2}V^{2}V_{x} + V(1-\partial_{x}^{2})^{-2}V_{x})\right] dx$$
$$= 0 + \int_{R} \left[V(1-\partial_{x}^{2})^{-2}V_{x})\right] dx$$
$$= 0,$$

which completes the proof.

Lemma 2 ([3, 4, 23]) Assume $V(0, x) = V_0(x) \in H^s(\mathbb{R})$, $s > \frac{3}{2}$. Then problem (3) or (4) has a unique strong solution V satisfying

$$V \in C([0,T); H^{s}(\mathbb{R})) \cap C^{1}([0,T); H^{s-1}(\mathbb{R})),$$

where $T = T(V_0) > 0$ is the maximal existence time.

Consider the ordinary differential equation

$$\begin{cases} p_t = \frac{3}{2}V(t,p), & t \in [0,T), \\ p(0,x) = x. \end{cases}$$
(7)

Lemma 3 Assume that $V_0 \in H^s$, $s \ge 3$, and T > 0 is the maximal existence time of the solution for problem (7). Then there exists a unique solution $p \in C^1([0, T) \times \mathbb{R})$ to problem (7) and the map $p(t, \cdot)$ is an increasing diffeomorphism of R with $p_x(t,x) > 0$ for $(t,x) \in [0, T) \times \mathbb{R}$.

Proof Using Lemma 2, we have $V \in C^1([0, T); H^{s-1}(\mathbb{R}))$ and $H^s \in C^1(\mathbb{R})$. Therefore, we know that functions V(t, x) and $V_x(t, x)$ are bounded, Lipschitz in space, and C^1 in time. Making use of the existence and uniqueness theorem of ordinary differential equations, we conclude that problem (7) has a unique solution $p \in C^1([0, T) \times \mathbb{R})$.

We differentiate (7) about the variable x and get

$$\begin{cases} \frac{d}{dt}p_x = \frac{3}{2}V_x(t,p)p_x, & t \in [0,T), \\ p_x(0,x) = 1, \end{cases}$$
(8)

which results in

.

$$p_x(t,x) = e^{\int_0^t \frac{3}{2} V_x(\tau, p(\tau, x)) d\tau}.$$
(9)

For every T' < T, applying the Sobolev imbedding theorem gives rise to

$$\sup_{(\tau,x)\in[0,T')\times R} \left| V_x(\tau,x) \right| < \infty, \tag{10}$$

from which we know that there exists a constant $K_0 > 0$ to satisfy $p_x(t,x) \ge e^{-K_0 t} > 0$ for $(t,x) \in [0,T) \times \mathbb{R}$. The proof is finished.

Lemma 4 Suppose that T is the maximal existence time of the solution V to problem (4) and $V_0 \in H^s(\mathbb{R})$, $s > \frac{3}{2}$. Then

$$\|V(t,x)\|_{L^{\infty}} \le t \|V_0\|_{L^2} + \|V_0\|_{L^{\infty}}, \quad \forall t \in [0,T],$$
(11)

$$\left|\Lambda^{-2}V_{x}\right| \leq \|V_{0}\|_{L^{2}}, \quad \forall t \in [0, T].$$
(12)

Proof Using the density argument presented in [17], we only need to consider the case s = 3 to prove Lemma 4. If the initial value $V_0 \in H^3(\mathbb{R})$, we obtain $V \in C([0, T), H^3(\mathbb{R})) \cap C^1([0, T), H^2(\mathbb{R}))$. From (4), we have

$$V_t + \frac{3}{2}VV_x = \frac{1}{2}\int_{-\infty}^{\infty} e^{-|x-y|} \frac{\partial}{\partial y}V(t,y) \, dy$$
$$= \frac{1}{2}\int_{-\infty}^{x} e^{-x+y} \frac{\partial}{\partial y}V(t,y) \, dy + \frac{1}{2}\int_{x}^{\infty} e^{-y+x} \frac{\partial}{\partial y}V(t,y) \, dy$$
$$= -\frac{1}{2}\int_{-\infty}^{x} e^{-x+y}V(t,y) \, dy + \frac{1}{2}\int_{x}^{\infty} e^{-y+x}V(t,y) \, dy \tag{13}$$

and

$$\frac{dV(t,p(t,x))}{dt} = V_t(t,p(t,x)) + V_x(t,p(t,x))\frac{dp(t,x)}{dt}$$
$$= \left(V_t + \frac{3}{2}VV_x\right)(t,p(t,x)).$$
(14)

