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Abstract
This paper deals with the initial boundary value problem for the nonlinear beam
equation with double damping terms

utt – uxxt + uxxxx + uxxxxt = g(uxx)xx , x ∈ �, t > 0,

where� = (0, 1), and g(s) is a given nonlinear function. We derive sufficient conditions
for the blow-up of the solution to the problem by virtue of an adapted concavity
method. In addition, global existence of weak solutions as well as exponential and
uniform decay rates of the solution energy are established by the use of an integral
inequality.
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1 Introduction
In this paper, we study the following initial boundary value problem:

utt – uxxt + uxxxx + uxxxxt = g(uxx)xx, x ∈ �, t > 0, (1.1)

u(0, t) = u(1, t) = 0, ux(0, t) = ux(1, t) = 0, t ≥ 0, (1.2)

u(x, 0) = u0(x) ∈ H2
0 (�), ut(x, 0) = u1(x) ∈ L2(�), (1.3)

where u(x, t) denotes the unknown function, g(s) is a given nonlinear function, � = (0, 1),
u0(x) and u1(x) are given functions which satisfy the boundary conditions (1.2), uxxxxt de-
notes the strong material damping, and uxxt represents the internal dynamic damping.

The system (1.1) models the motion of a neo-Hookean elastomer rod with internal
damping, and as a model of a class of abstract nonlinear damped hyperbolic equations
appears in many applications to natural sciences, such as the unidirectional propagation
of nonlinear longitudinal displacement [1], dynamical longitudinal vibrations [2] and vi-
brations of a nonlinear damped beam [3].
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A general class of abstract evolution equations was established by Banks et al. [1]:

wtt + A1w + A2wt + N∗g(Nw) = f (t), (1.4)

w(0) = ϕ0, (1.5)

wt(0) = ϕ1, (1.6)

where A2wt is the exact form of the internal dynamic damping mechanisms in elastomers,
and A1, A2, N and f satisfy certain assumptions (see [1]). The global existence, unique-
ness, regularity and continuous dependence on the initial data of a generalized solution to
the problem (1.4)–(1.6) are proved under general conditions on the nonlinear term. This
class contains problem (1.1)–(1.3) as a particular example. This example was discussed in a
separate section in [1]. To obtain global existence, the authors of [1] used the Galerkin ap-
proximation method and the monotonicity method (see [4]). And in [3], the existence and
uniqueness of weak solutions to a class of nonlinear beam equation are established under
certain assumptions (locally Lipschitz plus affine domination) on the nonlinearity. Their
results weaken the stringent monotonicity assumptions in the previous theories. In [5],
the existence and uniqueness of the generalized global solutions and the classical global
solutions of the three different initial boundary value problems for a damped nonlinear
hyperbolic equation are proved by Chen. Moreover, sufficient conditions for a blow-up of
solutions are given in [5].

In 2010, Song et al. [6] proved the existence and nonexistence of global solutions to the
beam equation

utt + k1uxxxx + k2uxxxxt = g(uxx)xx (1.7)

with the initial value conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈R. (1.8)

Applying the Fourier transform method, the authors proved that for any T > 0, the Cauchy
problem (1.7)–(1.8) admits a unique global smooth solution u ∈ C∞((0, T]; H∞(R)) ∩
C((0, T]; H3(R)) ∩ C1((0, T]; H–1(R)) in the case of g(s) = sn. Recently, Yu et al. [7] stud-
ied the following wave equation:

utt – k1uxxt + uxxxx + uxxxxt = g(ux)x, x ∈R, t > 0, (1.9)

with the initial value conditions (1.8). They gave sufficient conditions on the blow-up of
the solution in finite time and an example.

In [8], Chen et al. gave sufficient conditions of a blow-up of the solutions for the problem:

utt + k1�
2u + k2�

2ut + �g(�u) = 0, x ∈ �, t > 0, (1.10)

u = 0,
∂u
∂ν

= 0, x ∈ ∂�, t ≥ 0, (1.11)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �̄, (1.12)
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and proved the existence and uniqueness of the local generalized solution for this problem.
Furthermore, Aassila and Guesmia in [9] solved the energy decay problem for � ⊂ R

m.
Later on, their results were extended to various problems, for more investigations and
different points of view we refer to [10–21] and the references therein.

There have been many impressive works on the well-posedness and energy decay of
solutions to the nonlinear beam equations of the type (1.1). However, to the best of our
knowledge, various authors considered the problem driven only by either material damp-
ing or nonlinear evolution equation with dynamic damping term, see [1–6, 8–12]. There is
little research on the well-posedness and energy decay of Eq. (1.1) with material damping
and internal dynamic damping at the same time. For this kind of equation, the questions
of the existence and nonexistence of global generalized solutions (or the global weak so-
lutions) to the Cauchy problem and the initial boundary value problem remain open.

In the present paper, we study the existence and uniqueness of the global weak solution
for the initial boundary value problem (1.1)–(1.3). And then we focus on finding sufficient
conditions yielding nonexistence of a global solution to the above problem. We construct a
differential inequality under certain conditions. The method applied is the so-called “con-
cavity method” [21]. As an application of the above results, one example of nonexistence
of a global solution is given. Our methods for studying the blow-up of solution are appli-
cable to other nonlinear evolution equations. Finally, we study the asymptotic behavior of
the solution to the problem (1.1)–(1.3) by the use of an integral inequality.

This paper is organized as follows. In Sect. 2, some notations and the main results are
stated. In Sect. 3, the existence of global weak solutions to problem (1.1)–(1.3) is studied.
Section 4 contains the statement and the proofs of the blow-up of solutions. Section 5
gives the statement and the proofs of the decay estimate of the energy functional. In Sect. 6,
a comparison of various results is carried out. And we also state some open and significant
questions.

2 Preliminaries and main results
In this section, some notations and the main results for the initial boundary value problem
(1.1)–(1.3) are stated. Letting L2 = L2(�) and H = H2

0 (�), we have the Gelfand triple H ↪→
L2 ↪→ H∗ with H∗ = H–2(�).

For brevity, we use the following abbreviations:

‖ · ‖ = ‖ · ‖L2(�), ‖ · ‖H = ‖ · ‖H2
0 (�), ‖ · ‖H∗ = ‖ · ‖H–2(�).

Also (·, ·) denotes the L2-inner product, while (·, ·)H∗ ,H stands for the usual duality product.
Assume that the parameters in (1.1)–(1.3) satisfy the following assumptions:

Assumption 2.1 We assume that

G(ξ ) =
∫ ξ

0
g(τ ) dτ , g(ξ ) = G′(ξ )

satisfy the following conditions:
(a) There exist positive constants Ci for i = 1, 2, 3 such that

–C2|ξ |2 – C3 ≤ G(ξ ) ≤ 1
2

(1 – ε)|ξ |2 + C1, ∀ε > 0.
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(b) There are positive constants C̃j for j = 1, 2 such that

∣∣g(ξ )
∣∣ ≤ C̃1|ξ | + C̃2.

(c) g is a nondecreasing function, i.e.,

g ′(ξ ) ≥ 0, ∀ξ ∈R.

Definition 2.1 We denote the function space

X(T) =
{

w|w ∈ L2(0, T ; H), wt ∈ L2(0, T ; H), wtt ∈ L2(0, T ; H∗)}

equipped with the norm

‖w‖X(T) =
(‖w‖2

L2(0,T ;H) + ‖wt‖2
L2(0,T ;H) + ‖wtt‖2

L2(0,T ;H∗)
) 1

2 .

We now define the concept of a weak solution to the problem (1.1)–(1.3).

Definition 2.2 A function u ∈ X(T) is a global weak solution of (1.1)–(1.3) if it satisfies
the following identity for every t ∈ [0, T]

(
utt(t), v

)
H∗ ,H –

(
ut(t), vxx

)
+

(
uxx(t), vxx

)
+

(
uxxt(t), vxx

)

=
(
g
(
uxx(t)

)
, vxx

)

for all v ∈ H . In addition, u must also satisfy

u(x, 0) = u0(x) ∈ H , ut(x, 0) = u1(x) ∈ L2.

For the problem (1.1)–(1.3), we have the following theorem.

Theorem 2.1 Suppose that u0(x) ∈ H , u1(x) ∈ L2 and that Assumption 2.1 holds. Then the
problem (1.1)–(1.3) has a global weak solution u ∈ X(T).

Theorem 2.2 Suppose that g ∈ C2(R), u0 ∈ H2(�), u1 ∈ L2(�), G(u0xx) ∈ L1(�) and there
exists a constant γ > 0 such that

sg(s) ≥ 2(1 + 2γ )G(s), s ∈R, (2.1)

where G(s) =
∫ s

0 g(τ ) dτ .
Then the solution u(x, t) of the problem (1.1)–(1.3) blows up in finite time if one of the

following conditions holds true:
(1) E(0) < 0;
(2) E(0) = 0, 2(u0, u1) > 1

γ
(‖u0xx‖2 + ‖u0x‖2);

(3) E(0) > 0, (u0, u1) > [E(0)(‖u0‖2 + T0‖u0x‖2 + T0‖u0xx‖2)] 1
2 ,

where E(0) = ‖u1‖2 + ‖u0xx‖2 – 2
∫
�

G(u0xx) dx.
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Theorem 2.3 Suppose that the conditions of Theorem 2.1 hold. Let u(x, t) ∈ X(T) be a
global weak solution of the problem (1.1)–(1.3). We also assume that

(1) G(s) ≤ 0, for all s ∈ R,
(2) sg(s) ≤ 2G(s), for all s ∈R.

Then

E1(t) ≤ E1(0)e1– t
3 ,

where E1(t) = ‖ut(t)‖2 + ‖uxx(t)‖2 – 2
∫ 1

0 G(uxx) dx.

3 Existence of solution
In this section, we establish the existence results for the problem (1.1)–(1.3) under suitable
conditions. The method which we use is a Galerkin approximation similar to those used
in [3] and [4].