Using the identity $\int_{-\infty}^{\infty} e^{-2|x-y|} dy = 1$ and $||V||_{L^2} = ||V_0||_{L^2}$ (see Lemma 1), we have

$$\begin{aligned} \left| -\frac{1}{2} \int_{-\infty}^{x} e^{-x+y} V(t,y) \, dy + \frac{1}{2} \int_{x}^{\infty} e^{-y+x} V(t,y) \, dy \right| \\ &\leq \frac{1}{2} \int_{-\infty}^{x} e^{-x+y} |V(t,y)| \, dy + \frac{1}{2} \int_{x}^{\infty} e^{-y+x} |V(t,y)| \, dy \\ &\leq \left(\int_{-\infty}^{\infty} e^{-2|x-y|} \, dy \right)^{\frac{1}{2}} \left(\int_{-\infty}^{\infty} V^{2}(t,y) \, dy \right)^{\frac{1}{2}} \\ &\leq \|V\|_{L^{2}(\mathbb{R})} \\ &= \|V_{0}\|_{L^{2}(\mathbb{R})}, \end{aligned}$$
(15)

from which together with (13) we derive that (12) holds.

From (13)–(15), we derive that

$$\left| \int_{0}^{t} \frac{dV(t, p(t, x))}{dt} dt \right| \leq \frac{1}{2} \int_{0}^{t} \left| \int_{-\infty}^{\infty} e^{-|p(t, x) - y|} \frac{\partial}{\partial y} V(t, y) dy \right| dt$$
$$\leq t \| V_0 \|_{L^2(\mathbb{R})}, \tag{16}$$

from which we obtain

$$\left|V(t, p(t, x))\right| \le \left\|V(t, p(t, x))\right\|_{L^{\infty}} \le t \|V_0\|_{L^2(\mathbb{R})} + \|V_0\|_{L^{\infty}}.$$
(17)

Using Lemma 3, for every $t \in [0, T')$, T' < T, we get that there exists a function K(t) > 0 such that

$$e^{-K(t)} \le p_x(t,x) \le e^{K(t)}, \quad x \in \mathbb{R}.$$
(18)

We deduce from (18) that the function $p(t, \cdot)$ is strictly increasing on \mathbb{R} with $\lim_{x \to \pm \infty} p(t, x) = \pm \infty$ as long as $t \in [0, T')$. Applying (17) produces

$$\|V(t,x)\|_{L^{\infty}} = \|V(t,p(t,x))\|_{L^{\infty}} \le t \|V_0\|_{L^2(\mathbb{R})} + \|V_0\|_{L^{\infty}}.$$

The proof is finished.

Lemma 5 Suppose that $V_1(t,x)$ and $V_2(t,x)$ are two solutions of problem (4) with initial data $V_{1,0}(x), V_{2,0}(x) \in H^s(\mathbb{R})$ $(s > \frac{3}{2})$, respectively. Assume $f(t,x) \in C_0^{\infty}([0,\infty) \times (-\infty,\infty)$. Then

$$\int_{-\infty}^{\infty} \left| \Lambda^{-2} \frac{\partial}{\partial x} V_1(t,x) - \Lambda^{-2} \frac{\partial}{\partial x} V_2(t,x) \right| |f(t,x)| dx$$

$$\leq c_0 \int_{-\infty}^{\infty} |V_1(t,x) - V_2(t,x)| dx, \qquad (19)$$

where $c_0 > 0$ depends on f.

Proof We have

$$\begin{split} &\int_{-\infty}^{\infty} \left| \Lambda^{-2} \frac{\partial}{\partial x} V_1(t,x) - \Lambda^{-2} \frac{\partial}{\partial x} V_2(t,x) \right| \left| f(t,x) \right| dx \\ &\leq \int_{-\infty}^{\infty} \left| \partial_x \Lambda^{-2} (V_1 - V_2) \right| \left| f(t,x) \right| dx \\ &\leq \int_{-\infty}^{\infty} \left| \int_{-\infty}^{\infty} e^{-|x-y|} \operatorname{sign}(x-y) \left(V_1(t,y) - V_2(t,y) \right) dy \right| \left| f(t,x) \right| dx \\ &\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-|x-y|} \left| V_1(t,y) - V_2(t,y) \right| \left| f(t,x) \right| dy dx \\ &\leq c_0 \int_{-\infty}^{\infty} |V_1 - V_2| dy, \end{split}$$

in which we have applied the Tonelli theorem. The proof is completed.