Proof of Theorem 2.1 Let {ωj(x)} be a system of basis functions in H . Now we construct
the following approximate solution um(x, t) of problem (1.1)–(1.3):

um(x, t) =
m∑

j=1

αm
j (t)ωj(x), m = 1, 2, . . . ,

which satisfies

(
umtt(t),ωi

)
–

(
umt(t),ωixx

)
+

(
umxx(t),ωixx

)
+

(
umxxt(t),ωixx

)

=
(
g
(
umxx(t)

)
,ωixx

)
, i = 1, 2, . . . , m, (3.1)

with initial conditions

um(x, 0) =
m∑

j=1

am
j ωj(x) → u0(x) in H as m → +∞, (3.2)

umt(x, 0) =
m∑

j=1

bm
j ωj(x) → u1(x) in L2 as m → +∞. (3.3)

Multiplying (3.1) by d
dt α

m
i (t) and summing over i, we obtain

(
umtt(t), umt(t)

)
–

(
umt(t), umxxt(t)

)
+

(
umxx(t), umxxt(t)

)
+

(
umxxt(t), umxxt(t)

)

=
(
g
(
umxx(t)

)
, umxxt(t)

)
. (3.4)

Hence,

d
dt

[∥∥umt(t)
∥∥2 +

∥∥umxx(t)
∥∥2] + 2

∥∥umxt(t)
∥∥2 + 2

∥∥umxxt(·, t)
∥∥2

= 2
(
g
(
umxx(t)

)
, umxx(t)

)
. (3.5)
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From Assumption 2.1 and (3.5), we have

d
dt

[∥∥umt(t)
∥∥2 +

∥∥umxx(t)
∥∥2 – 2

∫ 1

0
G(uxx) dx

]

+ 2
∥∥umxt(t)

∥∥2 + 2
∥∥umxxt(t)

∥∥2 = 0. (3.6)

Using this fact we conclude that there exists a positive constant C independent on m such
that

∥∥umt(t)
∥∥2 + ε

∥∥umxx(t)
∥∥2 + 2

∫ t

0

∥∥umxτ (τ )
∥∥2 dτ

+ 2
∫ t

0

∥∥umxxτ (τ )
∥∥2 dτ ≤ C, t ∈ [0, T]. (3.7)

Therefore, there exist limit functions u(x, t) ∈ W 1,2(0, T ; H) and a subsequence still de-
noted {um}, for which as m → +∞ we have

um → u weakly in W 1,2(0, T ; H).

From Assumption 2.1(b), we have

∥∥g(umxx)
∥∥2

L2(0,T ;L2)

=
∫ t

0

∫ 1

0

∣∣g(
umxx(x, τ )

)∣∣2 dx dτ

≤ 2
∫ t

0

∫ 1

0

(
C̃2

1
∣∣umxx(x, τ )

∣∣2 + C̃2
2
)

dx dτ

= 2C̃2
1

∫ t

0

∥∥umxx(τ )
∥∥2 dτ + 2C̃2

2 t

≤ 2C̃2
1Ct + 2C̃2

2 t ≤ 2
(
C̃2

1C + C̃2
2
)
T . (3.8)

Therefore, there exists a function g̃(t) ∈ L2(0, T ; L2) for all t ∈ [0, T] such that

g
(
umxx(t)

) → g̃(t) weakly in L2(0, T ; L2).

In (3.1), we fix i and let m → +∞. Then, we have

(
utt(t),ωi

)
–

(
ut(t),ωixx

)
+

(
uxx(t),ωixx

)
+

(
uxxt(t),ωixx

)

=
(
g̃(t),ωixx

)
(3.9)

and

(
utt(t), v

)
–

(
ut(t), vxx

)
+

(
uxx(t), vxx

)
+

(
uxxt(t), vxx

)

=
(
g̃(t), vxx

)
, ∀v ∈ H , (3.10)

with u(x, 0) = u0(x) and ut(x, 0) = u1(x).
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From Assumption 2.1(c), following ideas in [4], we can prove that

g
(
uxx(t)

)
= g̃(t) for a.e. t ∈ [0, T].

By density we obtain that u(x, t) is a weak solution to the problem (1.1)–(1.3).
We also note that

v → (utt , v)H∗ ,H = –
∫ t

0

(
uτ (τ ), vτ (τ )

)
dτ

=
∫ t

0

(
g
(
uxx(τ )

)
, vxx(τ )

)
dτ –

∫ t

0

(
uxx(τ ), vxx(τ )

)
dτ

–
∫ t

0

(
uxxτ (τ ), vxx(τ )

)
dτ +

∫ t

0

(
uτ (τ ), vxx(τ )

)
dτ (3.11)

is continuous in D(0, T ; H) equipped with the topology of L2(0, T ; H) and thus by density
in L2(0, T ; H). So utt ∈ L2(0, T ; H)∗ = L2(0, T ; H∗). Since we have already established that
u(x, t) ∈ W 1,2(0, T ; H), we have that u(x, t) ∈ X(T), and we obtain the additional regularity
u(x, t) ∈ C(0, T ; H) and ut(x, t) ∈ C(0, T ; L2) by [22]. This completes the proof. �

4 Blow-up of solution
In this section, we will prove a fact for the blow-up of solution to problem (1.1)–(1.3). The
main method employed in this paper is based on the concavity argument developed by
Levin [23, 24]. In order to prove our main result, we will use the following lemma.