Assume that $\delta(\sigma)$ is a function which is infinitely differentiable on $(-\infty, +\infty)$ such that $\delta(\sigma) \ge 0$, $\delta(\sigma) = 0$ for $|\sigma| \ge 1$ and $\int_{-\infty}^{\infty} \delta(\sigma) d\sigma = 1$. For an arbitrary h > 0, set $\delta_h(\sigma) = \frac{\delta(h^{-1}\sigma)}{h}$. We conclude that $\delta_h(\sigma)$ is a function in $C^{\infty}(-\infty, \infty)$ and

$$\begin{cases} \delta_{h}(\sigma) \geq 0, & \delta_{h}(\sigma) = 0 \quad \text{if } |\sigma| \geq h, \\ |\delta_{h}(\sigma)| \leq \frac{c}{h}, & \int_{-\infty}^{\infty} \delta_{h}(\sigma) \, d\sigma = 1. \end{cases}$$

$$(20)$$

 \square

Suppose that the function $W_1(x)$ is locally integrable in $(-\infty, \infty)$. The approximation function of W_1 is defined by

$$W_1^h(x) = \frac{1}{h} \int_{-\infty}^{\infty} \delta\left(\frac{x-y}{h}\right) W_1(y) \, dy, \quad h > 0.$$
⁽²¹⁾

We call x_0 a Lebesgue point of function $W_1(x)$ if

$$\lim_{h\to 0}\frac{1}{h}\int_{|x-x_0|\leq h} |W_1(x)-W_1(x_0)|\,dx=0.$$

We introduce notation about the concept of a characteristic cone. For any M > 0, we define $M > N = \max_{t \in [0,T]} ||V||_{L^{\infty}} < \infty$. Let \mho designate the cone $\{(t,x) : |x| < M - Nt, 0 \le t \le T_0 = \min(T, MN^{-1})\}$. We let S_{τ} designate the cross section of the cone \mho by the plane $t = \tau, \tau \in [0, T_0]$.

Let $K_{r+2\rho} = \{x : |x| \le r + 2\rho\}$ where r > 0, $\rho > 0$ and $\zeta_T = [0, T] \times \mathbb{R}$. The space of all infinitely differentiable functions f(t, x) with compact support in $[0, T] \times \mathbb{R}$ is denoted by $C_0^{\infty}(\zeta_T)$.

Lemma 6 ([30]) Let the function U(t,x) be a bounded and measurable function in some cylinder $\Omega_T = [0, T] \times K_r$. If for some $\rho \in (0, \min[r, T])$ and any number $h \in (0, \rho)$, then the following function

$$U_{h} = \frac{1}{h^{2}} \iiint_{|\frac{t-\tau}{2}| \le h, \rho \le \frac{t+\tau}{2} \le T-\rho, |\frac{x-y}{2}| \le h, |\frac{x+y}{2}| \le r-\rho} |U(t,x) - U(\tau,y)| \, dx \, dt \, dy \, d\tau$$

satisfies $\lim_{h\to 0} U_h = 0$.

Lemma 7 ([30]) If the function G(U) satisfies a Lipschitz condition on the interval [-N, N], then the function

$$G_1(U_1, U_2) = \operatorname{sign}(U_1 - U_2)(G(U_1) - G(U_2))$$

satisfies the Lipschitz condition in U_1 and U_2 , respectively.

Lemma 8 Suppose that V is the strong solution of problem (4), $f(t,x) \in C_0^{\infty}(\zeta_T)$ and f(0,x) = 0. Then

$$\iint_{\zeta_T} \left\{ |V - k| f_t + \frac{3}{4} \operatorname{sign}(V - k) \left[V^2 - k^2 \right] f_x + \operatorname{sign}(V - k) \Lambda^{-2} V_x f \right\} dx \, dt = 0,$$
(22)

where k is an arbitrary constant.

Proof Here we mention that the method to prove this lemma comes from [30]. We assume that $\Phi(V)$ is an arbitrary twice differentiable function on the line $-\infty < V < \infty$. We multiply the first equation of Eq. (4) by the function $\Phi'(V)f(t,x)$, where $f(t,x) \in C_0^{\infty}(\zeta_T)$. Integrating over ζ_T and integrating by parts (transferring the derivatives with respect to t and x to function f), for any constant k, we have

$$\int_{-\infty}^{\infty} \left[\int_{k}^{V} \Phi'(z) z \, dz \right] f_x \, dx = - \int_{-\infty}^{\infty} \left[f \Phi'(V) V V_x \right] dx$$

and

$$\iint_{\zeta_T} \left\{ \Phi(V) f_t + \frac{3}{2} \left[\int_k^V \Phi'(z) z \, dz \right] f_x - \Phi'(V) \Lambda^{-2} V_x f \right\} dx \, dt = 0.$$
⁽²³⁾

Integration by parts yields

$$\int_{-\infty}^{\infty} \left[\int_{k}^{V} \Phi'(z) z \, dz \right] f_{x} \, dx = \int_{-\infty}^{\infty} \left[\frac{1}{2} \Phi'(V) V^{2} - \frac{1}{2} \Phi'(k) k^{2} - \frac{1}{2} \int_{k}^{V} (z^{2} - k^{2}) \Phi''(z) \, dz \right] f_{x} \, dx.$$
(24)

Choosing that $\Phi^h(V)$ is an approximation of the function |V - k|, setting $\Phi(V) = \Phi^h(V)$, and making use of the properties of the sign(V-k), (23), (24) and sending $h \to 0$, we notice that the last term in (24) becomes zero. Thus, we have

$$\iint_{\zeta_T} \left\{ |V - k| f_t + \frac{3}{4} \operatorname{sign}(V - k) \left[V^2 - k^2 \right] f_x + \operatorname{sign}(V - k) \Lambda^{-2} V_x f \right\} dx \, dt = 0.$$
 (25)

The proof is finished.

3 Main result

Now, we give the main result of this work.

Theorem 1 Assume that V_1 and V_2 are two local strong solutions of Eq. (1) with initial data $V_{1,0}(x), V_{2,0}(x) \in L^1(\mathbb{R}) \cap H^s(\mathbb{R})$, $s > \frac{3}{2}$. Let T be the maximal existence time of the solutions. Then

$$\left\| V_{1}(t,\cdot) - V_{2}(t,\cdot) \right\|_{L^{1}(\mathbb{R})} \le c_{0} e^{c_{0}t} \int_{-\infty}^{\infty} \left| V_{10}(x) - V_{20}(x) \right| dx, \quad t \in [0,T),$$
(26)

where $c_0 > 0$ is a constant.

Proof From Lemma 2, we know the existence of local strong solutions for Eq. (1). Let $f(t,x) \in C_0^{\infty}(\zeta_T)$. Assume f(t,x) = 0 outside the cylinder

We let

$$\xi = f\left(\frac{t+\tau}{2}, \frac{x+y}{2}\right)\delta_h\left(\frac{t-\tau}{2}\right)\delta_h\left(\frac{x-y}{2}\right) = f(\cdots)\lambda_h(*),\tag{28}$$

where $(\cdots) = (\frac{t+\tau}{2}, \frac{x+y}{2})$ and $(*) = (\frac{t-\tau}{2}, \frac{x-y}{2})$. The function $\delta_h(\sigma)$ is defined in (20). We obtain

$$\xi_t + \xi_\tau = f_t(\cdots)\lambda_h(*), \qquad \xi_x + \xi_y = f_x(\cdots)\lambda_h(*).$$
⁽²⁹⁾

We apply the technique of Kruzkov's device of doubling the space variables [30]. In (22), we set $k = V_1(\tau, y)$ and $f = \xi(t, x, \tau, y)$ for a fixed point (τ, y) . We note that $V_1(\tau, y)$ is defined

almost everywhere in $\zeta_T = [0, T] \times \mathbb{R}$. We integrate (22) over ζ_T for variable (τ, y) and then get