Lemma 4.1 ([21]) Suppose that a positive, twice-differentiable function θ (t) satisfies the
inequality

θ ′′(t)θ (t) – (1 + γ )θ ′2(t) ≥ –2C1θ
′(t)θ (t) – C2θ

2(t), t > 0,

where γ > 0 and C1, C2 ≥ 0 are constants.
(1) If C1 = C2 = 0, θ (0) > 0 and θ ′(0) > 0, then there exists a t1 ∈ (0, θ (0)

γ θ ′(0) ] such that θ (t)
tends to infinity as t → t1.

(2) If C1 + C2 > 0, θ (0) > 0 and θ ′(0) > –γ2γ
–1θ (0), then there exists a t1 > 0 such that

θ (t) tends to infinity as t → t1, where t1 is bounded above by

1
2
√

C2
1 + γ C2

ln
γ1θ (0) + γ θ ′(0)
γ2θ (0) + γ θ ′(0)

with γ1 = –C1 +
√

C2
1 + γ C2 and γ2 = –C1 –

√
C2

1 + γ C2.

Proof of Theorem 2.2 Suppose that the maximal time of existence of solution to the initial
boundary value problem (1.1)–(1.3) is infinite. The energy functional can be defined as

E(t) =
∥∥ut(t)

∥∥2 +
∥∥uxx(t)

∥∥2 + 2
∫ t

0

∥∥uxt(τ )
∥∥2 dτ

+ 2
∫ t

0

∥∥uxxt(τ )
∥∥2 dτ – 2

∫
�

G(uxx) dx. (4.1)
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From (4.1) and (1.1), it follows that

d
dt

E(t) =
d
dt

[∥∥ut(t)
∥∥2 +

∥∥uxx(t)
∥∥2 + 2

∫ t

0

∥∥uxt(τ )
∥∥2 dτ

+ 2
∫ t

0

∥∥uxxt(τ )
∥∥2 dτ – 2

∫
�

G(uxx) dx
]

= 2
∫

�

(
uttut + uxxxxut – uxxtut + uxxxxtut – g(uxx)xxut

)
dx

= 0. (4.2)

Integration of (4.2) from 0 to t leads to

E(t) = E(0). (4.3)

We now define

φ(t) =
∥∥u(t)

∥∥2 +
∫ t

0

∥∥ux(τ )
∥∥2 dτ +

∫ t

0

∥∥uxx(τ )
∥∥2 dτ

+ (T0 – t)‖u0x‖2 + (T0 – t)‖u0xx‖2 + β(t + t0)2,

where 0 ≤ t ≤ T0, β and t0 are nonnegative real numbers to be given later. Hence,

φ′(t) = 2
∫

�

u(t)ut(t) dx +
∥∥ux(t)

∥∥2 +
∥∥uxx(t)

∥∥2 – ‖u0x‖2

– ‖u0xx‖2 + 2β(t + t0)

= 2
[∫

�

u(t)ut(t) dx +
∫ t

0

∫
�

ux(τ )uxt(τ ) dx dτ

+
∫ t

0

∫
�

uxx(τ )uxxt(τ ) dx dτ + β(t + t0)
]

. (4.4)

From (4.4) and (1.1), we have

φ′′(t) = 2
[∥∥ut(t)

∥∥2 +
∫

�

u(t)utt(t) dx +
∫

�

ux(t)uxt(t) dx +
∫

�

uxx(t)uxxt(t) dx + β

]

= 2
[∥∥ut(t)

∥∥2 +
∫

�

u(t)
[
utt(t) – uxxt(t) + uxxxxt(t)

]
dx + β

]

= 2
[∥∥ut(t)

∥∥2 +
∫

�

u(t)
[
–uxxxx(t) + g

(
uxx(t)

)
xx

]
dx + β

]

= 2
[∥∥ut(t)

∥∥2 –
∥∥uxx(t)

∥∥2 +
(
g(uxx), uxx

)
+ β

]
. (4.5)

From (4.4), we can write

φ′(t)2 = 4
[∫

�

u(t)ut(t) dx +
∫ t

0

∫
�

ux(τ )uxt(τ ) dx dτ +
∫ t

0

∫
�

uxx(τ )uxxt(τ ) dx dτ

+ β(t + t0)
]2
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≤ 4
[∥∥u(t)

∥∥∥∥ut(t)
∥∥ +

(∫ t

0

∥∥ux(τ )
∥∥2 dτ

) 1
2
(∫ t

0

∥∥uxt(τ )
∥∥2 dτ

) 1
2

+
(∫ t

0

∥∥uxx(τ )
∥∥2 dτ

) 1
2
(∫ t

0

∥∥uxxt(τ )
∥∥2 dτ

) 1
2

+
√

β
√

β(t + t0)
]2

≤ 4φ(t)
[∥∥ut(t)

∥∥2 +
∫ t

0

∥∥uxt(τ )
∥∥2 dτ +

∫ t

0

∥∥uxxt(τ )
∥∥2 dτ + β

]
. (4.6)

Now, from (4.4)–(4.6), we obtain

φ′′(t)φ(t) – (1 + γ )φ′(t)2

= 2φ(t)
[∥∥ut(t)

∥∥2 –
∥∥uxx(t)