Similarly, it has

Using (30) and (31), we acquire the inequality

$$0 \leq \iiint_{\zeta_T \times \zeta_T} \left\{ \left| V_1(t,x) - V_2(\tau,y) \right| (\xi_t + \xi_\tau) + \frac{3}{4} \operatorname{sign} \left(V_1(t,x) - V_2(\tau,y) \right) \left(\frac{V_1^2(t,x)}{2} - \frac{V_2^2(\tau,y)}{2} \right) (\xi_x + \xi_y) \right\} dx \, dt \, dy \, d\tau + \left| \iiint_{\zeta_T \times \zeta_T} \operatorname{sign} \left(V_1(t,x) - V_2(t,x) \right) \right. \\ \times \left(\Lambda^{-2} \partial_x V_1(t,x) - \Lambda^{-2} \partial_y V_2(\tau,y) \right) \xi \, dx \, dt \, dy \, d\tau \right|.$$

$$= L_1 + L_2 + \left| \iiint_{\zeta_T \times \zeta_T} L_3 \, dx \, dt \, dy \, d\tau \right|.$$
(32)

We claim that the following inequality

$$0 \leq \iiint_{\zeta_T} \left\{ |V_1(t,x) - V_2(t,x)| f_t + \frac{3}{4} \operatorname{sign} (V_1(t,x) - V_2(t,x)) \left(\frac{V_1^2(t,x)}{2} - \frac{V_2^2(t,x)}{2} \right) f_x \right\} dx dt + \left| \iint_{\zeta_T} \operatorname{sign} (V_1(t,x) - V_2(t,x)) \Lambda^{-2} \partial_x [V_1(t,x) - V_2(t,x)] f dx dt \right|$$
(33)

holds.

In fact, for the choice of ξ , the first two terms in the integrand of (32) can be represented in the form

$$D_h = D(t, x, \tau, y, V_1(t, x), V_2(\tau, y))\lambda_h(*).$$

From Lemma 4, we know $||V_1||_{L^{\infty}} < C_T$ and $||V_2||_{L^{\infty}} < C_T$; from Lemma 7, we know D_h satisfies the Lipschitz condition in V_1 and V_2 , respectively. By the choice of ξ , we derive that $D_h = 0$ outside the region

$$\{(t, x; \tau, y)\} = \left\{ \rho \le \frac{t + \tau}{2} \le T - 2\rho, \frac{|t - \tau|}{2} \le h, \frac{|x + y|}{2} \le r - 2\rho, \frac{|x - y|}{2} \le h \right\}.$$
(34)

Furthermore, we get

$$\iiint \int_{\zeta_T \times \zeta_T} D_h dx dt dy d\tau$$

$$= \iiint \int_{\zeta_T \times \zeta_T} \left[D(t, x, \tau, y, V_1(t, x), V_2(\tau, y)) - D(t, x, t, x, V_1(t, x), V_2(t, x)) \right] \lambda_h(*) dx dt dy d\tau$$

$$+ \iiint \int_{\zeta_T \times \zeta_T} D(t, x, t, x, V_1(t, x), V_2(t, x)) \lambda_h(*) dx dt dy d\tau$$

$$= B_{11}(h) + B_{12}.$$
(35)

Noticing $|\lambda(*)| \leq \frac{c}{h^2}$ and the definition of D_h gives rise to

$$B_{11}(h)\Big|$$

$$\leq c \Big[h + \frac{1}{h^2} \\ \times \iiint_{|\frac{t-\tau}{2}| \leq h, \rho \leq \frac{t+\tau}{2} \leq T-\rho, |\frac{x-y}{2}| \leq h, |\frac{x+y}{2}| \leq r-\rho} \Big| V_1(t,x) - V_2(\tau,y) \Big| \, dx \, dt \, dy \, d\tau \Big], \quad (36)$$

where the constant *c* does not depend on *h*. Using Lemma 6, we get $B_{11}(h) \to 0$ as $h \to 0$. The integral B_{12} does not depend on *h*. Substituting $t = \alpha$, $\frac{t-\tau}{2} = \beta$, $x = \eta$, $\frac{x-y}{2} = \mu$ and noting the identity

$$\int_{-h}^{h} \int_{-\infty}^{\infty} \lambda_h(\beta,\mu) \, d\mu \, d\beta = 1, \tag{37}$$

we derive that

$$B_{12} = 2^{2} \iint_{\zeta_{T}} D_{h}(\alpha, \eta, \alpha, \eta, V_{1}(\alpha, \eta), V_{2}(\alpha, \eta)) \left\{ \int_{-h}^{h} \int_{-\infty}^{\infty} \lambda_{h}(\beta, \mu) \, d\mu \, d\beta \right\} d\eta \, d\alpha$$
$$= 4 \iint_{\zeta_{T}} D_{h}(t, x, t, x, V_{1}(t, x), V_{2}(t, x)) \, dx \, dt.$$
(38)