∥∥2 +
∫

�

g
(
uxx(t)

)
uxx(t) dx + β

]
– (1 + γ )φ′(t)2

≥ 2φ(t)
[∥∥ut(t)

∥∥2 –
∥∥uxx(t)

∥∥2 +
∫

�

g
(
uxx(t)

)
uxx(t) dx + β

– 2(1 + γ )
(∥∥ut(t)

∥∥2 +
∫ t

0

∥∥uxt(τ )
∥∥2 dτ +

∫ t

0

∥∥uxxt(τ )
∥∥2 dτ + β

)]

≥ 2φ(t)ψ(t), (4.7)

where

ψ(t) = –
∥∥uxx(t)

∥∥2 +
∫

�

g
(
uxx(t)

)
uxx(t) dx – (2γ + 1)

(∥∥ut(t)
∥∥2 + β

)

– 2(1 + γ )
∫ t

0

(∥∥uxt(τ )
∥∥2 +

∥∥uxxt(τ )
∥∥2)dτ . (4.8)

From (4.8) and (1.1), we deduce

ψ ′(t) = –2
∫

�

uxx(t)uxxt(t) dx +
d
dt

∫
�

g
(
uxx(t)

)
uxx(t) dx

– 2(2γ + 1)
∫

�

ut(t)utt(t) dx – 2(1 + γ )
(∥∥uxt(t)

∥∥2 +
∥∥uxxt(t)

∥∥2)

= –2
∫

�

uxx(t)uxxt(t) dx +
d
dt

∫
�

g
(
uxx(t)

)
uxx(t) dx

– 2(2γ + 1)
∫

�

ut(t)
[
uxxt(t) – uxxxx(t) – uxxxxt(t) + g

(
uxx(t)

)
xx

]
dx

– 2(1 + γ )
(∥∥uxt(t)

∥∥2 +
∥∥uxxt(t)

∥∥2)

= –2
∫

�

uxx(t)uxxt(t) dx +
d
dt

∫
�

g
(
uxx(t)

)
uxx(t) dx

+ 2(2γ + 1)
∫

�

uxx(t)uxxt(t) dx + 2γ
(∥∥uxt(t)

∥∥2 +
∥∥uxxt(t)

∥∥2)

– 2(2γ + 1)
∫

�

g
(
uxx(t)

)
uxxt(t) dx

=
d
dt

∫
�

g
(
uxx(t)

)
uxx(t) dx – 2(2γ + 1)

∫
�

g
(
uxx(t)

)
uxxt(t) dx

+ 4γ

∫
�

uxxt(t)uxx(t) dx + 2γ
∥∥uxxt(t)

∥∥2 + 2γ
∥∥uxt(t)

∥∥2. (4.9)
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Integrating (4.9) from 0 to t and making use of the assumption (2.1),

ψ(t) ≥ ψ(0) –
∫

�

g(u0xx)u0xx dx +
∫

�

g
(
uxx(t)

)
uxx(t) dx

– 2(1 + 2γ )
∫

�

G
(
uxx(t)

)
dx + 2(1 + 2γ )

∫
�

G(u0xx) dx

+ 2γ
∥∥uxx(t)

∥∥2 – 2γ ‖u0xx‖2

≥ ψ(0) –
∫

�

g(u0xx)u0xx dx + 2(1 + 2γ )
∫

�

G(u0xx) dx – 2γ ‖u0xx‖2

≥ –(1 + 2γ )
(

‖u0xx‖2 + ‖u1‖2 – 2
∫

�

G(u0xx) dx + β

)

≥ –(1 + 2γ )
(
E(0) + β

)
. (4.10)

Combining this inequality with (4.7), we obtain

φ′′(t)φ(t) – (1 + γ )φ′(t)2 ≥ –2(1 + 2γ )
(
E(0) + β

)
φ(t). (4.11)

We consider three different cases for the sign of the initial energy E(0):
(1) If E(0) < 0, we choose β = –E(0), then (4.11) becomes

φ′′(t)φ(t) – (1 + γ )φ′(t)2 ≥ 0. (4.12)

If we choose T0 and t0 such that φ(0)
γφ′(0) ≤ T0, by considering the assumption (1), Lemma 4.1

implies that φ(t) tends to infinity as

t → t1 ≤ φ(0)
γφ′(0)

=
‖u0‖2 + T0‖u0x‖2 + T0‖u0xx‖2 – E(0)t2

0
γ [

∫
�

2u0(x)u1(x) dx – E(0)t0]
.

This is a contradiction to the fact that the maximal time of the existence of the solution is
infinite. Thus, we can conclude that the solution of problem (1.1)–(1.3) blows up in finite
time.

To complete the proof, we need to determine that T0 and t0 are positive constants. We
choose t0 large enough so that

2(u0, u1) – E(0)t0 –
1
γ

(‖u0xx‖2 + ‖u0x‖2) > 0.

Moreover, φ(0)
γφ′(0) ≤ T0 if and only if

‖u0‖2 – E(0)t2
0

γ [
∫
�

2u0(x)u1(x) dx – E(0)t0] – ‖u0xx‖2 – ‖u0x‖2 ≤ T0.

Clearly, T0 and t0 are positive constants.
(2) If E(0) = 0, we choose β = 0 and T0 such that

‖u0‖2

2γ [
∫
�

u0(x)u1(x) dx] – ‖u0xx‖2 – ‖u0x‖2 ≤ T0.
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Then (4.11) becomes

φ′′(t)φ(t) – (1 + γ )φ′(t)2 ≥ 0. (4.13)

By considering assumption (2), Lemma 4.1 implies that φ(t) tends to infinity as

t → t2 ≤ ‖u0‖2 + T0‖u0x‖2 + T0‖u0xx‖2

2γ
∫
�

u0(x)u1(x) dx
.

This is a contradiction to the fact that the maximal time of the existence of the solution is
infinite. Thus, we can conclude that the solution of problem (1.1)–(1.3) blows up in finite
time.

(3) If E(0) > 0, we choose β = 0, then (4.11) becomes

φ′′(t)φ(t) – (1 + γ )φ′(t)2 ≥ –2(1 + 2γ )E(0)φ(t). (4.14)

We now define the auxiliary function J(t) as follows:

J(t) = φ–γ (t). (4.15)

Now we compute

J ′(t) = –γφ–γ –1(t)φ′(t). (4.16)

and

J ′′(t) = γ (γ + 1)φ–γ –2(t)φ′(t)2 – γφ–γ –1(t)φ′′(t)

= –γφ–γ –2(t)
[
φ′′(t)φ(t) – (1 + γ )φ′(t)2]

≤ 2γ (1 + 2γ )E(0)φ–γ –1(t). (4.17)

By considering assumption (3), we deduce

J ′(0) = –γφ–γ –1(0)φ′(0) < 0.

Now let

t∗ = sup
{
τ |J ′(τ ) < 0, τ ∈ [0, t)

}
.

Because of the continuity of J ′(t), t∗ is positive, so multiplying (4.17) by 2J ′(t), we obtain

d
dt

[
J ′(t)

]2 ≥ 4γ (2γ + 1)E(0)φ–γ –1(t)J ′(t)

= –4γ 2(2γ + 1)E(0)φ–2γ –2(t)φ′(t)

= 4γ 2E(0)
d
dt

[
φ–2γ –1(t)

]
, ∀t ∈ [

0, t∗). (4.18)
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Integrating (4.18) over [0, t), we obtain

J ′(t)2 ≥ J ′(0)2 + 4γ 2E(0)φ–2γ –1(t) – 4γ 2E(0)φ–2γ –1(0)

≥ J ′(0)2 – 4γ 2E(0)φ–2γ –1(0). (4.19)

From assumption (3), we obtain

J ′(0)2 – 4γ 2E(0)φ–2γ –1(0) > 0.

Hence, making use of the continuity of J ′(t), we obtain

J ′(t) ≤ –
[
J ′(0)2 – 4γ 2E(0)φ–2γ –1(0)

] 1
2 , ∀t ∈ [

0, t∗). (4.20)

Integrating (4.20) from 0 to t leads to

J(t) ≤ J(0) –
[
J ′(0)2 – 4γ 2E(0)φ–2γ –1(0)

] 1
2 t, ∀t > 0. (4.21)

We choose T0 such that

J(0)
[J ′(0)2 – 4γ 2E(0)φ–2γ –1(0)] 1

2
≤ T0.

Then there exists a finite positive number t3 such that J(t3) = 0 and 0 < t3 ≤ T∗ =
J(0)

[J ′(0)2–4γ 2E(0)φ–2γ –1(0)]
1
2

. Thus, φ(t) → ∞ as t → t3. This is a contradiction to the fact that

the maximal time of the existence of the solution is infinite. The theorem is proved. �

Example 4.1 For the initial boundary value problem (1.1)–(1.3), we take specific functions
g(s), u0(x) and u1(x) satisfying the conditions of Theorem 2.2. We first discuss:

(i) The case E(0) < 0. To this end, we take u0(x) = sin2 πx, u1(x) = 1 and g(s) = –s.
Obviously, u0(x) ∈ H2(0, 1), u1(x) ∈ L2(0, 1), g(0) = 0, G(u0xx) ∈ L1(0, 1), sg(s) = –s2

and 2(1 + 2γ )G(s) = – 2(1+2γ )
2 s2. Thus, when γ = 1, g(s) satisfies assumption (2.1) of

Theorem 2.2. After some simple calculation, we get ‖u1‖2 = 1,
‖u0x‖2 = π2

2 ,‖u0xx‖2 = 2π2,
∫ 1

0 G(u0xx) dx = π4 and

E(0) = ‖u1‖2 + ‖u0xx‖2 – 2
∫

�

G(u0xx) dx = 1 + 2π2 – 2π4. (4.22)

Hence, we see from (4.22) that E(0) < 0. We choose t0 = 10 so that

2(u0, u1) – E(0)t0 –
1
γ

(‖u0xx‖2 + ‖u0x‖2) = 1 + 20π4 –
21
2

π2 – 10 > 0.

Then the conditions of Theorem 2.2 are satisfied. Hence there exists a t1 ≤ φ(0)
γφ′(0)

such that φ(t) → ∞ as t → t–
1 .