Thus, we have

$$\lim_{h \to 0} \iiint_{\zeta_T \times \zeta_T} D_h \, dx \, dt \, dy \, d\tau = 4 \iint_{\zeta_T} D\big(t, x, t, x, V_1(t, x), V_2(t, x)\big) \, dx \, dt. \tag{39}$$

We write

$$L_{3} = \operatorname{sign}(u(t,x) - v(\tau,y)) (\Lambda^{-2} \partial_{x} V_{1}(t,x) - \Lambda^{-2} \partial_{y} V_{2}(\tau,y)) f(\cdots) \lambda_{h}(*)$$

= $\overline{L_{3}}(t.x, \tau, y) \lambda_{h}(*)$ (40)

and

$$\iiint \int_{\zeta_T \times \zeta_T} L_3 \, dx \, dt \, dy \, d\tau = \iiint \int_{\zeta_T \times \zeta_T} \left[\overline{L_3}(t.x, \tau, y) - \overline{L_3}(t.x, t, x) \right] \lambda_h(*) \, dx \, dt \, dy \, d\tau$$
$$+ \iiint \int_{\zeta_T \times \zeta_T} \overline{L_3}(t.x, t, x) \lambda_h(*) \, dx \, dt \, dy \, d\tau$$
$$= B_{21}(h) + B_{22}, \tag{41}$$

from which we have

$$B_{21}(h)\Big| \leq c \Big(h + \frac{1}{h^2} \iiint_{|\frac{t-\tau}{2}| \le h, \rho \le \frac{t+\tau}{2} \le T-\rho, |\frac{x-y}{2}| \le h, |\frac{x+y}{2}| \le r-\rho} \Big| \Lambda^{-2} \partial_x V_1(t, x) - \Lambda^{-2} \partial_y V_2(\tau, y) \Big| \, dx \, dt \, dy \, d\tau \Big).$$

$$(42)$$

Using Lemmas 5 and 6, we have $B_{21}(h) \rightarrow 0$ as $h \rightarrow 0$. Using (37), we have

$$B_{22} = 2^{2} \iint_{\zeta_{T}} \overline{L_{3}}(\alpha, \eta, \alpha, \eta, V_{1}(\alpha, \eta), V_{2}(\alpha, \eta)) \left\{ \int_{\mathbb{R}} \int_{-h}^{h} \lambda_{h}(\beta, \mu) \, d\mu \, d\beta \right\} d\eta \, d\alpha$$

$$= 4 \iint_{\zeta_{T}} \overline{L_{3}}(t, x, t, x, V_{1}(t, x), V_{2}(t, x)) \, dx \, dt$$

$$= 4 \iint_{\zeta_{T}} \operatorname{sign} \left(V_{1}(t, x) - V_{2}(t, x) \right) (\Lambda^{-2} \partial_{x} \left[V_{1}(t, x) - V_{2}(t, x) \right] f(t, x) \, dx \, dt.$$
(43)

From (36), (37), (42), and (43), we prove that inequality (33) holds.

Set

$$X(t) = \int_{-\infty}^{\infty} |V_1(t,x) - V_2(t,x)| \, dx.$$
(44)

Let

$$\gamma_h = \int_{-\infty}^{\sigma} \delta_h(\tau) \, d\tau \qquad \left(\gamma'_h(\sigma) = \delta_h(\sigma) \ge 0 \right) \tag{45}$$

and choose two numbers ρ and $\tau \in (0, T_0), \rho < \tau$. In (33), we choose

$$f = [\gamma_h(t-\rho) - \gamma_h(t-\tau)]\chi(t,x), \quad h < \min(\rho, T_0 - \tau),$$
(46)

where

$$\chi(t,x) = \chi_{\varepsilon}(t,x) = 1 - \gamma_{\varepsilon} (|x| + Nt - M + \varepsilon), \quad \varepsilon > 0.$$
(47)