(ii) The case E(0) = 0. We take u0(x) = sin2 πx, u1(x) = k1 and g(s) = k2s. Then
u0(x) ∈ H2(0, 1), u1(x) ∈ L2(0, 1), G(u0xx) ∈ L1(0, 1), and, when γ = 1, g(s) satisfies
assumption (2.1) of Theorem 2.2, and from above relations we obtain that
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‖u1‖2 = k2
1 , ‖u0x‖2 = π2

2 ,‖u0xx‖2 = 2π2,
∫ 1

0 G(u0xx) dx = k2π
4 as well as, when

k1 = 50 and k2 = 1250+π2

π4 ,

E(0) = ‖u1‖2 + ‖u0xx‖2 – 2
∫

�

G(u0xx) dx = k2
1 + 2π2 – 2k2π

4 = 0 (4.23)

and

2(u0, u1) –
1
γ

(‖u0xx‖2 + ‖u0x‖2) = 50 –
5
2
π2 > 0. (4.24)

Then the conditions of Theorem 2.2 are satisfied. Hence there exists a t2 ≤ φ(0)
γφ′(0)

such that φ(t) → ∞ as t → t–
2 .

(iii) The case E(0) > 0. Now we take u0(x) = sin2 πx, u1(x) = 100 and g(s) = k3s. When
γ = 1

4 , g(s) satisfies assumption (2.1) of Theorem 2.2. Then ‖u0‖2 = 1
2 ,‖u1‖2 = 104,

‖u0x‖2 = π2

2 ,‖u0xx‖2 = 2π2,
∫ 1

0 G(u0xx) dx = k3π
4, and we choose k3 = 51 so that

E(0) = ‖u1‖2 + ‖u0xx‖2 – 2
∫

�

G(u0xx) dx = 104 + 2π2 – 2k3π
4 > 0. (4.25)

Taking T0 = 1
10 gives

(u0, u1) >
[

E(0)
(

‖u0‖2 +
1

10
‖u0x‖2 + ‖u0xx‖2

)] 1
2

.

Then the conditions of Theorem 2.2 are satisfied. Hence there exists a finite
positive number t3 such that J(t3) = 0 and 0 < t3 ≤ T∗ = J(0)

[J ′(0)2–4γ 2E(0)φ–2γ –1(0)]
1
2

.

Thus, φ(t) → ∞ as t → t3.

5 Energy decay estimate for a solution
In this section, we study the energy decay estimates for the solution for the problem (1.1)–
(1.3). In order to prove our result, we need the following basic lemma, which can be found
in [25].

Lemma 5.1 ([25]) Let F : R+ →R
+ (R+ = [0,∞)) be a non-increasing function and assume

that there exists a constant M > 0 such that
∫ ∞

t
F(s) ds ≤ MF(t), ∀t ∈R

+. (5.1)

Then

F(t) ≤ F(0)e1– t
M , ∀t ≥ 0. (5.2)

Proof of Theorem 2.3 Let the energy be

E1(t) =
∥∥ut(t)

∥∥2 +
∥∥uxx(t)

∥∥2 – 2
∫ 1

0
G(uxx) dx

= 2
∫ t

0

(
(uxxt , ut) – (uxxxxt , ut)

)
dτ + ‖u1‖2 + ‖u0xx‖2
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– 2
∫ 1

0
G(u0xx) dx

= 2
∫ t

0

(
–
∥∥uxt(τ )

∥∥2 –
∥∥uxxt(τ )

∥∥2)dτ + ‖u1‖2 + ‖u0xx‖2

– 2
∫ 1

0
G(u0xx) dx

for any global solution of the problem (1.1)–(1.3). A simple computation gives

E1(S) – E1(T) = –2
∫ S

0

∥∥uxt(t)
∥∥2 dt – 2

∫ S

0

∥∥uxxt(t)
∥∥2 dt

+ 2
∫ T

0

∥∥uxt(t)
∥∥2 dt + 2

∫ T

0

∥∥uxxt(t)
∥∥2 dt

= 2
∫ T

S

∥∥uxt(t)
∥∥2 dt + 2

∫ T

S

∥∥uxxt(t)
∥∥2 dt, ∀0 ≤ S ≤ T < ∞. (5.3)

From (5.3) and assumption (1), it follows that the energy E1(t) is non-increasing and
E1(t) ≥ 0. Multiplying both sides of (1.1) by u(x, t), integrating over (S, T) × �, and ap-
plying integration by parts, we obtain

∫ T

S

∫ 1

0
–u2

t + u2
xx dx dt

= –
[∫ 1

0
uut dx

]T

S
–

1
2

[∫ 1

0
u2

x dx
]T

S
–

1
2

[∫ 1

0
u2

xx dx
]T

S

+
∫ T

S

∫ 1

0
g(uxx)uxx dx dt, ∀0 ≤ S < T < ∞. (5.4)

Now adding 2
∫ T

S
∫ 1

0 (u2
t – G(uxx)) dx dt to both sides of (5.4), we obtain

∫ T

S
E1(t) dt =

∫ T

S

∫ 1

0
2u2

t dx dt –
[∫ 1

0
uut dx

]T

S

–
1
2

[∫ 1

0
u2

x dx
]T

S
–

1
2

[∫ 1

0
u2

xx dx
]T

S

+
∫ T

S

∫ 1

0

[
g(uxx)uxx – 2G(uxx)