We know that the function $\chi(t, x) = 0$ outside the cone \Im and f(t, x) = 0 outside the set \exists . If $(t, x) \in \Im$, we get the relations

$$0 = \chi_t + N|\chi_x| \ge \chi_t + N\chi_x. \tag{48}$$

Applying (46)–(48) and (33), we have

$$0 \leq \int_{0}^{T_{0}} \int_{-\infty}^{\infty} \{ \left[\delta_{h}(t-\rho) - \delta_{h}(t-\tau) \right] \chi_{\varepsilon} \left| V_{1}(t,x) - V_{2}(t,x) \right| \} dx dt + \int_{0}^{T_{0}} \int_{-\infty}^{\infty} \left[\gamma_{h}(t-\rho) - \gamma_{h}(t-\tau) \right] \left| (\Lambda^{-2} \partial_{x} \left[V_{1}(t,x) - V_{2}(t,x) \right] \chi(t,x) \right| dx dt.$$
(49)

Using Lemma 5 and letting $\varepsilon \to 0$ and $M \to \infty$, we obtain

$$0 \leq \int_{0}^{T_{0}} \left\{ \left[\delta_{h}(t-\rho) - \delta_{h}(t-\tau) \right] \int_{-\infty}^{\infty} \left| V_{1}(t,x) - V_{2}(t,x) \right| dx \right\} dt + c_{0}(1+T_{0}) \int_{0}^{T_{0}} \left[\gamma_{h}(t-\rho) - \gamma_{h}(t-\tau) \right] \int_{-\infty}^{\infty} \left| V_{1}(t,x) - V_{2}(t,x) \right| dx dt.$$
(50)

Using the properties of the function $\delta_h(\sigma)$ for $h \leq \min(\rho, T_0 - \rho)$ yields

$$\left| \int_{0}^{T_{0}} \delta_{h}(t-\rho)X(t) dt - X(\rho) \right| = \left| \int_{0}^{T_{0}} \delta_{h}(t-\rho) \left| X(t) - X(\rho) \right| dt \right|$$
$$\leq c \frac{1}{h} \int_{\rho-h}^{\rho+h} \left| X(t) - X(\rho) \right| dt \to 0 \quad \text{as } h \to 0, \tag{51}$$

where c is independent of h. Denoting

$$L(\rho) = \int_{0}^{T_{0}} \gamma_{h}(t-\rho)X(t) dt = \int_{0}^{T_{0}} \int_{-\infty}^{t-\rho} \delta_{h}(\sigma) d\sigma X(t) dt,$$
(52)

we get

$$L'(\rho) = -\int_0^{T_0} \delta_h(t-\rho)X(t) dt \to -X(\rho) \quad \text{as } h \to 0,$$
(53)

and

$$L(\rho) \to L(0) - \int_0^{\rho} X(\sigma) \, d\sigma \quad \text{as } h \to 0.$$
 (54)

Similarly, we obtain

$$L(\tau) \to L(0) - \int_0^{\tau} X(\sigma) \, d\sigma \quad \text{as } h \to 0.$$
(55)

It follows from (54) and (55) that

$$L(\rho) - L(\tau) \to \int_{\rho}^{\tau} X(\sigma) \, d\sigma \quad \text{as } h \to 0.$$
(56)

Send $\rho \rightarrow 0$, $\tau \rightarrow t$, and note that

$$|V_{1}(\rho, x) - V_{2}(\rho, x)| \leq |V_{1}(\rho, x) - V_{10}(x)| + |V_{2}(\rho, x) - V_{20}(x)| + |V_{10}(x) - V_{20}(x)|.$$
(57)

Thus, from (50), (51), (56)–(57), we have

$$\int_{-\infty}^{\infty} |V_1(t,x) - V_2(t,x)| \, dx \le \int_{-\infty}^{\infty} |V_{10} - V_{20}| \, dx + c_0 \int_0^t \int_{-\infty}^{\infty} |V_1(t,x) - V_2(t,x)| \, dx \, dt.$$
(58)

Using the Gronwall inequality and (58), we complete the proof.

Acknowledgements

The authors are very grateful to the reviewers for their helpful and valuable comments and suggestions, which have led to a meaningful improvement of the paper.

Funding

This work is supported by the National Natural Science Foundation of China (No. 11471263).

Abbreviations

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Authors' contributions

The authors contributed equally to the writing of this paper. They read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 April 2018 Accepted: 13 September 2018 Published online: 24 September 2018

References

- 1. Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. A 299(1456), 6–25 (1967)
- Fornberg, G., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A 289, 373–404 (1978)
- Holmes, J., Thompson, R.C.: Well-posedness and continuity properties of the Fornberg–Whitham equation in Besov spaces. J. Differ. Equ. 263, 4355–4381 (2017)
- 4. Haziot, S.V.: Wave breaking for the Fornberg–Whitham equation. J. Differ. Equ. 263, 8178–8185 (2017)
- Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
- 6. Constantin, A., Ivanov, R.I.: Dressing method for the Degasperis–Procesi equation. Stud. Appl. Math. **138**, 205–226 (2017)
- 7. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603-610 (2000)
- Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2009)
- 9. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. **71**, 1661–1664 (1993)
- Degasperis, A., Procesi, M.: Asymptotic integrability. In: Symmetry and Perturbation Theory, Rome, 1998, pp. 23–37. World Scientific, Singapore (1999)
- 11. Novikov, V.: Generalizations of the Camassa–Holm equation. J. Phys. A 42(34), 342002 (2009)
- 12. Himonas, A., Holliman, C.: The Cauchy problem for a generalized Camassa–Holm equation. Adv. Differ. Equ. **19**(1–2), 161–200 (2014)
- 13. Himonas, A., Kenig, C., Misiolek, G.: Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Equ. **35**(6), 1145–1162 (2010)
- 14. Himonas, A., Holliman, C.: On well-posedness of the Degasperis-Procesi equation. Nonlinearity 25, 449-479 (2012)

- Grayshan, K.: Continuity properties of the data-to-solution map for the periodic *b*-family equation. Differ. Integral Equ. 25(1–2), 1–20 (2012)
- 16. Coclite, G.M., Karlsen, K.H.: On the well-posedness of the Degasperis–Procesi equation. J. Funct. Anal. 223, 60–91 (2006)
- 17. Liu, Y., Yin, Z.Y.: Global existence and blow-up phenomena for the Degasperis–Procesi equation. Commun. Math. Phys. 267, 801–820 (2006)
- Escher, J., Liu, Y., Yin, Z.Y.: Global weak solutions and blow-up structure for the Degasperis–Procesi equation. J. Funct. Anal. 241, 457–485 (2006)
- Matsuno, Y.: Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit. Inverse Probl. 21, 1553–1570 (2005)
- Lin, Z., Liu, Y.: Stability of peakons for the Degasperis–Procesi equation. Commun. Pure Appl. Math. 62, 125–146 (2009)
- Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Discrete Contin. Dyn. Syst. 31(2), 469–488 (2011)
- Mi, Y.S., Mu, C.L.: On the Cauchy problem for the modified Novikov equation with peakon solutions. J. Differ. Equ. 254, 961–982 (2013)
- Fu, Y., Liu, Y., Qu, C.Z.: On the blow-up structure for the generalized periodic Camassa–Holm and Degasperis–Procesi equation. J. Funct. Anal. 262, 3125–3158 (2012)
- 24. Yin, Z.Y.: Global weak solutions for a new periodic integrable equation with peakon solutions. J. Funct. Anal. 212, 182–194 (2004)
- Lai, S.Y., Wu, Y.H.: A model containing both the Camassa–Holm and Degasperis–Procesi equations. J. Math. Anal. Appl. 374, 458–469 (2011)
- Lai, S.Y., Wu, Y.H.: The existence of global strong and weak solutions for the Novikov equation. J. Math. Anal. Appl. 399, 682–691 (2013)
- Lai, S.Y., Li, N., Wu, M.: The L¹ stability of solutions for the Degasperis–Procesi equation. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 20, 379–390 (2013)
- Yan, H.B., Yong, L., Hu, H.L.: On the L¹ stability to a generalized Degasperis–Procesi equation. Abstr. Appl. Anal. 2013, Article ID 121489 (2013)
- Eckhardt, J.: The inverse spectral transform for the conservative Camassa–Holm flow with decaying initial data. Arch. Ration. Mech. Anal. 224, 21–52 (2017)
- 30. Kruzkov, S.N.: First order quasi-linear equations in several independent variables. Math. USSR Sb. 10, 217–243 (1970)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com