]
dx dt. (5.5)

From (5.5) and assumption (2), we deduce

∫ T

S
E1(t) dt ≤

∫ T

S

∫ 1

0
2u2

t dx dt –
[∫ 1

0
uut dx

]T

S
–

1
2

[∫ 1

0
u2

x dx
]T

S
–

1
2

[∫ 1

0
u2

xx dx
]T

S

=
∫ T

S

∫ 1

0
2u2

t dx dt +
[∫ 1

0
uut dx

]S

T
+

1
2

[∫ 1

0
u2

x dx
]S

T
+

1
2

[∫ 1

0
u2

xx dx
]S

T

=
∫ T

S

∫ 1

0
2u2

t dx dt +
(∫ 1

0
uut dx

)
(S) +

1
2

(∫ 1

0
u2

x dx
)

(S)

+
1
2

(∫ 1

0
u2

xx dx
)

(S)
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–
(∫ 1

0
uut dx

)
(T) –

1
2

(∫ 1

0
u2

x dx
)

(T) –
1
2

(∫ 1

0
u2

xx dx
)

(T)

≤
∫ T

S

∫ 1

0
2u2

t dx dt +
(∫ 1

0
uut dx

)
(S) +

1
2

(∫ 1

0
u2

x dx
)

(S)

+
1
2

(∫ 1

0
u2

xx dx
)

(S) –
(∫ 1

0
uut dx

)
(T). (5.6)

Making use of the non-increasingness property of E1(t) and the Poincaré inequality, we
obtain

2
∫ T

S

∫ 1

0
u2

t dx dt ≤ 2
∫ T

S

∫ 1

0
u2

xt dx dt ≤ E1(S) – E1(T) ≤ E1(S). (5.7)

Using the Poincaré inequality and integrating by parts, we see that

∫ 1

0
u2(x, t) dx ≤

∫ 1

0
u2

x(x, t) dx = –
∫ 1

0
u(x, t)uxx(x, t) dx

≤ 1
2

∫ 1

0
u2(x, t) + u2

xx(x, t) dx. (5.8)

Therefore,

∫ 1

0
u2(x, t) dx ≤

∫ 1

0
u2

xx(x, t) dx. (5.9)

Using the Cauchy inequality and (5.9), we have

∣∣∣∣
∫ 1

0
uut dx

∣∣∣∣ ≤ 1
2

∫ 1

0

(
u2 + u2

t
)

dx ≤ 1
2

∫ 1

0

(
u2

xx + u2
t
)

dx ≤ 1
2

E1(t), (5.10)

1
2

∫ 1

0
u2

x dx ≤ 1
2

∫ 1

0
u2

xx dx ≤ 1
2

E1(t). (5.11)

Now, from (5.7)–(5.11), it follows that

∫ T

S
E1(t) dt ≤ 3E1(S), 0 ≤ S < T < ∞. (5.12)

Letting T → ∞, we deduce from (5.12) that

∫ ∞

S
E1(t) dt ≤ 3E1(S), ∀S ≥ 0,

and now conclude from Lemma 5.1 that

E1(t) ≤ E1(0)e1– t
3 , ∀S ≥ 0.

This completes the proof. �
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6 Discussion and conclusions
6.1 Discussion
Theorem 2.3 uses the conditions of Theorem 2.1, that is, it holds under Assumption 2.1
and the assumption

sg(s) ≤ 2G(s) ≤ 0 for all s ∈R.

Problem (1.1)–(1.3) admits a global weak solution in the space X(T), and the solution de-
cays with an exponential rate. At the same time, Theorem 2.2 requires the energy identity
E(t) = E(0) and the assumption

sg(s) ≥ 2(1 + 2γ )G(s), s ∈R.

Then problem (1.1)–(1.3) has no global solution in the space

C
(
[0, T]; H2(0, 1)

) ∩ C1([0, T]; L2(0, 1)
) ∩ H1([0, T]; H2(0, 1)

)
.

Thus the conclusions of Theorems 2.3 and 2.2 are compatible. In this paper, we just con-
sider the problems in a 1-dimensional space, but it would be interesting to investigate
whether Eq. (1.1) has a global solution to the Cauchy problem or the initial boundary
value problem in a high-dimensional space and for other functional spaces. This question
is interesting and still open.

6.2 Conclusions
The goal of this paper is to study the existence and nonexistence of global weak solutions
to the initial boundary value problem for a nonlinear beam equation with double damping
terms

utt – uxxt + uxxxx + uxxxxt = g(uxx)xx, x ∈ �, t > 0,

where g(s) is a given nonlinear function. When u0 ∈ H , u1 ∈ L2 and Assumption 2.1 holds,
for any T > 0, the problem (1.1)–(1.3) admits a unique global weak solution u ∈ X(T). And
the decay estimate of the energy functional for the global solution is given by making use
of a differential inequality technique. Moreover, when u0 ∈ H2(�), u1 ∈ L2(�), G(u0x) ∈
L1(�) satisfy certain conditions, the solution to problem (1.1)–(1.3) blows up in finite time.
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